
1

Package FDRhmrf Version 1

By Hai Shu and Bin Nan

1. Introduction

The package FDRhmrf provides the implementation of multiple testing for three-dimensional

(3D) image data using the false discovery rate (FDR) controlling procedure based on hidden

Markov random field (HMRF) and local index of significance (LIS) (Shu and Nan, 2014).

The package is coded in C++ source code, and called from MATLAB by a user-friendly

interface.

2. Installation

The C++ source code is called by MEX-files from MATLAB, and thus both MATLAB and

a C++ complier are required before the installation of FDRhmrf. Here we only illustrate the

installation on Windows (64-bit). The installation on other platforms should be similar.

Set the package folder as your current directory in MATLAB. To start the installation, at

the MATLAB prompt >>, type: mex setup(). The command window now should be:

Type y, then you will be asked to select a complier:



2

Then type the number of an available complier:

Type y to confirm your selection, and then wait until the MATLAB prompt >> appears:

If there is no error message displayed, the installation is successfully finished and three MEX-

files, computelis.mexw64, fdrBH95.mexw64 and fdrplis.mexw64, should be now

in your current directory.

3. Functions

3.1 fdrBH95

Syntax

result=fdrBH95(input info,reglocafile,pvaluefile,output signal)

Description



3

fdrBH95 is used to implement the FDR procedure of Benjamini and Hochberg (BH;

1995) for multiple testing. It outputs the signals of the brain region of interest (ROI) that

are identified by the BH procedure into a file named output signal. In the signal file, 1

indicates signal and 0 indicates non-signal. The returning vector result= (r, n, threshold),

where r is the number of discovered signals (rejections), n is the number of ROI’s voxels

(hypotheses), and threshold is the threshold of p-values used to identify signals (reject the

null hypothesis).

Arguments

input info: a row vector = (Lx, Ly, Lz, q), where Lx, Ly, Lz are the dimensions of the

image lattice (including the brain part and the non-brain part) on x, y, z axises respectively

and q is the FDR controlling level.

reglocafile: a string contains the name of the existing file storing the vectorized

location of the ROI on the image lattice. You may use the MATLAB built-in function

reshape to transform the 3D location (x, y, z) into the vectorized location i, where 1 6

x 6 Lx, 1 6 y 6 Ly, 1 6 z 6 Lz and 1 6 i 6 Lx× Ly × Lz.

pvaluefile: a string contains the name of the existing file storing the p-values on the

whole image lattice including the brain part and the non-brain part.

output signal: a string contains the name of the output file to store the result of the

ROI’s signals that are identified by the BH procedure. In the signal file, 1 indicates signal

and 0 indicates non-signal.

Example

Type:

input info=[160,160,96,0.1];

reglocafile=‘loca 56.txt’;

pvaluefile=‘pvalue 1vs2.txt’;



4

output signal=‘signals BH 56.txt’;

result=fdrBH95(input info,reglocafile,pvaluefile,output signal)

The returning result will be:

result =

0 920.0000 0.0001

3.2 initialvalue

Syntax

initials=initialvalue(signalfile,zvaluefile,reglocafile,L)

Description

initialvalue returns the initial values for the HMRF parameters including β, h of the

Ising model and µi, σ
2
i , pi, i = 1, 2, ..., L, of the non-null normal mixture. The elements of the

returning vector initials are in the order of β, h, µ1, σ
2
1, p1, ..., µL, σ

2
L, pL.

Arguments

signalfile: a string contains the name of the existing file storing the ROI’s signals that

are usually identified by a simple multiple testing procedure, e.g., the BH procedure. In the

signal file, 1 indicates signal and 0 indicates non-signal.

zvaluefile: a string contains the name of the existing file storing the z-values on the

whole image lattice including the brain part and the non-brain part.

reglocafile: a string contains the name of the existing file storing the vectorized

location of the ROI on the image lattice.

L: an integer indicates the number of the components in the non-null normal mixture.

Example

Type:

signalfile=‘signals BH 56.txt’;

zvaluefile=‘zvalue 1vs2.txt’;



5

reglocafile=‘loca 56.txt’;

L=2;

initials=initialvalue(signalfile,zvaluefile,reglocafile,L)

Then the returning result will be:

initials =

Columns 1 through 6

0 0 2.0000 1.0000 0.5000 -2.0000

Columns 7 through 8

1.0000 0.5000

3.3 computelis

Syntax

computelis(input info,initials,zvaluefile,reglocafile,

output estimate,output LIS)

computelis(input info,initials,zvaluefile,reglocafile,

output estimate,output LIS,output process)

Description

computelis is used to run the generalized expectation-maximization algorithm (GEM;

Shu and Nan 2014) to obtain the estimates of the HMRF parameters, and also to compute

the LIS statistics of the ROI. The HMRF parameter estimates will be saved into the file

output estimate, and the ROI’s LIS will be outputted into the file output LIS. The

output file output process is optional to store the tracing information of the algorithm.

Arguments

input info: a row vector = (Lx, Ly, Lz, L, sweep b = 1000, sweep r = 5000, sweep lis =

1e6, iter max = 5000). Lx, Ly, Lz are the dimensions of the image lattice (including the brain



6

part and the non-brain part) on x, y, z axises respectively. L is the number of components in

the non-null normal mixture. The last four elements are optional. In the GEM, sweep b is

the number of iterations for the burn-in period of the Gibbs sampler, sweep r is the Gibbs-

sampler sample size and iter max is the maximum number of GEM iterations. After running

the GEM, the LIS statistics are computed by the Gibbs-sampler sample of size sweep lis.

(sweep b, sweep r, sweep lis, iter max) is set to be (1000, 5000, 1e6, 5000) by default.

initials: a row vector contains the initial values for the HMRF parameters including β, h

of the Ising model and µi, σ
2
i , pi, i = 1, 2, ..., L, of the non-null normal mixture. The elements

of this input vector initials should be in the order of β, h, µ1, σ
2
1, p1, ..., µL, σ

2
L, pL.

zvaluefile: a string contains the name of the existing file storing the z-values on the

whole image lattice including the brain part and the non-brain part.

reglocafile: a string contains the name of the existing file storing the vectorized

location of the ROI on the image lattice.

output estimate: a string contains the name of the output file to store the estimates

of the HMRF parameters that are in the same order of the elements of initials.

output LIS: a string contains the name of the output file to store the LIS statistics.

output process: a string contains the name of the output file to store the tracing infor-

mation of the algorithm. The tracing information includes the HMRF parameter estimates

and the values of score function and information matrix obtained from each GEM iteration,

and the time used to run the function computelis. output process is an optional input

argument. The notation used in the output file output process is listed as follows:

mu1 hat[i],sigma1 sq hat[i],pEll hat[i],i=0,1,...,L-1: the mean, vari-

ance and proportion of the (i+1)-th component in the non-null normal mixture;

U[i],i=0,1: the (i+1)-th element of the score function U (t+1)(ϕ);

H cond mean[i],i=0,1: the (i+1)-th elements of EΦ(t) [H(Θ)|x];



7

H mean[i],i=0,1: the (i+1)-th elements of Eϕ[H(Θ)];

I[i],i=0,1,2: I[0],I[2] are the diagonal entries, and I[1] is the off-diagonal entry

of the information matrix I(ϕ);

lambda: the proportion of the regular Newton step, i.e., λm;

delta Q2: the increase in Q2-function;

d1: the scaled distance between previous and current estimates, i.e.,

max
i

(
|Φ(t+1)

i − Φ
(t)
i |

|Φ(t)
i + ε1|

)
.

Example

Type:

input info=[160,160,96,2,1000,5000,1e6,5000];

initials=[0,0,2,1,0.5,-2,1,0.5];

zvaluefile=‘zvalue 1vs2.txt’;

reglocafile=‘loca 56.txt’;

output estimate=‘estimate result.txt’;

output LIS=‘LIS 56.txt’;

output process=‘process output.txt’;

computelis(input info,initials,zvaluefile,reglocafile,

output estimate,output LIS,output process)

3.4 fdrplis

Syntax

result=fdrplis(input info,reg no,reglocafile,LISfile,

output signal,output LIS)

Description



8

fdrplis is used to implement the pooled LIS procedure (PLIS; Wei et al. 2009) for multi-

ple testing. It outputs the signals and LIS statistics of the ROIs into the files output signal

and output LIS, respectively. The returning vector result= (r, n, threshold), where r is

the number of discovered signals (rejections), n is the number of ROI’s voxels (hypotheses),

and threshold is the threshold of LIS statistics used to identify signals (reject the null

hypothesis).

Arguments

input info: a row vector= (Lx, Ly, Lz, q), where Lx, Ly, Lz are the dimensions of the

image lattice (including the brain part and the non-brain part) on x, y, z axises respectively

and q is the FDR controlling level.

reg no: a row vector contains the number of each ROI.

reglocafile: a string contains the common part in the names of the files respectively

storing each ROI’s vectorized location on the image lattice. E.g., reglocafile=‘loca’

if the files are ‘loca 40.txt’ and ‘loca 56.txt’. The file format must be “.txt”.

LISfile: a string contains the common part in the names of the files respectively storing

each ROI’s LIS statistics. E.g., LISfile=‘LIS ’ if the files are ‘LIS 40.txt’ and ‘LIS 56.txt’.

The file format must be “.txt”.

output signal: a string contains the name of the output file to store the result of the

ROIs’ signals that are identified by the PLIS procedure. In the signal file, 1 indicates signal

and 0 indicates non-signal. The file will contain a vector of size Lx × Ly × Lz, where the

signal result of each ROI can be located by the ROI’s vectorized location and the elements

at the non-ROI locations are set to be 0.

output LIS: a string contains the name of the output file to store the ROIs’ LIS statistics.

The file will contain a vector of size Lx×Ly×Lz, where the LIS statistics of each ROI can

be located by the ROI’s vectorized location and the elements at the non-ROI locations are



9

set to be 0.

Example

Type:

input info=[160,160,96,1e-3];

reg no=[40,56];

reglocafile=‘loca ’;

LISfile=‘LIS ’;

output signal=‘signals plis 40&56.txt’;

output LIS=‘LIS 40&56.txt’;

result=fdrplis(input info,reg no,reglocafile,LISfile,

output signal,output LIS)

The returning result will be:

result =

1.0e+03 *

1.269000000000000 2.572000000000000 0.000005967000000

4. Steps to implement the HMRF-based PLIS procedure

In this section, we show detailed steps to implement the HMRF-based PLIS procedure (Shu

and Nan 2014) by the FDRhmrf package. Example code is available in the MATLAB file

example.m. Assuming there are n1 and n2 3D images for groups 1 and 2 on Lx×Ly×Lz

image lattice respectively, the steps to do the pooled FDR analysis of ROIs for the comparison

between groups 1 and 2 are as follows:

(1) Do a two-sample Welch’s t-test (Welch, 1947) for each ROIs’ voxel, and save the p-values

and the associated z-values respectively into a 3D array of size Lx× Ly × Lz by the corre-

sponding 3D voxels’ locations. Transform the 3D arrays into vectors by using the MATLAB

built-in function reshape. E.g., pvalue 1d=reshape(pvalue 3d,1,Lx*Ly*Lz) or



10

pvalue 1d=reshape(pvalue 3d,Lx*Ly*Lz,1). Similarly, obtain the vectorized loca-

tion of each ROI.

(2) Use function fdrBH95 to obtain each ROI’s signal file, and then use initialvalue

to obtain initial values of HMRF parameters for each ROI.

(3) Use function computelis to obtain each ROI’s LIS statistics, then carry out the

PLIS procedure using function fdrplis.

(4) fdrplis returns ROIs’ signals and LIS statistics respectively in a vector of size Lx×

Ly × Lz. You can transform the vectors back to 3D arrays by using the MATLAB built-in

function reshape. E.g., signal 3d=reshape(signal 1d,Lx,Ly,Lz).

Acknowledgement

We thank Dr. Agner Fog (Technical University of Denmark) for his open C++ libraries of ran-

dom number generators (Fog 2010; available at www.agner.org/random), where the C++ files

of FDRhmrf, randomc.h, stocc.h, stoc1.cpp, mersenne.cpp and userintf.cpp

are obtained.

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B

57, 289-300.

Fog, A. (2010). Instructions for the random number generator libraries on www.agner.org.

Available at www.agner.org/random, and also available in the folder of package FDRhmrf.

Shu, H., and Nan, B. (2014). Multiple testing for neuroimaging via hidden Markov random

field. Submitted to Biometrics.

Wei, Z., Sun, W., Wang, K., and Hakonarson, H. (2009). Multiple testing in genome-wide

association studies via hidden Markov models. Bioinformatics 25, 2802-2808.



11

Welch, B. L. (1947). The generalization of ‘Student’s’ problem when several different

population variances are involved. Biometrika 34, 28-35.


