Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
content badge Iframe embedding
swh:1:cnt:f98699eaa6cf7f2d6f739efce4209a3dfe039152

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
% Model_Fit_Const.m
% Takes chain data from MCMC routine (Posterior_Sample_Const.m), generates 
% the model posterior, and finds the maximum-likelihood model fit from
% Barendregt et al., 2022.

clear

% Load MCMC and subject data:
load('model_fit_Const.mat'); subs = 20; speeds = 2;
load('trials.mat')

% Define task parameters to simulate model:
Nt = 15;

% Define binning for empirical model posterior:
nbin = [32 32 32];

for speed_ind = 1:speeds
    for sub_ind = 1:subs

        % Pull task data from MCMC data:
        speed = model_fit_Const(sub_ind,speed_ind).speed; t_d = speed/1000;
        post_samp = model_fit_Const(sub_ind,speed_ind).samples;
        
        % Load subject data:
        Sub_ID = model_fit_Const(sub_ind,speed_ind).idSubject;
        Sub_T = trials.nDecisionToken((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
        Sub_Data = histcounts(Sub_T,-0.5:1:(Nt+0.5),'normalization','probability');
        
        % Load and format stimulus data:
        Sub_stim = trials.sTokenDirs((trials.nSpeedFast == speed) & (trials.idSubject == Sub_ID));
        stim = NaN(length(Sub_stim),Nt);
        for i = 1:length(Sub_stim)
            stim(i,:) = str2num(strtrim(regexprep(Sub_stim{i},'.{1}','$0 ')));
            stim(i,:) = 2*(stim(i,:)-1)-1;
        end
        
        % Construct empirical model posterior as multi-dimensional
        % histogram:
        edges = {linspace(0.9*min(post_samp(:,1)),1.1*max(post_samp(:,1)),nbin(1)+1),...
            linspace(0.9*min(post_samp(:,2)),1.1*max(post_samp(:,2)),nbin(2)+1),...
            linspace(0.9*min(post_samp(:,3)),1.1*max(post_samp(:,3)),nbin(3)+1)};
        [post,~,mid,~] = histcn(post_samp,edges{1},edges{2},edges{3});
        
        % Find maximum-likelihood parameters:
        [~,I] = max(post,[],'all','linear');
        [th_I,sigma_I,mn_I] = ind2sub(size(post),I);
        MLE = [mid{1}(th_I) mid{2}(sigma_I) mid{3}(mn_I)];
        model_fit_Const(sub_ind,speed_ind).MLE = MLE;
        
        % Pre-allocate storage of empirical RT distribution generated from 
        % maximum-likelihood parameters:
        Fit_Data = zeros(1,Nt+1);

        % Construct maximum-likelihood model:
        thresh_g = MLE(1)*ones(1,Nt+1);
        for i = 1:50
            Fit_Data_T = NaN(1,length(Sub_T));

            % Generage synthetic response data using sampled model and subject
            % stimulus:
            for j = 1:length(Sub_T)
                [T,~] = tok_sim_norm(Nt,thresh_g,MLE(2),stim(j,:));
                Fit_Data_T(j) = round(MLE(3)*randn+T);
                while (Fit_Data_T(j) > Nt) || (Fit_Data_T(j) < 0)
                    Fit_Data_T(j) = round(MLE(3)*randn+T);
                end
            end

            % Average RT distribution over many (50, found experimentally 
            % by tuning) realizations:
            Fit_Data = Fit_Data+histcounts(Fit_Data_T,-0.5:1:(Nt+0.5));
        end

        % Add small non-zero entries to compute likelihood of sampled model:
        Fit_Data(Fit_Data == 0) = eps; Fit_Data = Fit_Data/sum(Fit_Data,'all');

        % Store RT distribution:
        model_fit_Const(sub_ind,speed_ind).Fit = Fit_Data;

        % Compute AICc:
        L = sum(log(Fit_Data(Sub_T+1)));
        model_fit_Const(sub_ind,speed_ind).AICc = 2*length(nbin)-2*L+...
            (2*length(nbin)^2+2*length(nbin))/(length(Sub_T)-length(nbin)-1);
    end
end
% save('model_fit_Const.mat','model_fit_Const')

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API