Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/cran/nFactors
24 October 2022, 04:44:14 UTC
  • Code
  • Branches (47)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/tags/1.0
    • refs/tags/2.1
    • refs/tags/2.2
    • refs/tags/2.3
    • refs/tags/2.3.1
    • refs/tags/2.3.2
    • refs/tags/2.3.3
    • refs/tags/2.3.3.1
    • refs/tags/2.4.1
    • refs/tags/2.4.1.1
    • refs/tags/R-2.10.0
    • refs/tags/R-2.10.1
    • refs/tags/R-2.11.0
    • refs/tags/R-2.11.1
    • refs/tags/R-2.12.0
    • refs/tags/R-2.12.1
    • refs/tags/R-2.12.2
    • refs/tags/R-2.13.0
    • refs/tags/R-2.13.1
    • refs/tags/R-2.13.2
    • refs/tags/R-2.14.0
    • refs/tags/R-2.14.1
    • refs/tags/R-2.14.2
    • refs/tags/R-2.15.0
    • refs/tags/R-2.15.1
    • refs/tags/R-2.15.2
    • refs/tags/R-2.15.3
    • refs/tags/R-2.4.0
    • refs/tags/R-2.4.1
    • refs/tags/R-2.5.0
    • refs/tags/R-2.5.1
    • refs/tags/R-2.6.0
    • refs/tags/R-2.6.1
    • refs/tags/R-2.6.2
    • refs/tags/R-2.7.0
    • refs/tags/R-2.7.1
    • refs/tags/R-2.7.2
    • refs/tags/R-2.8.0
    • refs/tags/R-2.8.1
    • refs/tags/R-2.9.0
    • refs/tags/R-2.9.1
    • refs/tags/R-2.9.2
    • refs/tags/R-3.0.0
    • refs/tags/R-3.0.1
    • refs/tags/R-3.0.2
    • refs/tags/R-3.0.3
    No releases to show
  • 3ee9c61
  • /
  • man
  • /
  • nBartlett.rd
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:fbd9e2dc010ff026f126497edd9c8cc7666f50a4
origin badgedirectory badge Iframe embedding
swh:1:dir:de85e01fd45a8bade675738b572f5098a216e6ce
origin badgerevision badge
swh:1:rev:d698320a894fbd444a99aa3d4dbce1f129cb82ac
origin badgesnapshot badge
swh:1:snp:788a101542b9bf7049cc9068e737c43bfa0ac40a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: d698320a894fbd444a99aa3d4dbce1f129cb82ac authored by Gilles Raiche on 28 March 2020, 04:50:06 UTC
version 2.4.1
Tip revision: d698320
nBartlett.rd
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/nBartlett.r
\name{nBartlett}
\alias{nBartlett}
\title{Bartlett, Anderson and Lawley Procedures to Determine the Number of Components/Factors}
\usage{
nBartlett(x, N, alpha = 0.05, cor = TRUE, details = TRUE,
  correction = TRUE, ...)
}
\arguments{
\item{x}{numeric: a \code{vector} of eigenvalues, a \code{matrix} of correlations or of covariances or a \code{data.frame} of data (eigenFrom)}

\item{N}{numeric: number of subjects}

\item{alpha}{numeric: statistical significance level}

\item{cor}{logical: if \code{TRUE} computes eigenvalues from a correlation matrix, else from a covariance matrix}

\item{details}{logical: if \code{TRUE} also returns detains about the computation for each eigenvalue}

\item{correction}{logical: if \code{TRUE} uses a correction for the degree of freedom after the first eigenvalue}

\item{...}{variable: additionnal parameters to give to the \code{cor} or \code{cov} functions}
}
\value{
\item{nFactors}{numeric: vector of the number of factors retained by the Bartlett, Anderson and Lawley procedures.}

\item{details}{numeric: matrix of the details for each index.}
}
\description{
This function computes the Bartlett, Anderson and Lawley indices for determining the
number of components/factors to retain.
}
\details{
Note: the latex formulas are available only in the pdf version of this help file.

The hypothesis tested is: \cr

(1)  \eqn{\qquad \qquad H_k: \lambda_{k+1} = \ldots = \lambda_p} \cr

This hypothesis is verified by the application of different version of a
\eqn{\chi^2} test with different values for the degrees of freedom.
Each of these tests shares the compution of a \eqn{V_k} value: \cr

(2) \eqn{\qquad \qquad V_k  =
  \prod\limits_{i = k + 1}^p {\left\{ {{{\lambda _i }
    \over {{\raise0.7ex\hbox{$1$} \!\mathord{\left/
    {\vphantom {1 q}}\right.\kern-\nulldelimiterspace}
      \!\lower0.7ex\hbox{$q$}}\sum\limits_{i = k + 1}^p {\lambda _i } }}} \right\}}
}

\eqn{p} is the number of eigenvalues, \eqn{k} the number of eigenvalues to test,
and \eqn{q} the \eqn{p-k} remaining eigenvalues. \eqn{n} is equal to the sample size
minus 1 (\eqn{n = N-1}). \cr

The Anderson statistic is distributed as a \eqn{\chi^2} with \eqn{(q + 2)(q - 1)/2} degrees
of freedom and is equal to: \cr

(3) \eqn{\qquad \qquad - n\log (V_k ) \sim \chi _{(q + 2)(q - 1)/2}^2 } \cr

An improvement of this statistic from Bartlett (Bentler, and Yuan, 1996, p. 300;
                                                Horn and Engstrom, 1979, equation 8) is distributed as a \eqn{\chi^2}
with \eqn{(q)(q - 1)/2} degrees of freedom and is equal to: \cr

(4) \eqn{\qquad \qquad - \left[ {n - k - {{2q^2 q + 2} \over {6q}}}
                                \right]\log (V_k ) \sim \chi _{(q + 2)(q - 1)/2}^2 }  \cr

Finally, Anderson (1956) and James (1969) proposed another statistic. \cr

(5) \eqn{\qquad \qquad - \left[ {n - k - {{2q^2 q + 2} \over {6q}}
  + \sum\limits_{i = 1}^k {{{\bar \lambda _q^2 } \over {\left( {\lambda _i
    - \bar \lambda _q } \right)^2 }}} } \right]\log (V_k ) \sim \chi _{(q + 2)(q - 1)/2}^2 } \cr

Bartlett (1950, 1951) proposed a correction to the degrees of freedom of these \eqn{\chi^2} after the
first significant test: \eqn{(q+2)(q - 1)/2}. \cr
}
\examples{
## ................................................
## SIMPLE EXAMPLE OF A BARTLETT PROCEDURE

data(dFactors)
eig      <- dFactors$Raiche$eigenvalues

results  <- nBartlett(x=eig, N= 100, alpha=0.05, details=TRUE)
results

plotuScree(eig, main=paste(results$nFactors[1], ", ",
                           results$nFactors[2], " or ",
                           results$nFactors[3],
                           " factors retained by the LRT procedures",
                           sep=""))

}
\references{
Anderson, T. W. (1963). Asymptotic theory for principal component analysis. \emph{Annals of Mathematical Statistics, 34}, 122-148.

 Bartlett, M. S. (1950). Tests of significance in factor analysis. \emph{British Journal of Psychology, 3}, 77-85.

 Bartlett, M. S. (1951). A further note on tests of significance. \emph{British Journal of Psychology, 4}, 1-2.

 Bentler, P. M. and Yuan, K.-H. (1996). Test of linear trend in eigenvalues of a covariance matrix with application to data analysis.
 \emph{British Journal of Mathematical and Statistical Psychology, 49}, 299-312.

 Bentler, P. M. and Yuan, K.-H. (1998). Test of linear trend in the smallest
 eigenvalues of the correlation matrix. \emph{Psychometrika, 63}(2), 131-144.

 Horn, J. L. and Engstrom, R. (1979). Cattell's scree test in relation to
 Bartlett's chi-square test and other observations on the number of factors
 problem. \emph{Multivariate Behavioral Reasearch, 14}(3), 283-300.

 James, A. T. (1969). Test of equality of the latent roots of the covariance
 matrix. \emph{In} P. K. Krishna (Eds): \emph{Multivariate analysis, volume 2}.New-York, NJ: Academic Press.

 Lawley, D. N. (1956). Tests of significance for the latent roots of covarianceand correlation matrix. \emph{Biometrika, 43}(1/2), 128-136.
}
\seealso{
\code{\link{plotuScree}}, \code{\link{nScree}}, \code{\link{plotnScree}}, \code{\link{plotParallel}}
}
\author{
Gilles Raiche \cr Centre sur les Applications des Modeles de
Reponses aux Items (CAMRI) \cr Universite du Quebec a Montreal\cr
\email{raiche.gilles@uqam.ca}
}
\keyword{multivariate}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API