Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/mit-gfx/diff_stokes_flow
12 November 2025, 16:13:46 UTC
  • Code
  • Branches (2)
  • Releases (1)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/develop
    • refs/heads/master
    • v1.0
  • 1b30001
  • /
  • cpp
  • /
  • core
  • /
  • src
  • /
  • shape
  • /
  • polar_bezier.cpp
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:fc381ab50264481cdee81a1db99ac07fce00e13c
origin badgedirectory badge Iframe embedding
swh:1:dir:ba254e4a3e6ede3ec9819e506cadd1e9141eb296
origin badgerevision badge
swh:1:rev:55eb7c0f3a9d58a50c1a09c2231177b81e0da84e
origin badgesnapshot badge
swh:1:snp:844e2388a41ac424d434588931efb89dd8b339bf

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: 55eb7c0f3a9d58a50c1a09c2231177b81e0da84e authored by Tao Du on 11 December 2020, 03:55:44 UTC
Create LICENSE
Tip revision: 55eb7c0
polar_bezier.cpp
#include "shape/polar_bezier.h"
#include "common/common.h"

PolarBezier2d::PolarBezier2d(const bool flip)
    : flip_(flip) {}

const real PolarBezier2d::ComputeSignedDistanceAndGradients(const std::array<real, 2>& point,
    std::vector<real>& grad) const {
    // Determine the curve that covers point.
    const real x = point[0], y = point[1];
    real theta_xy = std::atan2(y - center_.y(), x - center_.x()) - angle_offset_;
    // theta_xy is in the range of (-pi - angle_offset_, pi - angle_offset_) now.
    // Now we would like to shift theta_xy to the region (0, 2pi).
    while (theta_xy < 0) theta_xy += 2 * Pi();
    CheckError(0 <= theta_xy && theta_xy < 2 * Pi(), "Something went wrong with your usage of atan2.");
    const int bezier_idx = static_cast<int>(theta_xy / (angle_step_size_ * 3)) % bezier_num_;

    // Compute the distance.
    real min_abs_dist = std::numeric_limits<real>::infinity();
    int min_idx = -1;
    VectorXr min_grad;
    real sign = 1.0;
    for (int i = 0; i < bezier_num_; ++i) {
        const auto& curve = bezier_curves_[i];
        std::vector<real> g;
        const real d = curve->ComputeSignedDistanceAndGradients(point, g);
        const real d_abs = d > 0 ? d : -d;
        if (d_abs < min_abs_dist) {
            min_abs_dist = d_abs;
            min_idx = i;
            min_grad = ToEigenVector(g) * (d > 0 ? 1 : -1);
        }
        if (i == bezier_idx) sign = (d > 0 ? 1 : -1);
    }
    // Compute gradients.
    VectorXr g = VectorXr::Zero(param_num());
    for (int k = 0; k < 4; ++k) {
        const int idx = (min_idx * 3 + k) % (bezier_num_ * 3);
        g += VectorXr(RowVector2r(min_grad.segment(k * 2, 2)) * control_points_gradients_[idx]);
    }
    grad = ToStdVector(sign * g * (flip_ ? -1 : 1));
    return sign * min_abs_dist * (flip_ ? -1 : 1);
}

void PolarBezier2d::InitializeCustomizedData() {
    // rho, cx, cy, angle_offset.
    bezier_num_ = (param_num() - 3) / 2;
    CheckError(bezier_num_ >= 3 && bezier_num_ * 2 + 3 == param_num(), "Inconsistent number of parameters.");

    rho_.resize(bezier_num_ * 2);
    for (int i = 0; i < bezier_num_ * 2; ++i) rho_[i] = params()[i];
    center_ = Vector2r(params()[bezier_num_ * 2], params()[bezier_num_ * 2 + 1]);
    angle_offset_ = params()[bezier_num_ * 2 + 2];
    angle_step_size_ = Pi() * 2 / (bezier_num_ * 3);

    control_points_.resize(bezier_num_ * 3);
    control_points_gradients_.resize(bezier_num_ * 3);
    for (int i = 0; i < bezier_num_; ++i) {
        for (int j = 1; j < 3; ++j) {
            const real theta = angle_offset_ + angle_step_size_ * (i * 3 + j);
            const real c = std::cos(theta), s = std::sin(theta);
            control_points_[i * 3 + j] = Vector2r(
                c * rho_[i * 2 + j - 1],
                s * rho_[i * 2 + j - 1]
            ) + center_;
            // Compute gradients of the control_points above w.r.t. rho, center, and angle_offset.
            control_points_gradients_[i * 3 + j] = Matrix2Xr::Zero(2, param_num());
            control_points_gradients_[i * 3 + j](0, i * 2 + j - 1) = c;
            control_points_gradients_[i * 3 + j](1, i * 2 + j - 1) = s;
            control_points_gradients_[i * 3 + j](0, bezier_num_ * 2) = 1;
            control_points_gradients_[i * 3 + j](1, bezier_num_ * 2 + 1) = 1;
            control_points_gradients_[i * 3 + j](0, bezier_num_ * 2 + 2) = -s * rho_[i * 2 + j - 1];
            control_points_gradients_[i * 3 + j](1, bezier_num_ * 2 + 2) = c * rho_[i * 2 + j - 1];
        }
    }
    for (int i = 0; i < bezier_num_; ++i) {
        const real theta = angle_offset_ + i * 3 * angle_step_size_;
        const real c = std::cos(theta);
        const real s = std::sin(theta);
        const Vector2r d(c, s);
        Matrix2Xr d_grad = Matrix2Xr::Zero(2, param_num());
        d_grad(0, bezier_num_ * 2 + 2) = -s;
        d_grad(1, bezier_num_ * 2 + 2) = c;
        const int p0_idx = (3 * i - 1 + bezier_num_ * 3) % (bezier_num_ * 3);
        const int p1_idx = (3 * i + 1) % (bezier_num_ * 3);
        const Vector2r& p0 = control_points_[p0_idx];
        const Matrix2Xr p0_grad = control_points_gradients_[p0_idx];
        const Vector2r& p1 = control_points_[p1_idx];
        const Matrix2Xr p1_grad = control_points_gradients_[p1_idx];
        // p0 + t * (p1 - p0) = d * u + center.
        // [p1 - p0, -d] * [t, u] = center - p0.
        Matrix2r A;
        A.col(0) = p1 - p0;
        A.col(1) = -d;
        const Matrix2r A_inv = A.inverse();
        const Vector2r tu = A_inv * (center_ - p0);
        control_points_[3 * i] = d * tu(1) + center_;
        Matrix2Xr center_grad = Matrix2Xr::Zero(2, param_num());
        center_grad(0, bezier_num_ * 2) = 1;
        center_grad(1, bezier_num_ * 2 + 1) = 1;
        control_points_gradients_[3 * i] = Matrix2Xr::Zero(2, param_num());
        for (int j = 0; j < param_num(); ++j) {
            Matrix2r A_grad = Matrix2r::Zero();
            A_grad.col(0) = p1_grad.col(j) - p0_grad.col(j);
            A_grad.col(1) = -d_grad.col(j);
            // A * A_inv = I.
            // A' * A_inv + A * A_inv' = 0.
            // A * A_inv' = -A' * A_inv.
            // A_inv' = -A_inv * A' * A_inv.
            const Matrix2r A_inv_grad = -A_inv * A_grad * A_inv;
            const Vector2r tu_grad = A_inv_grad * (center_ - p0) + A_inv * (center_grad.col(j) - p0_grad.col(j));
            control_points_gradients_[3 * i].col(j) = d * tu_grad(1) + d_grad.col(j) * tu(1) + center_grad.col(j);
        }
    }

    bezier_curves_.clear();
    bezier_curves_.resize(bezier_num_, nullptr);
    for (int i = 0; i < bezier_num_; ++i) {
        std::vector<real> bezier_params(8, 0);
        for (int k = 0; k < 4; ++k) {
            bezier_params[2 * k] = control_points_[(3 * i + k) % (bezier_num_ * 3)](0);
            bezier_params[2 * k + 1] = control_points_[(3 * i + k) % (bezier_num_ * 3)](1);
        }
        bezier_curves_[i] = std::make_shared<Bezier2d>();
        bezier_curves_[i]->Initialize(cell_nums(), bezier_params, false);
    }
}

PolarBezier3d::PolarBezier3d(const bool flip, const int z_level_num)
    : flip_(flip), z_level_num_(z_level_num) {
    CheckError(z_level_num_ >= 2, "Inconsistent z_level_num.");
}

const real PolarBezier3d::ComputeSignedDistanceAndGradients(const std::array<real, 3>& point,
    std::vector<real>& grad) const {
    // Use z to determine the rho level.
    std::vector<real> rho_single(2 * bezier_num_ + 3, 0);
    const real z = point[2];
    const real t0 = z / cell_nums()[2];
    RowVectorXr t = RowVectorXr::Zero(z_level_num_);
    t(0) = 1;
    for (int j = 1; j < z_level_num_; ++j) t(j) = t(j - 1) * t0;
    const VectorXr t_coeff(t * coeffs_);
    for (int i = 0; i < 2 * bezier_num_; ++i) {
        VectorXr p = VectorXr::Zero(z_level_num_);
        for (int j = 0; j < z_level_num_; ++j) {
            p(j) = rho_[j][i];
        }
        rho_single[i] = t_coeff.dot(p);
    }
    PolarBezier2d polar_bezier(flip_);
    std::array<int, 2> xy_cell_nums{ cell_nums()[0], cell_nums()[1] };
    rho_single[2 * bezier_num_] = center_.x();
    rho_single[2 * bezier_num_ + 1] = center_.y();
    rho_single[2 * bezier_num_ + 2] = angle_offset_;
    polar_bezier.Initialize(xy_cell_nums, rho_single, false);

    std::array<real, 2> xy_point{ point[0], point[1] };
    std::vector<real> xy_grad;
    const real dist = polar_bezier.ComputeSignedDistanceAndGradients(xy_point, xy_grad);

    // Compute gradients.
    grad.clear();
    grad.resize(param_num(), 0);
    for (int i = 0; i < z_level_num_; ++i)
        for (int j = 0; j < 2 * bezier_num_; ++j) {
            grad[i * 2 * bezier_num_ + j] += xy_grad[j] * t_coeff(i);
        }
    for (int i = 0; i < 3; ++i)
        grad[z_level_num_ * 2 * bezier_num_ + i] += xy_grad[2 * bezier_num_ + i];

    return dist;
}

void PolarBezier3d::InitializeCustomizedData() {
    // - rho: 2 * bezier_num_ * z_level_num.
    // - cx, cy.
    // - angle_offset.
    // bezier_num_ * 2 * z_level_num + 2 + 1 == param_num().
    bezier_num_ = (param_num() - 3) / (2 * z_level_num_);
    CheckError(bezier_num_ * 2 * z_level_num_ + 3 == param_num(), "Inconsistent param_num.");

    rho_.clear();
    rho_.resize(z_level_num_);
    for (int z = 0; z < z_level_num_; ++z) {
        rho_[z].clear();
        rho_[z].resize(bezier_num_ * 2);
        for (int k = 0; k < bezier_num_ * 2; ++k)
            rho_[z][k] = params()[z * 2 * bezier_num_ + k];
    }
    center_ = Vector2r(params()[bezier_num_ * 2 * z_level_num_], params()[bezier_num_ * 2 * z_level_num_ + 1]);
    angle_offset_ = params()[bezier_num_ * 2 * z_level_num_ + 2];
    angle_step_size_ = Pi() * 2 / (bezier_num_ * 3);
    dz_ = ToReal(cell_nums()[2]) / (z_level_num_ - 1);

    // Derived data.
    // coeffs_ are used for interpolating curves vertically.
    coeffs_ = MatrixXr::Zero(z_level_num_, z_level_num_);
    const int m = z_level_num_ - 1;
    // p(t) = (1 - t)^m p0 + ... + t^m p_m.
    //      = \sum C_{m, k} (1 - t)^{m-k}t^k p_k.    k = 0, 1, 2, ..., m.
    int cmk = 1;
    // Fill in the first column: (1 - t)^m p_0.
    for (int i = 0; i < m + 1; ++i) {
        coeffs_(i, 0) = cmk;
        cmk *= -(m - i);
        cmk /= (i + 1);
        // i = 0 => cmk = -m;
        // i = 1 => cmk = m * (m - 1) / 2.
        // i = 2 => cmk = -m * (m - 1) * (m - 2) / (3 * 2).
    }
    cmk = m;
    for (int k = 1; k < m + 1; ++k) {
        // Contribution of p_k --- This is column k of coeffs_.
        // cmk * (1 - t)^(m - k)t^k.
        int cmj = 1;
        for (int j = 0; j < m - k + 1; ++j) {
            coeffs_(j + k, k) = cmk * cmj;
            cmj *= -(m - k - j);
            cmj /= (j + 1);
        }
        // Expand C_{m, k} (1 - t)^{m - k}t^k.
        cmk = cmk * (m - k) / (k + 1);
    }
    // For sanity check:
    // num_z_level_ = 2:
    // p(t) = (1 - t)p0 + tp1.
    //      = (1, t) * (p0, p1 - p0).
    //      = (1, t) * [1, 0; -1, 1] * [p0, p1].
    // num_z_level_ = 3:
    // p(t) = (1 - t)^2p0 + 2(1 - t)tp1 + t^2p2.
    //      = (1, -2t, t^2)p0 + (2t, -2t^2)p1 + t^2p2.
    //      = (1, t, t^2) * (p0, -2p0 + 2p1, p0 - 2p1 + p2).
    //      = (1, t, t^2) * [1, 0, 0; -2, 2, 0; 1, -2, 1] * [p0, p1, p2].
    // num_z_level_ = 4:
    // p(t) = (1 - t)^3p0 + 3 (1-t)^2 tp1 + 3(1-t)t^2p2 + t^3p3.
    //      = (1 - 3t + 3t^2 - t^3) p0 + 3(t - 2t^2 + t^3) p1 + (3t^2 - 3t^3) p2 + t^3 p3.
    //      = (1, t, t^2, t^3) * [p0, -3p0 + 3p1; 3p0 - 6p1 + 3p2; -p0 + 3p1 - 3p2 + p3].
}

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API