// This file is a part of Julia. License is MIT: https://julialang.org/license // --- the ccall, cglobal, and llvm intrinsics --- #include "llvm/Support/Path.h" // for llvm::sys::path // Map from symbol name (in a certain library) to its GV in sysimg and the // DL handle address in the current session. typedef StringMap SymMapGV; static StringMap> libMapGV; #ifdef _OS_WINDOWS_ static SymMapGV symMapExe; static SymMapGV symMapDl; #endif static SymMapGV symMapDefault; template struct LazyModule { Func func; Module *m; template LazyModule(Func2 &&func) : func(std::forward(func)), m(nullptr) {} Module *get() { if (!m) m = func(); return m; } Module &operator*() { return *get(); } }; template static LazyModule::type> lazyModule(Func &&func) { return LazyModule::type>( std::forward(func)); } void copy_to_shadow(GlobalVariable *gv) { // hack: make a copy of all globals in the shadow_output if (!imaging_mode) return; GlobalVariable *shadowvar = global_proto(gv, shadow_output); shadowvar->setInitializer(gv->getInitializer()); shadowvar->setLinkage(GlobalVariable::InternalLinkage); } // Find or create the GVs for the library and symbol lookup. // Return `runtime_lib` (whether the library name is a string) // The `lib` and `sym` GV returned may not be in the current module. template static bool runtime_sym_gvs(const char *f_lib, const char *f_name, MT &&M, GlobalVariable *&lib, GlobalVariable *&sym) { bool runtime_lib = false; GlobalVariable *libptrgv; SymMapGV *symMap; #ifdef _OS_WINDOWS_ if ((intptr_t)f_lib == 1) { libptrgv = jlexe_var; symMap = &symMapExe; } else if ((intptr_t)f_lib == 2) { libptrgv = jldll_var; symMap = &symMapDl; } else #endif if (f_lib == NULL) { libptrgv = jlRTLD_DEFAULT_var; symMap = &symMapDefault; } else { std::string name = "ccalllib_"; name += llvm::sys::path::filename(f_lib); name += std::to_string(globalUnique++); runtime_lib = true; auto &libgv = libMapGV[f_lib]; if (libgv.first == NULL) { libptrgv = new GlobalVariable(*M, T_pint8, false, GlobalVariable::ExternalLinkage, Constant::getNullValue(T_pint8), name); copy_to_shadow(libptrgv); libgv.first = global_proto(libptrgv); } else { libptrgv = libgv.first; } symMap = &libgv.second; } GlobalVariable *&llvmgv = (*symMap)[f_name]; if (llvmgv == NULL) { // MCJIT forces this to have external linkage eventually, so we would clobber // the symbol of the actual function. std::string name = "ccall_"; name += f_name; name += "_"; name += std::to_string(globalUnique++); llvmgv = new GlobalVariable(*M, T_pvoidfunc, false, GlobalVariable::ExternalLinkage, Constant::getNullValue(T_pvoidfunc), name); copy_to_shadow(llvmgv); llvmgv = global_proto(llvmgv); } lib = libptrgv; sym = llvmgv; return runtime_lib; } static Value *runtime_sym_lookup( IRBuilder<> &irbuilder, PointerType *funcptype, const char *f_lib, const char *f_name, Function *f, GlobalVariable *libptrgv, GlobalVariable *llvmgv, bool runtime_lib) { // in pseudo-code, this function emits the following: // global HMODULE *libptrgv // global void **llvmgv // if (*llvmgv == NULL) { // *llvmgv = jl_load_and_lookup(f_lib, f_name, libptrgv); // } // return (*llvmgv) BasicBlock *enter_bb = irbuilder.GetInsertBlock(); BasicBlock *dlsym_lookup = BasicBlock::Create(jl_LLVMContext, "dlsym"); BasicBlock *ccall_bb = BasicBlock::Create(jl_LLVMContext, "ccall"); Constant *initnul = ConstantPointerNull::get((PointerType*)T_pvoidfunc); LoadInst *llvmf_orig = irbuilder.CreateAlignedLoad(llvmgv, sizeof(void*)); // This in principle needs a consume ordering so that load from // this pointer sees a valid value. However, this is not supported by // LLVM (or agreed on in the C/C++ standard FWIW) and should be // almost impossible to happen on every platform we support since this // ordering is enforced by the hardware and LLVM has to speculate an // invalid load from the `cglobal` but doesn't depend on the `cglobal` // value for this to happen. // llvmf_orig->setAtomic(AtomicOrdering::Consume); irbuilder.CreateCondBr( irbuilder.CreateICmpNE(llvmf_orig, initnul), ccall_bb, dlsym_lookup); assert(f->getParent() != NULL); f->getBasicBlockList().push_back(dlsym_lookup); irbuilder.SetInsertPoint(dlsym_lookup); Value *libname; if (runtime_lib) { libname = stringConstPtr(irbuilder, f_lib); } else { // f_lib is actually one of the special sentinel values libname = ConstantExpr::getIntToPtr(ConstantInt::get(T_size, (uintptr_t)f_lib), T_pint8); } Value *llvmf = irbuilder.CreateCall(prepare_call_in(jl_builderModule(irbuilder), jldlsym_func), { libname, stringConstPtr(irbuilder, f_name), libptrgv }); auto store = irbuilder.CreateAlignedStore(llvmf, llvmgv, sizeof(void*)); store->setAtomic(AtomicOrdering::Release); irbuilder.CreateBr(ccall_bb); f->getBasicBlockList().push_back(ccall_bb); irbuilder.SetInsertPoint(ccall_bb); PHINode *p = irbuilder.CreatePHI(T_pvoidfunc, 2); p->addIncoming(llvmf_orig, enter_bb); p->addIncoming(llvmf, dlsym_lookup); return irbuilder.CreateBitCast(p, funcptype); } static Value *runtime_sym_lookup( jl_codectx_t &ctx, PointerType *funcptype, const char *f_lib, const char *f_name, Function *f) { GlobalVariable *libptrgv; GlobalVariable *llvmgv; bool runtime_lib = runtime_sym_gvs(f_lib, f_name, f->getParent(), libptrgv, llvmgv); libptrgv = prepare_global(libptrgv); llvmgv = prepare_global(llvmgv); return runtime_sym_lookup(ctx.builder, funcptype, f_lib, f_name, f, libptrgv, llvmgv, runtime_lib); } // Map from distinct callee's to its GOT entry. // In principle the attribute, function type and calling convention // don't need to be part of the key but it seems impossible to forward // all the arguments without writing assembly directly. // This doesn't matter too much in reality since a single function is usually // not called with multiple signatures. static DenseMap,GlobalVariable*>> allPltMap; void jl_add_to_shadow(Module *m); // Emit a "PLT" entry that will be lazily initialized // when being called the first time. static GlobalVariable *emit_plt_thunk( Module *M, FunctionType *functype, const AttributeList &attrs, CallingConv::ID cc, const char *f_lib, const char *f_name, GlobalVariable *libptrgv, GlobalVariable *llvmgv, bool runtime_lib) { PointerType *funcptype = PointerType::get(functype, 0); libptrgv = prepare_global_in(M, libptrgv); llvmgv = prepare_global_in(M, llvmgv); std::stringstream funcName; funcName << "jlplt_" << f_name << "_" << globalUnique++; auto fname = funcName.str(); Function *plt = Function::Create(functype, GlobalVariable::ExternalLinkage, fname, M); plt->setAttributes(attrs); if (cc != CallingConv::C) plt->setCallingConv(cc); funcName << "_got"; auto gname = funcName.str(); GlobalVariable *got = new GlobalVariable(*M, T_pvoidfunc, false, GlobalVariable::ExternalLinkage, ConstantExpr::getBitCast(plt, T_pvoidfunc), gname); BasicBlock *b0 = BasicBlock::Create(jl_LLVMContext, "top", plt); IRBuilder<> irbuilder(b0); Value *ptr = runtime_sym_lookup(irbuilder, funcptype, f_lib, f_name, plt, libptrgv, llvmgv, runtime_lib); auto store = irbuilder.CreateAlignedStore(irbuilder.CreateBitCast(ptr, T_pvoidfunc), got, sizeof(void*)); store->setAtomic(AtomicOrdering::Release); SmallVector args; for (Function::arg_iterator arg = plt->arg_begin(), arg_e = plt->arg_end(); arg != arg_e; ++arg) args.push_back(&*arg); CallInst *ret = irbuilder.CreateCall(ptr, ArrayRef(args)); ret->setAttributes(attrs); if (cc != CallingConv::C) ret->setCallingConv(cc); // NoReturn function can trigger LLVM verifier error when declared as // MustTail since other passes might replace the `ret` with // `unreachable` (LLVM should probably accept `unreachable`). if (attrs.hasAttribute(AttributeList::FunctionIndex, Attribute::NoReturn)) { irbuilder.CreateUnreachable(); } else { // musttail support is very bad on ARM, PPC, PPC64 (as of LLVM 3.9) // Known failures includes vararg (not needed here) and sret. #if (defined(_CPU_X86_) || defined(_CPU_X86_64_) || \ defined(_CPU_AARCH64_)) ret->setTailCallKind(CallInst::TCK_MustTail); #endif if (functype->getReturnType() == T_void) { irbuilder.CreateRetVoid(); } else { irbuilder.CreateRet(ret); } } irbuilder.ClearInsertionPoint(); got = global_proto(got); // exchange got for the permanent global before jl_finalize_module destroys it jl_add_to_shadow(M); jl_finalize_module(std::unique_ptr(M)); auto shadowgot = cast(shadow_output->getNamedValue(gname)); auto shadowplt = cast(shadow_output->getNamedValue(fname)); shadowgot->setInitializer(ConstantExpr::getBitCast(shadowplt, T_pvoidfunc)); return got; } static Value *emit_plt( jl_codectx_t &ctx, FunctionType *functype, const AttributeList &attrs, CallingConv::ID cc, const char *f_lib, const char *f_name) { assert(imaging_mode); // Don't do this for vararg functions so that the `musttail` is only // an optimization and is not required to function correctly. assert(!functype->isVarArg()); GlobalVariable *libptrgv; GlobalVariable *llvmgv; auto LM = lazyModule([&] { Module *m = new Module(f_name, jl_LLVMContext); jl_setup_module(m); return m; }); bool runtime_lib = runtime_sym_gvs(f_lib, f_name, LM, libptrgv, llvmgv); PointerType *funcptype = PointerType::get(functype, 0); auto &pltMap = allPltMap[attrs]; auto key = std::make_tuple(llvmgv, functype, cc); GlobalVariable *&shadowgot = pltMap[key]; if (!shadowgot) { shadowgot = emit_plt_thunk(LM.get(), functype, attrs, cc, f_lib, f_name, libptrgv, llvmgv, runtime_lib); } else { // `runtime_sym_gvs` shouldn't have created anything in a new module // if it returns a GV that already exists. assert(!LM.m); } GlobalVariable *got = prepare_global(shadowgot); LoadInst *got_val = ctx.builder.CreateAlignedLoad(got, sizeof(void*)); // See comment in `runtime_sym_lookup` above. This in principle needs a // consume ordering too. This is even less likely to cause issues though // since the only thing we do to this loaded pointer is to call it // immediately. // got_val->setAtomic(AtomicOrdering::Consume); return ctx.builder.CreateBitCast(got_val, funcptype); } // --- ABI Implementations --- // Partially based on the LDC ABI implementations licensed under the BSD 3-clause license class AbiLayout { public: virtual ~AbiLayout() {} virtual bool use_sret(jl_datatype_t *ty) = 0; virtual bool needPassByRef(jl_datatype_t *ty, AttrBuilder&) = 0; virtual Type *preferred_llvm_type(jl_datatype_t *ty, bool isret) const = 0; }; // Determine if object of bitstype ty maps to a native x86 SIMD type (__m128, __m256, or __m512) in C static bool is_native_simd_type(jl_datatype_t *dt) { size_t size = jl_datatype_size(dt); if (size != 16 && size != 32 && size != 64) // Wrong size for xmm, ymm, or zmm register. return false; uint32_t n = jl_datatype_nfields(dt); if (n<2) // Not mapped to SIMD register. return false; jl_value_t *ft0 = jl_field_type(dt, 0); for (uint32_t i = 1; i < n; ++i) if (jl_field_type(dt, i) != ft0) // Not homogeneous return false; // Type is homogeneous. Check if it maps to LLVM vector. return jl_special_vector_alignment(n, ft0) != 0; } #include "abi_llvm.cpp" #include "abi_arm.cpp" #include "abi_aarch64.cpp" #include "abi_ppc64le.cpp" #include "abi_win32.cpp" #include "abi_win64.cpp" #include "abi_x86_64.cpp" #include "abi_x86.cpp" #if defined ABI_LLVM typedef ABI_LLVMLayout DefaultAbiState; #elif defined _CPU_X86_64_ # if defined _OS_WINDOWS_ typedef ABI_Win64Layout DefaultAbiState; # else typedef ABI_x86_64Layout DefaultAbiState; # endif #elif defined _CPU_X86_ # if defined _OS_WINDOWS_ typedef ABI_Win32Layout DefaultAbiState; # else typedef ABI_x86Layout DefaultAbiState; # endif #elif defined _CPU_ARM_ typedef ABI_ARMLayout DefaultAbiState; #elif defined _CPU_AARCH64_ typedef ABI_AArch64Layout DefaultAbiState; #elif defined _CPU_PPC64_ typedef ABI_PPC64leLayout DefaultAbiState; #else # warning "ccall is defaulting to llvm ABI, since no platform ABI has been defined for this CPU/OS combination" typedef ABI_LLVMLayout DefaultAbiState; #endif // basic type widening and cast conversions static Value *llvm_type_rewrite( jl_codectx_t &ctx, Value *v, Type *target_type, bool issigned) /* determines whether an integer value should be zero or sign extended */ { Type *from_type = v->getType(); if (target_type == from_type) return v; if (from_type == T_void || isa(v)) return UndefValue::get(target_type); // convert undef (unreachable) -> undef (target_type) assert(from_type->isPointerTy() == target_type->isPointerTy()); // expect that all ABIs consider all pointers to be equivalent if (target_type->isPointerTy()) return emit_bitcast(ctx, v, target_type); // simple integer and float widening & conversion cases if (from_type->getPrimitiveSizeInBits() > 0 && target_type->getPrimitiveSizeInBits() == from_type->getPrimitiveSizeInBits()) return emit_bitcast(ctx, v, target_type); if (target_type->isFloatingPointTy() && from_type->isFloatingPointTy()) { if (target_type->getPrimitiveSizeInBits() > from_type->getPrimitiveSizeInBits()) return ctx.builder.CreateFPExt(v, target_type); else if (target_type->getPrimitiveSizeInBits() < from_type->getPrimitiveSizeInBits()) return ctx.builder.CreateFPTrunc(v, target_type); else return v; } if (target_type->isIntegerTy() && from_type->isIntegerTy()) { if (issigned) return ctx.builder.CreateSExtOrTrunc(v, target_type); else return ctx.builder.CreateZExtOrTrunc(v, target_type); } // one or both of from_type and target_type is a VectorType or AggregateType // LLVM doesn't allow us to cast these values directly, so // we need to use this alloca copy trick instead // On ARM and AArch64, the ABI requires casting through memory to different // sizes. Value *from; Value *to; const DataLayout &DL = jl_data_layout; if (DL.getTypeAllocSize(target_type) >= DL.getTypeAllocSize(from_type)) { to = emit_static_alloca(ctx, target_type); from = emit_bitcast(ctx, to, from_type->getPointerTo()); } else { from = emit_static_alloca(ctx, from_type); to = emit_bitcast(ctx, from, target_type->getPointerTo()); } // XXX: deal with possible alignment issues ctx.builder.CreateStore(v, from); return ctx.builder.CreateLoad(to); } // --- argument passing and scratch space utilities --- static Value *runtime_apply_type_env(jl_codectx_t &ctx, jl_value_t *ty) { // box if concrete type was not statically known Value *args[] = { literal_pointer_val(ctx, ty), literal_pointer_val(ctx, (jl_value_t*)ctx.linfo->def.method->sig), ctx.builder.CreateInBoundsGEP( T_prjlvalue, ctx.spvals_ptr, ConstantInt::get(T_size, sizeof(jl_svec_t) / sizeof(jl_value_t*))) }; return ctx.builder.CreateCall(prepare_call(jlapplytype_func), makeArrayRef(args)); } static const std::string make_errmsg(const char *fname, int n, const char *err) { std::stringstream msg; msg << fname; if (n > 0) msg << " argument " << n; else msg << " return"; msg << err; return msg.str(); } static void typeassert_input(jl_codectx_t &ctx, const jl_cgval_t &jvinfo, jl_value_t *jlto, jl_unionall_t *jlto_env, int argn) { if (jlto != (jl_value_t*)jl_any_type && !jl_subtype(jvinfo.typ, jlto)) { if (jlto == (jl_value_t*)jl_voidpointer_type) { // allow a bit more flexibility for what can be passed to (void*) due to Ref{T} conversion behavior in input if (!jl_is_cpointer_type(jvinfo.typ)) { // emit a typecheck, if not statically known to be correct emit_cpointercheck(ctx, jvinfo, make_errmsg("ccall", argn + 1, "")); } } else { // emit a typecheck, if not statically known to be correct std::string msg = make_errmsg("ccall", argn + 1, ""); if (!jlto_env || !jl_has_typevar_from_unionall(jlto, jlto_env)) { emit_typecheck(ctx, jvinfo, jlto, msg); } else { jl_cgval_t jlto_runtime = mark_julia_type(ctx, runtime_apply_type_env(ctx, jlto), true, jl_any_type); Value *vx = boxed(ctx, jvinfo); Value *istype = ctx.builder.CreateICmpNE( ctx.builder.CreateCall(prepare_call(jlisa_func), { vx, boxed(ctx, jlto_runtime) }), ConstantInt::get(T_int32, 0)); BasicBlock *failBB = BasicBlock::Create(jl_LLVMContext, "fail", ctx.f); BasicBlock *passBB = BasicBlock::Create(jl_LLVMContext, "pass", ctx.f); ctx.builder.CreateCondBr(istype, passBB, failBB); ctx.builder.SetInsertPoint(failBB); emit_type_error(ctx, mark_julia_type(ctx, vx, true, jl_any_type), boxed(ctx, jlto_runtime), msg); ctx.builder.CreateUnreachable(); ctx.builder.SetInsertPoint(passBB); } } } } // Emit code to convert argument to form expected by C ABI // to = desired LLVM type // jlto = Julia type of formal argument // jvinfo = value of actual argument static Value *julia_to_native( jl_codectx_t &ctx, Type *to, bool toboxed, jl_value_t *jlto, jl_unionall_t *jlto_env, const jl_cgval_t &jvinfo, bool byRef, int argn) { // We're passing Any if (toboxed) { assert(!byRef); // don't expect any ABI to pass pointers by pointer return maybe_decay_untracked(boxed(ctx, jvinfo)); } assert(jl_is_datatype(jlto) && julia_struct_has_layout((jl_datatype_t*)jlto, jlto_env)); typeassert_input(ctx, jvinfo, jlto, jlto_env, argn); if (!byRef) return emit_unbox(ctx, to, jvinfo, jlto); // pass the address of an alloca'd thing, not a box // since those are immutable. Value *slot = emit_static_alloca(ctx, to); if (!jvinfo.ispointer()) { tbaa_decorate(jvinfo.tbaa, ctx.builder.CreateStore(emit_unbox(ctx, to, jvinfo, jlto), slot)); } else { emit_memcpy(ctx, slot, jvinfo.tbaa, jvinfo, jl_datatype_size(jlto), julia_alignment(jlto)); } return slot; } typedef struct { Value *jl_ptr; // if the argument is a run-time computed pointer void (*fptr)(void); // if the argument is a constant pointer const char *f_name; // if the symbol name is known const char *f_lib; // if a library name is specified jl_value_t *gcroot; } native_sym_arg_t; // --- parse :sym or (:sym, :lib) argument into address info --- static void interpret_symbol_arg(jl_codectx_t &ctx, native_sym_arg_t &out, jl_value_t *arg, const char *fname, bool llvmcall) { Value *&jl_ptr = out.jl_ptr; void (*&fptr)(void) = out.fptr; const char *&f_name = out.f_name; const char *&f_lib = out.f_lib; jl_value_t *ptr = static_eval(ctx, arg, true); if (ptr == NULL) { jl_cgval_t arg1 = emit_expr(ctx, arg); jl_value_t *ptr_ty = arg1.typ; if (!jl_is_cpointer_type(ptr_ty)) { const char *errmsg = !strcmp(fname, "ccall") ? "ccall: first argument not a pointer or valid constant expression" : "cglobal: first argument not a pointer or valid constant expression"; emit_cpointercheck(ctx, arg1, errmsg); } arg1 = update_julia_type(ctx, arg1, (jl_value_t*)jl_voidpointer_type); jl_ptr = emit_unbox(ctx, T_size, arg1, (jl_value_t*)jl_voidpointer_type); } else { out.gcroot = ptr; if (jl_is_tuple(ptr) && jl_nfields(ptr) == 1) { ptr = jl_fieldref(ptr, 0); } if (jl_is_symbol(ptr)) f_name = jl_symbol_name((jl_sym_t*)ptr); else if (jl_is_string(ptr)) f_name = jl_string_data(ptr); if (f_name != NULL) { // just symbol, default to JuliaDLHandle // will look in process symbol table #ifdef _OS_WINDOWS_ if (!llvmcall) f_lib = jl_dlfind_win32(f_name); #endif } else if (jl_is_cpointer_type(jl_typeof(ptr))) { fptr = *(void(**)(void))jl_data_ptr(ptr); } else if (jl_is_tuple(ptr) && jl_nfields(ptr) > 1) { jl_value_t *t0 = jl_fieldref(ptr, 0); if (jl_is_symbol(t0)) f_name = jl_symbol_name((jl_sym_t*)t0); else if (jl_is_string(t0)) f_name = jl_string_data(t0); else JL_TYPECHKS(fname, symbol, t0); jl_value_t *t1 = jl_fieldref(ptr, 1); if (jl_is_symbol(t1)) f_lib = jl_symbol_name((jl_sym_t*)t1); else if (jl_is_string(t1)) f_lib = jl_string_data(t1); else JL_TYPECHKS(fname, symbol, t1); } else { JL_TYPECHKS(fname, pointer, ptr); } } } static void jl_rethrow_with_add(const char *fmt, ...) { jl_value_t *exc = jl_current_exception(); if (jl_typeis(exc, jl_errorexception_type)) { char *str = jl_string_data(jl_fieldref(exc, 0)); char buf[1024]; va_list args; va_start(args, fmt); int nc = vsnprintf(buf, sizeof(buf), fmt, args); va_end(args); nc += snprintf(buf + nc, sizeof(buf) - nc, ": %s", str); jl_value_t *msg = jl_pchar_to_string(buf, nc); JL_GC_PUSH1(&msg); jl_throw(jl_new_struct(jl_errorexception_type, msg)); } jl_rethrow(); } static jl_value_t* try_eval(jl_codectx_t &ctx, jl_value_t *ex, const char *failure) { jl_value_t *constant = static_eval(ctx, ex, true, true); if (jl_is_ssavalue(ex) && !constant) jl_error(failure); else if (constant) return constant; JL_TRY { size_t last_age = jl_get_ptls_states()->world_age; jl_get_ptls_states()->world_age = ctx.world; constant = jl_interpret_toplevel_expr_in(ctx.module, ex, ctx.source, ctx.linfo->sparam_vals); jl_get_ptls_states()->world_age = last_age; } JL_CATCH { jl_rethrow_with_add(failure); } return constant; } // --- code generator for cglobal --- static jl_cgval_t emit_runtime_call(jl_codectx_t &ctx, JL_I::intrinsic f, const jl_cgval_t *argv, size_t nargs); static jl_cgval_t emit_cglobal(jl_codectx_t &ctx, jl_value_t **args, size_t nargs) { JL_NARGS(cglobal, 1, 2); jl_value_t *rt = NULL; Value *res; native_sym_arg_t sym = {}; JL_GC_PUSH2(&rt, &sym.gcroot); if (nargs == 2) { rt = static_eval(ctx, args[2], true, true); if (rt == NULL) { JL_GC_POP(); jl_cgval_t argv[2]; argv[0] = emit_expr(ctx, args[1]); argv[1] = emit_expr(ctx, args[2]); return emit_runtime_call(ctx, JL_I::cglobal, argv, nargs); } JL_TYPECHK(cglobal, type, rt); rt = (jl_value_t*)jl_apply_type1((jl_value_t*)jl_pointer_type, rt); } else { rt = (jl_value_t*)jl_voidpointer_type; } Type *lrt = T_size; assert(lrt == julia_type_to_llvm(ctx, rt)); interpret_symbol_arg(ctx, sym, args[1], "cglobal", false); if (sym.jl_ptr != NULL) { res = ctx.builder.CreateBitCast(sym.jl_ptr, lrt); } else if (sym.fptr != NULL) { res = ConstantInt::get(lrt, (uint64_t)sym.fptr); if (imaging_mode) jl_printf(JL_STDERR,"WARNING: literal address used in cglobal for %s; code cannot be statically compiled\n", sym.f_name); } else { if (imaging_mode) { res = runtime_sym_lookup(ctx, cast(T_pint8), sym.f_lib, sym.f_name, ctx.f); res = ctx.builder.CreatePtrToInt(res, lrt); } else { void *symaddr; void* libsym = jl_get_library_(sym.f_lib, 0); if (!libsym || !jl_dlsym(libsym, sym.f_name, &symaddr, 0)) { // Error mode, either the library or the symbol couldn't be find during compiletime. // Fallback to a runtime symbol lookup. res = runtime_sym_lookup(ctx, cast(T_pint8), sym.f_lib, sym.f_name, ctx.f); res = ctx.builder.CreatePtrToInt(res, lrt); } else { // since we aren't saving this code, there's no sense in // putting anything complicated here: just JIT the address of the cglobal res = ConstantInt::get(lrt, (uint64_t)symaddr); } } } JL_GC_POP(); return mark_julia_type(ctx, res, false, rt); } class FunctionMover final : public ValueMaterializer { public: FunctionMover(llvm::Module *dest,llvm::Module *src) : ValueMaterializer(), VMap(), destModule(dest), srcModule(src), LazyFunctions(0) { } ValueToValueMapTy VMap; llvm::Module *destModule; llvm::Module *srcModule; std::vector LazyFunctions; Function *CloneFunctionProto(Function *F) { assert(!F->isDeclaration()); Function *NewF = Function::Create(F->getFunctionType(), Function::ExternalLinkage, F->getName(), destModule); LazyFunctions.push_back(F); VMap[F] = NewF; return NewF; } void CloneFunctionBody(Function *F) { Function *NewF = (Function*)(Value*)VMap[F]; assert(NewF != NULL); Function::arg_iterator DestI = NewF->arg_begin(); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) { DestI->setName(I->getName()); // Copy the name over... VMap[&*I] = &*(DestI++); // Add mapping to VMap } SmallVector Returns; llvm::CloneFunctionInto(NewF,F,VMap,true,Returns,"",NULL,NULL,this); NewF->setComdat(nullptr); NewF->setSection(""); } Function *CloneFunction(Function *F) { Function *NewF = (llvm::Function*)MapValue(F,VMap,RF_None,NULL,this); ResolveLazyFunctions(); return NewF; } void ResolveLazyFunctions() { while (!LazyFunctions.empty()) { Function *F = LazyFunctions.back(); LazyFunctions.pop_back(); CloneFunctionBody(F); } } Value *InjectFunctionProto(Function *F) { Function *NewF = destModule->getFunction(F->getName()); if (!NewF) { NewF = function_proto(F); NewF->setComdat(nullptr); destModule->getFunctionList().push_back(NewF); } return NewF; } Value *materialize(Value *V) override { Function *F = dyn_cast(V); if (F) { if (isIntrinsicFunction(F)) { auto Fcopy = destModule->getOrInsertFunction(F->getName(), F->getFunctionType()); #if JL_LLVM_VERSION >= 90000 return Fcopy.getCallee(); #else return Fcopy; #endif } if (F->isDeclaration() || F->getParent() != destModule) { if (F->getName().empty()) return CloneFunctionProto(F); Function *shadow = srcModule->getFunction(F->getName()); if (shadow != NULL && !shadow->isDeclaration()) { Function *oldF = destModule->getFunction(F->getName()); if (oldF) return oldF; if (jl_ExecutionEngine->findSymbol(F->getName(), false)) return InjectFunctionProto(F); return CloneFunctionProto(shadow); } else if (!F->isDeclaration()) { return CloneFunctionProto(F); } } // Still a declaration and still in a different module if (F->isDeclaration() && F->getParent() != destModule) { // Create forward declaration in current module return InjectFunctionProto(F); } } else if (isa(V)) { GlobalVariable *GV = cast(V); assert(GV != NULL); GlobalVariable *oldGV = destModule->getGlobalVariable(GV->getName()); if (oldGV != NULL) return oldGV; GlobalVariable *newGV = new GlobalVariable(*destModule, GV->getType()->getElementType(), GV->isConstant(), GV->getLinkage(), NULL, GV->getName(), NULL, GV->getThreadLocalMode(), GV->getType()->getPointerAddressSpace()); newGV->copyAttributesFrom(GV); newGV->setComdat(nullptr); if (GV->isDeclaration()) return newGV; if (!GV->getName().empty()) { uint64_t addr = jl_ExecutionEngine->getGlobalValueAddress(GV->getName()); if (addr != 0) { newGV->setExternallyInitialized(true); return newGV; } } if (GV->hasInitializer()) { Value *C = MapValue(GV->getInitializer(),VMap,RF_None,NULL,this); newGV->setInitializer(cast(C)); } return newGV; } return NULL; }; }; // llvmcall(ir, (rettypes...), (argtypes...), args...) static jl_cgval_t emit_llvmcall(jl_codectx_t &ctx, jl_value_t **args, size_t nargs) { JL_NARGSV(llvmcall, 3); jl_value_t *rt = NULL, *at = NULL, *ir = NULL, *decl = NULL; jl_value_t *ir_arg = args[1]; JL_GC_PUSH4(&ir, &rt, &at, &decl); if (jl_is_ssavalue(ir_arg)) ir_arg = jl_arrayref((jl_array_t*)ctx.source->code, ((jl_ssavalue_t*)ir_arg)->id - 1); ir = try_eval(ctx, ir_arg, "error statically evaluating llvm IR argument"); if (jl_is_ssavalue(args[2]) && !jl_is_long(ctx.source->ssavaluetypes)) { jl_value_t *rtt = jl_arrayref((jl_array_t*)ctx.source->ssavaluetypes, ((jl_ssavalue_t*)args[2])->id - 1); if (jl_is_type_type(rtt)) rt = jl_tparam0(rtt); } if (rt == NULL) rt = try_eval(ctx, args[2], "error statically evaluating llvmcall return type"); if (jl_is_ssavalue(args[3]) && !jl_is_long(ctx.source->ssavaluetypes)) { jl_value_t *att = jl_arrayref((jl_array_t*)ctx.source->ssavaluetypes, ((jl_ssavalue_t*)args[3])->id - 1); if (jl_is_type_type(att)) at = jl_tparam0(att); } if (at == NULL) at = try_eval(ctx, args[3], "error statically evaluating llvmcall argument tuple"); int i = 1; if (jl_is_tuple(ir)) { // if the IR is a tuple, we expect (declarations, ir) if (jl_nfields(ir) != 2) jl_error("Tuple as first argument to llvmcall must have exactly two children"); decl = jl_fieldref(ir,0); ir = jl_fieldref(ir,1); if (!jl_is_string(decl)) jl_error("Declarations passed to llvmcall must be a string"); } bool isString = jl_is_string(ir); bool isPtr = jl_is_cpointer(ir); if (!isString && !isPtr) { jl_error("IR passed to llvmcall must be a string or pointer to an LLVM Function"); } JL_TYPECHK(llvmcall, type, rt); JL_TYPECHK(llvmcall, type, at); std::stringstream ir_stream; // Generate arguments std::string arguments; llvm::raw_string_ostream argstream(arguments); jl_svec_t *tt = ((jl_datatype_t*)at)->parameters; jl_value_t *rtt = rt; size_t nargt = jl_svec_len(tt); /* * Semantics for arguments are as follows: * If the argument type is immutable (including bitstype), we pass the loaded llvm value * type. Otherwise we pass a pointer to a jl_value_t. */ std::vector argtypes; Value **argvals = (Value**)alloca(nargt * sizeof(Value*)); for (size_t i = 0; i < nargt; ++i) { jl_value_t *tti = jl_svecref(tt,i); bool toboxed; Type *t = julia_type_to_llvm(ctx, tti, &toboxed); argtypes.push_back(t); if (4 + i > nargs) { jl_error("Missing arguments to llvmcall!"); } jl_value_t *argi = args[4 + i]; jl_cgval_t arg = emit_expr(ctx, argi); Value *v = julia_to_native(ctx, t, toboxed, tti, NULL, arg, false, i); bool issigned = jl_signed_type && jl_subtype(tti, (jl_value_t*)jl_signed_type); argvals[i] = llvm_type_rewrite(ctx, v, t, issigned); } Function *f; bool retboxed; Type *rettype = julia_type_to_llvm(ctx, rtt, &retboxed); if (isString) { // Make sure to find a unique name std::string ir_name; while (true) { std::stringstream name; name << (ctx.f->getName().str()) << "u" << i++; ir_name = name.str(); if (jl_Module->getFunction(ir_name) == NULL) break; } bool first = true; for (std::vector::iterator it = argtypes.begin(); it != argtypes.end(); ++it) { if (!first) argstream << ","; else first = false; (*it)->print(argstream); argstream << " "; } std::string rstring; llvm::raw_string_ostream rtypename(rstring); rettype->print(rtypename); std::map localDecls; if (decl != NULL) { std::stringstream declarations(jl_string_data(decl)); // parse string line by line std::string declstr; while (std::getline(declarations, declstr, '\n')) { // Find name of declaration by searching for '@' std::string::size_type atpos = declstr.find('@') + 1; // Find end of declaration by searching for '(' std::string::size_type bracepos = declstr.find('(', atpos); // Declaration name is the string between @ and ( std::string declname = declstr.substr(atpos, bracepos - atpos); // Check if declaration already present in module if(jl_Module->getNamedValue(declname) == NULL) { ir_stream << "; Declarations\n" << declstr << "\n"; } } } ir_stream << "; Number of arguments: " << nargt << "\n" << "define "<getFunction(ir_name); } else { assert(isPtr); // Create Function skeleton f = (llvm::Function*)jl_unbox_voidpointer(ir); assert(!f->isDeclaration()); assert(f->getReturnType() == rettype); int i = 0; for (std::vector::iterator it = argtypes.begin(); it != argtypes.end(); ++it, ++i) assert(*it == f->getFunctionType()->getParamType(i)); if (f->getParent() != jl_Module) { FunctionMover mover(jl_Module, f->getParent()); f = mover.CloneFunction(f); } //f->dump(); llvm::raw_fd_ostream out(1,false); if (verifyFunction(*f,&out)) { llvm_dump(f); jl_error("Malformed LLVM Function"); } } // Since we dumped all of f's dependencies into the active module, // we cannot reasonably inline it, so leave it there and just emit // a regular call if (!isString) { static int llvmcallnumbering = 0; std::stringstream name; name << "jl_llvmcall" << llvmcallnumbering++; f->setName(name.str()); f = cast(prepare_call(function_proto(f))); } else { f->setLinkage(GlobalValue::LinkOnceODRLinkage); } CallInst *inst = ctx.builder.CreateCall(f, ArrayRef(&argvals[0], nargt)); if (isString) { f->addFnAttr(Attribute::AlwaysInline); inst->setAttributes(f->getAttributes()); } JL_GC_POP(); if (inst->getType() != rettype) { jl_error("Return type of llvmcall'ed function does not match declared return type"); } return mark_julia_type(ctx, inst, retboxed, rtt); } // --- code generator for ccall itself --- static Value *box_ccall_result(jl_codectx_t &ctx, Value *result, Value *runtime_dt, jl_value_t *rt) { // XXX: need to handle parameterized zero-byte types (singleton) const DataLayout &DL = jl_data_layout; unsigned nb = DL.getTypeStoreSize(result->getType()); MDNode *tbaa = jl_is_mutable(rt) ? tbaa_mutab : tbaa_immut; Value *strct = emit_allocobj(ctx, nb, runtime_dt); init_bits_value(ctx, strct, result, tbaa); return strct; } static jl_cgval_t mark_or_box_ccall_result(jl_codectx_t &ctx, Value *result, bool isboxed, jl_value_t *rt, jl_unionall_t *unionall, bool static_rt) { if (!static_rt) { assert(!isboxed && jl_is_datatype(rt) && ctx.spvals_ptr && unionall); Value *runtime_dt = runtime_apply_type_env(ctx, rt); // TODO: skip this check if rt is not a Tuple emit_concretecheck(ctx, runtime_dt, "ccall: return type must be a concrete DataType"); Value *strct = box_ccall_result(ctx, result, runtime_dt, rt); return mark_julia_type(ctx, strct, true, rt); // TODO: jl_rewrap_unionall(rt, unionall) } return mark_julia_type(ctx, result, isboxed, rt); } class function_sig_t { public: std::vector fargt; // vector of llvm output types (julia_struct_to_llvm) for arguments std::vector fargt_sig; // vector of ABI coercion types for call signature std::vector fargt_isboxed; // vector of whether the llvm output type is a Julia-box for each argument std::vector byRefList; // vector of "byref" parameters AttributeList attributes; // vector of function call site attributes Type *lrt; // input parameter of the llvm return type (from julia_struct_to_llvm) bool retboxed; // input parameter indicating whether lrt is jl_value_t* Type *prt; // out parameter of the llvm return type for the function signature int sret; // out parameter for indicating whether return value has been moved to the first argument position std::string err_msg; CallingConv::ID cc; // calling convention ABI bool llvmcall; jl_svec_t *at; // svec of julia argument types jl_value_t *rt; // julia return type jl_unionall_t *unionall_env; // UnionAll environment for `at` and `rt` size_t nccallargs; // number of actual arguments size_t nreqargs; // number of required arguments in ccall function definition jl_codegen_params_t *ctx; function_sig_t(const char *fname, Type *lrt, jl_value_t *rt, bool retboxed, jl_svec_t *at, jl_unionall_t *unionall_env, size_t nreqargs, CallingConv::ID cc, bool llvmcall, jl_codegen_params_t *ctx) : lrt(lrt), retboxed(retboxed), prt(NULL), sret(0), cc(cc), llvmcall(llvmcall), at(at), rt(rt), unionall_env(unionall_env), nccallargs(jl_svec_len(at)), nreqargs(nreqargs), ctx(ctx) { err_msg = generate_func_sig(fname); } FunctionType *functype() const { assert(err_msg.empty()); if (nreqargs > 0) return FunctionType::get(sret ? T_void : prt, makeArrayRef(fargt_sig).slice(0, nreqargs), true); else return FunctionType::get(sret ? T_void : prt, fargt_sig, false); } jl_cgval_t emit_a_ccall( jl_codectx_t &ctx, const native_sym_arg_t &symarg, jl_cgval_t *argv, SmallVector &gc_uses, bool static_rt) const; private: std::string generate_func_sig(const char *fname) { assert(rt && !jl_is_abstract_ref_type(rt)); std::vector paramattrs; std::unique_ptr abi; if (llvmcall) abi.reset(new ABI_LLVMLayout()); else abi.reset(new DefaultAbiState()); sret = 0; if (type_is_ghost(lrt)) { prt = lrt = T_void; abi->use_sret(jl_nothing_type); } else { if (!jl_is_datatype(rt) || ((jl_datatype_t*)rt)->layout == NULL || jl_is_cpointer_type(rt) || jl_is_array_type(rt) || retboxed) { prt = lrt; // passed as pointer abi->use_sret(jl_voidpointer_type); } else if (abi->use_sret((jl_datatype_t*)rt)) { AttrBuilder retattrs = AttrBuilder(); #if !defined(_OS_WINDOWS_) // llvm used to use the old mingw ABI, skipping this marking works around that difference retattrs.addAttribute(Attribute::StructRet); #endif retattrs.addAttribute(Attribute::NoAlias); paramattrs.push_back(std::move(retattrs)); fargt_sig.push_back(PointerType::get(lrt, 0)); sret = 1; prt = lrt; } else { prt = abi->preferred_llvm_type((jl_datatype_t*)rt, true); if (prt == NULL) prt = lrt; } } for (size_t i = 0; i < nccallargs; ++i) { AttrBuilder ab; jl_value_t *tti = jl_svecref(at, i); Type *t = NULL; bool isboxed; if (jl_is_abstract_ref_type(tti)) { tti = (jl_value_t*)jl_voidpointer_type; t = T_pint8; isboxed = false; } else if (llvmcall && jl_is_addrspace_ptr_type(tti)) { t = bitstype_to_llvm(tti, true); tti = (jl_value_t*)jl_voidpointer_type; isboxed = false; } else { if (jl_is_primitivetype(tti)) { // see pull req #978. need to annotate signext/zeroext for // small integer arguments. jl_datatype_t *bt = (jl_datatype_t*)tti; if (jl_datatype_size(bt) < 4) { if (jl_signed_type && jl_subtype(tti, (jl_value_t*)jl_signed_type)) ab.addAttribute(Attribute::SExt); else ab.addAttribute(Attribute::ZExt); } } t = _julia_struct_to_llvm(ctx, tti, unionall_env, &isboxed, llvmcall); if (t == NULL || t == T_void) { return make_errmsg(fname, i + 1, " doesn't correspond to a C type"); } } Type *pat; if (!jl_is_datatype(tti) || ((jl_datatype_t*)tti)->layout == NULL || jl_is_array_type(tti)) { tti = (jl_value_t*)jl_voidpointer_type; // passed as pointer } // Whether or not LLVM wants us to emit a pointer to the data bool byRef = abi->needPassByRef((jl_datatype_t*)tti, ab); if (jl_is_cpointer_type(tti)) { pat = t; } else if (byRef) { pat = PointerType::get(t, AddressSpace::Derived); } else { pat = abi->preferred_llvm_type((jl_datatype_t*)tti, false); if (pat == NULL) pat = t; } if (!byRef && nreqargs > 0 && i >= nreqargs) { // TODO: handle byRef case too? // The C vararg ABI says that small types must get widened, // but we don't really want to expect the user to know that, // so attempt to do that coercion here if (!llvmcall && cc == CallingConv::C) { if (pat->isIntegerTy() && pat->getPrimitiveSizeInBits() < sizeof(int) * 8) pat = T_int32; if (pat->isFloatingPointTy() && pat->getPrimitiveSizeInBits() < sizeof(double) * 8) pat = T_float64; ab.removeAttribute(Attribute::SExt); ab.removeAttribute(Attribute::ZExt); } } byRefList.push_back(byRef); fargt.push_back(t); fargt_isboxed.push_back(isboxed); fargt_sig.push_back(pat); paramattrs.push_back(AttributeSet::get(jl_LLVMContext, ab)); } for (size_t i = 0; i < nccallargs + sret; ++i) { const auto &as = paramattrs.at(i); if (!as.hasAttributes()) continue; attributes = attributes.addAttributes(jl_LLVMContext, i + 1, as); } if (rt == jl_bottom_type) { attributes = attributes.addAttribute(jl_LLVMContext, AttributeList::FunctionIndex, Attribute::NoReturn); } return ""; } }; static std::pair convert_cconv(jl_sym_t *lhd) { // check for calling convention specifier if (lhd == jl_symbol("stdcall")) { return std::make_pair(CallingConv::X86_StdCall, false); } else if (lhd == jl_symbol("cdecl") || lhd == jl_symbol("ccall")) { // `ccall` calling convention is a placeholder for when there isn't one provided // it is not by itself a valid calling convention name to be specified in the surface // syntax. return std::make_pair(CallingConv::C, false); } else if (lhd == jl_symbol("fastcall")) { return std::make_pair(CallingConv::X86_FastCall, false); } else if (lhd == jl_symbol("thiscall")) { return std::make_pair(CallingConv::X86_ThisCall, false); } else if (lhd == jl_symbol("llvmcall")) { return std::make_pair(CallingConv::C, true); } jl_errorf("ccall: invalid calling convention %s", jl_symbol_name(lhd)); } static bool verify_ref_type(jl_codectx_t &ctx, jl_value_t* ref, jl_unionall_t *unionall_env, int n, const char *fname) { // emit verification that the tparam for Ref isn't Any or a TypeVar const char rt_err_msg_notany[] = " type Ref{Any} is invalid. Use Any or Ptr{Any} instead."; if (ref == (jl_value_t*)jl_any_type && n == 0) { emit_error(ctx, make_errmsg(fname, n, rt_err_msg_notany)); return false; } else if (jl_is_typevar(ref)) { bool always_error = true; if (unionall_env) { int i; jl_unionall_t *ua = unionall_env; for (i = 0; jl_is_unionall(ua); i++) { if (ua->var == (jl_tvar_t*)ref) { jl_cgval_t runtime_sp = emit_sparam(ctx, i); if (n > 0) { always_error = false; } else if (runtime_sp.constant) { if (runtime_sp.constant != (jl_value_t*)jl_any_type) always_error = false; } else { Value *notany = ctx.builder.CreateICmpNE( boxed(ctx, runtime_sp), maybe_decay_untracked(literal_pointer_val(ctx, (jl_value_t*)jl_any_type))); error_unless(ctx, notany, make_errmsg(fname, n, rt_err_msg_notany)); always_error = false; } break; } ua = (jl_unionall_t*)ua->body; } } if (always_error) { emit_error(ctx, make_errmsg(fname, n, " type Ref should have an element type, not Ref{<:T}.")); return false; } } return true; } static const std::string verify_ccall_sig(jl_value_t *&rt, jl_value_t *at, jl_unionall_t *unionall_env, jl_svec_t *sparam_vals, jl_codegen_params_t *ctx, Type *&lrt, bool &retboxed, bool &static_rt, bool llvmcall=false) { JL_TYPECHK(ccall, type, rt); JL_TYPECHK(ccall, simplevector, at); if (jl_is_array_type(rt)) { // `Array` used as return type just returns a julia object reference rt = (jl_value_t*)jl_any_type; } lrt = _julia_struct_to_llvm(ctx, rt, unionall_env, &retboxed, llvmcall); if (lrt == NULL) return "return type doesn't correspond to a C type"; // is return type fully statically known? if (unionall_env == NULL) { static_rt = true; } else { static_rt = retboxed || !jl_has_typevar_from_unionall(rt, unionall_env); if (!static_rt && sparam_vals != NULL && jl_svec_len(sparam_vals) > 0) { rt = jl_instantiate_type_in_env(rt, unionall_env, jl_svec_data(sparam_vals)); // `rt` is gc-rooted by the caller static_rt = true; } } return ""; } // Expr(:foreigncall, pointer, rettype, (argtypes...), nreq, cconv, args..., roots...) static jl_cgval_t emit_ccall(jl_codectx_t &ctx, jl_value_t **args, size_t nargs) { JL_NARGSV(ccall, 5); args -= 1; jl_value_t *rt = args[2]; jl_value_t *at = args[3]; size_t nccallargs = jl_svec_len(at); size_t nreqargs = jl_unbox_long(args[4]); // if vararg assert(jl_is_quotenode(args[5])); jl_sym_t *cc_sym = *(jl_sym_t**)args[5]; assert(jl_is_symbol(cc_sym)); native_sym_arg_t symarg = {}; JL_GC_PUSH3(&rt, &at, &symarg.gcroot); CallingConv::ID cc = CallingConv::C; bool llvmcall = false; std::tie(cc, llvmcall) = convert_cconv(cc_sym); interpret_symbol_arg(ctx, symarg, args[1], "ccall", llvmcall); Value *&jl_ptr = symarg.jl_ptr; void (*&fptr)(void) = symarg.fptr; const char *&f_name = symarg.f_name; const char *&f_lib = symarg.f_lib; if (f_name == NULL && fptr == NULL && jl_ptr == NULL) { emit_error(ctx, "ccall: null function pointer"); JL_GC_POP(); return jl_cgval_t(); } auto ccallarg = [=] (size_t i) { assert(i < nccallargs && i + 6 <= nargs); return args[6 + i]; }; auto _is_libjulia_func = [&] (uintptr_t ptr, const char *name) { if ((uintptr_t)fptr == ptr) return true; return (!f_lib || f_lib == JL_DL_LIBNAME) && f_name && !strcmp(f_name, name); }; #define is_libjulia_func(name) _is_libjulia_func((uintptr_t)&(name), #name) static jl_ptls_t (*ptls_getter)(void) = [] { // directly accessing the address of an ifunc can cause compile-time linker issues // on some configurations (e.g. AArch64 + -Bsymbolic-functions), so we guard the // `&jl_get_ptls_states` within this `#ifdef` guard, and use a more roundabout // method involving `jl_dlsym()` on Linux platforms instead. #ifdef _OS_LINUX_ jl_ptls_t (*p)(void); void *handle = jl_dlopen(nullptr, 0); jl_dlsym(handle, "jl_get_ptls_states", (void **)&p, 0); jl_dlclose(handle); return p; #else return &jl_get_ptls_states; #endif }(); // emit arguments jl_cgval_t *argv = (jl_cgval_t*)alloca(sizeof(jl_cgval_t) * nccallargs); for (size_t i = 0; i < nccallargs; i++) { // Julia (expression) value of current parameter jl_value_t *argi = ccallarg(i); argv[i] = emit_expr(ctx, argi); } // emit roots SmallVector gc_uses; for (size_t i = nccallargs + 6; i <= nargs; i++) { // Julia (expression) value of current parameter gcroot jl_value_t *argi_root = args[i]; if (jl_is_long(argi_root)) continue; jl_cgval_t arg_root = emit_expr(ctx, argi_root); Value *gc_root = get_gc_root_for(arg_root); if (gc_root) gc_uses.push_back(gc_root); } jl_unionall_t *unionall = (jl_is_method(ctx.linfo->def.method) && jl_is_unionall(ctx.linfo->def.method->sig)) ? (jl_unionall_t*)ctx.linfo->def.method->sig : NULL; if (jl_is_abstract_ref_type(rt)) { if (!verify_ref_type(ctx, jl_tparam0(rt), unionall, 0, "ccall")) { JL_GC_POP(); return jl_cgval_t(); } rt = (jl_value_t*)jl_any_type; // convert return type to jl_value_t* } // some sanity checking and check whether there's a vararg Type *lrt; bool retboxed; bool static_rt; std::string err = verify_ccall_sig( /* inputs: */ rt, at, unionall, ctx.spvals_ptr == NULL ? ctx.linfo->sparam_vals : NULL, &ctx.emission_context, /* outputs: */ lrt, retboxed, static_rt, /* optional arguments */ llvmcall); if (err.empty()) { // some extra checks for ccall if (!retboxed && static_rt) { if (!jl_is_concrete_type(rt)) { if (jl_is_cpointer_type(rt)) err = "return type Ptr should have an element type (not Ptr{<:T})"; else if (rt != jl_bottom_type) err = "return type must be a concrete DataType"; } } assert(jl_svec_len(at) >= nreqargs); } if (!err.empty()) { emit_error(ctx, "ccall " + err); JL_GC_POP(); return jl_cgval_t(); } if (rt != args[2] && rt != (jl_value_t*)jl_any_type) jl_add_method_root(ctx, rt); function_sig_t sig("ccall", lrt, rt, retboxed, (jl_svec_t*)at, unionall, nreqargs, cc, llvmcall, &ctx.emission_context); for (size_t i = 0; i < nccallargs; i++) { jl_value_t *tti = jl_svecref(at, i); if (jl_is_abstract_ref_type(tti)) { if (!verify_ref_type(ctx, jl_tparam0(tti), unionall, i + 1, "ccall")) { JL_GC_POP(); return jl_cgval_t(); } } } // some special functions bool isVa = nreqargs > 0; (void)isVa; // prevent compiler warning if (is_libjulia_func(jl_array_ptr)) { assert(lrt == T_size); assert(!isVa && !llvmcall && nccallargs == 1); const jl_cgval_t &ary = argv[0]; JL_GC_POP(); return mark_or_box_ccall_result(ctx, ctx.builder.CreatePtrToInt(emit_unsafe_arrayptr(ctx, ary), lrt), retboxed, rt, unionall, static_rt); } else if (is_libjulia_func(jl_value_ptr)) { assert(retboxed ? lrt == T_prjlvalue : lrt == T_size); assert(!isVa && !llvmcall && nccallargs == 1); jl_value_t *tti = jl_svecref(at, 0); Value *ary; Type *largty; bool isboxed; if (jl_is_abstract_ref_type(tti)) { tti = (jl_value_t*)jl_voidpointer_type; largty = T_size; isboxed = false; } else { largty = _julia_struct_to_llvm(&ctx.emission_context, tti, unionall, &isboxed, llvmcall); } if (isboxed) { ary = boxed(ctx, argv[0]); } else { ary = emit_unbox(ctx, largty, argv[0], tti); } JL_GC_POP(); if (!retboxed) { return mark_or_box_ccall_result( ctx, ctx.builder.CreatePtrToInt( emit_pointer_from_objref(ctx, emit_bitcast(ctx, ary, T_prjlvalue)), T_size), retboxed, rt, unionall, static_rt); } else { return mark_or_box_ccall_result( ctx, ctx.builder.CreateAddrSpaceCast( ctx.builder.CreateIntToPtr(ary, T_pjlvalue), T_prjlvalue), // WARNING: this addrspace cast necessarily implies that the value is rooted elsewhere! retboxed, rt, unionall, static_rt); } } else if (is_libjulia_func(jl_cpu_pause)) { // Keep in sync with the julia_threads.h version assert(lrt == T_void); assert(!isVa && !llvmcall && nccallargs == 0); #ifdef __MIC__ // TODO #elif defined(_CPU_X86_64_) || defined(_CPU_X86_) /* !__MIC__ */ static auto pauseinst = InlineAsm::get(FunctionType::get(T_void, false), "pause", "~{memory}", true); ctx.builder.CreateCall(pauseinst); JL_GC_POP(); return ghostValue(jl_nothing_type); #elif defined(_CPU_AARCH64_) || (defined(_CPU_ARM_) && __ARM_ARCH >= 7) static auto wfeinst = InlineAsm::get(FunctionType::get(T_void, false), "wfe", "~{memory}", true); ctx.builder.CreateCall(wfeinst); JL_GC_POP(); return ghostValue(jl_nothing_type); #else JL_GC_POP(); return ghostValue(jl_nothing_type); #endif } else if (is_libjulia_func(jl_cpu_wake)) { // Keep in sync with the julia_threads.h version assert(lrt == T_void); assert(!isVa && !llvmcall && nccallargs == 0); #if JL_CPU_WAKE_NOOP == 1 JL_GC_POP(); return ghostValue(jl_nothing_type); #elif defined(_CPU_AARCH64_) || (defined(_CPU_ARM_) && __ARM_ARCH >= 7) static auto sevinst = InlineAsm::get(FunctionType::get(T_void, false), "sev", "~{memory}", true); ctx.builder.CreateCall(sevinst); JL_GC_POP(); return ghostValue(jl_nothing_type); #endif } else if (is_libjulia_func(jl_gc_safepoint)) { assert(lrt == T_void); assert(!isVa && !llvmcall && nccallargs == 0); JL_GC_POP(); ctx.builder.CreateCall(prepare_call(gcroot_flush_func)); emit_signal_fence(ctx); ctx.builder.CreateLoad(ctx.signalPage, true); emit_signal_fence(ctx); return ghostValue(jl_nothing_type); } else if (_is_libjulia_func((uintptr_t)ptls_getter, "jl_get_ptls_states")) { assert(lrt == T_size); assert(!isVa && !llvmcall && nccallargs == 0); JL_GC_POP(); return mark_or_box_ccall_result(ctx, ctx.builder.CreatePtrToInt(ctx.ptlsStates, lrt), retboxed, rt, unionall, static_rt); } else if (is_libjulia_func(jl_threadid)) { assert(lrt == T_int16); assert(!isVa && !llvmcall && nccallargs == 0); JL_GC_POP(); Value *ptls_i16 = emit_bitcast(ctx, ctx.ptlsStates, T_pint16); const int tid_offset = offsetof(jl_tls_states_t, tid); Value *ptid = ctx.builder.CreateGEP(ptls_i16, ConstantInt::get(T_size, tid_offset / 2)); return mark_or_box_ccall_result(ctx, tbaa_decorate(tbaa_const, ctx.builder.CreateLoad(ptid)), retboxed, rt, unionall, static_rt); } else if (is_libjulia_func(jl_get_current_task)) { assert(lrt == T_prjlvalue); assert(!isVa && !llvmcall && nccallargs == 0); JL_GC_POP(); Value *ptls_pv = emit_bitcast(ctx, ctx.ptlsStates, T_pprjlvalue); const int ct_offset = offsetof(jl_tls_states_t, current_task); Value *pct = ctx.builder.CreateGEP(ptls_pv, ConstantInt::get(T_size, ct_offset / sizeof(void*))); return mark_or_box_ccall_result(ctx, tbaa_decorate(tbaa_const, ctx.builder.CreateLoad(pct)), retboxed, rt, unionall, static_rt); } else if (is_libjulia_func(jl_sigatomic_begin)) { assert(lrt == T_void); assert(!isVa && !llvmcall && nccallargs == 0); JL_GC_POP(); ctx.builder.CreateCall(prepare_call(gcroot_flush_func)); Value *pdefer_sig = emit_defer_signal(ctx); Value *defer_sig = ctx.builder.CreateLoad(pdefer_sig); defer_sig = ctx.builder.CreateAdd(defer_sig, ConstantInt::get(T_sigatomic, 1)); ctx.builder.CreateStore(defer_sig, pdefer_sig); emit_signal_fence(ctx); return ghostValue(jl_nothing_type); } else if (is_libjulia_func(jl_sigatomic_end)) { assert(lrt == T_void); assert(!isVa && !llvmcall && nccallargs == 0); JL_GC_POP(); ctx.builder.CreateCall(prepare_call(gcroot_flush_func)); Value *pdefer_sig = emit_defer_signal(ctx); Value *defer_sig = ctx.builder.CreateLoad(pdefer_sig); emit_signal_fence(ctx); error_unless(ctx, ctx.builder.CreateICmpNE(defer_sig, ConstantInt::get(T_sigatomic, 0)), "sigatomic_end called in non-sigatomic region"); defer_sig = ctx.builder.CreateSub( defer_sig, ConstantInt::get(T_sigatomic, 1)); ctx.builder.CreateStore(defer_sig, pdefer_sig); BasicBlock *checkBB = BasicBlock::Create(jl_LLVMContext, "check", ctx.f); BasicBlock *contBB = BasicBlock::Create(jl_LLVMContext, "cont"); ctx.builder.CreateCondBr( ctx.builder.CreateICmpEQ(defer_sig, ConstantInt::get(T_sigatomic, 0)), checkBB, contBB); ctx.builder.SetInsertPoint(checkBB); ctx.builder.CreateLoad( ctx.builder.CreateConstGEP1_32(ctx.signalPage, -1), true); ctx.builder.CreateBr(contBB); ctx.f->getBasicBlockList().push_back(contBB); ctx.builder.SetInsertPoint(contBB); return ghostValue(jl_nothing_type); } else if (is_libjulia_func(jl_array_isassigned) && argv[1].typ == (jl_value_t*)jl_ulong_type) { assert(!isVa && !llvmcall && nccallargs == 2); jl_value_t *aryex = ccallarg(0); const jl_cgval_t &aryv = argv[0]; const jl_cgval_t &idxv = argv[1]; jl_datatype_t *arydt = (jl_datatype_t*)jl_unwrap_unionall(aryv.typ); if (jl_is_array_type(arydt)) { jl_value_t *ety = jl_tparam0(arydt); bool ptrarray = !jl_stored_inline(ety); if (!ptrarray && !jl_type_hasptr(ety)) { JL_GC_POP(); return mark_or_box_ccall_result(ctx, ConstantInt::get(T_int32, 1), false, rt, unionall, static_rt); } else if (!jl_has_free_typevars(ety)) { Value *idx = emit_unbox(ctx, T_size, idxv, (jl_value_t*)jl_ulong_type); Value *arrayptr = emit_bitcast(ctx, emit_arrayptr(ctx, aryv, aryex), T_pprjlvalue); if (!ptrarray) { size_t elsz = jl_datatype_size(ety); unsigned align = jl_datatype_align(ety); size_t stride = LLT_ALIGN(elsz, align) / sizeof(jl_value_t*); if (stride != 1) idx = ctx.builder.CreateMul(idx, ConstantInt::get(T_size, stride)); idx = ctx.builder.CreateAdd(idx, ConstantInt::get(T_size, ((jl_datatype_t*)ety)->layout->first_ptr)); } Value *slot_addr = ctx.builder.CreateInBoundsGEP(T_prjlvalue, arrayptr, idx); Value *load = tbaa_decorate(tbaa_ptrarraybuf, ctx.builder.CreateLoad(T_prjlvalue, slot_addr)); Value *res = ctx.builder.CreateZExt(ctx.builder.CreateICmpNE(load, Constant::getNullValue(T_prjlvalue)), T_int32); JL_GC_POP(); return mark_or_box_ccall_result(ctx, res, retboxed, rt, unionall, static_rt); } } } else if (is_libjulia_func(jl_string_ptr)) { assert(lrt == T_size); assert(!isVa && !llvmcall && nccallargs == 1); Value *obj = ctx.builder.CreatePtrToInt(emit_pointer_from_objref(ctx, boxed(ctx, argv[0])), T_size); Value *strp = ctx.builder.CreateAdd(obj, ConstantInt::get(T_size, sizeof(void*))); JL_GC_POP(); return mark_or_box_ccall_result(ctx, strp, retboxed, rt, unionall, static_rt); } else if (is_libjulia_func(memcpy) && (rt == (jl_value_t*)jl_nothing_type || jl_is_cpointer_type(rt))) { const jl_cgval_t &dst = argv[0]; const jl_cgval_t &src = argv[1]; const jl_cgval_t &n = argv[2]; Value *destp = emit_unbox(ctx, T_size, dst, (jl_value_t*)jl_voidpointer_type); ctx.builder.CreateMemCpy( ctx.builder.CreateIntToPtr(destp, T_pint8), 1, ctx.builder.CreateIntToPtr( emit_unbox(ctx, T_size, src, (jl_value_t*)jl_voidpointer_type), T_pint8), 0, emit_unbox(ctx, T_size, n, (jl_value_t*)jl_ulong_type), false); JL_GC_POP(); return rt == (jl_value_t*)jl_nothing_type ? ghostValue(jl_nothing_type) : mark_or_box_ccall_result(ctx, destp, retboxed, rt, unionall, static_rt); } else if (is_libjulia_func(jl_object_id) && nccallargs == 1 && rt == (jl_value_t*)jl_ulong_type) { jl_cgval_t val = argv[0]; if (!val.isboxed) { // If the value is not boxed, try to compute the object id without // reboxing it. auto T_pint8_derived = PointerType::get(T_int8, AddressSpace::Derived); if (!val.isghost && !val.ispointer()) val = value_to_pointer(ctx, val); Value *args[] = { emit_typeof_boxed(ctx, val), val.isghost ? ConstantPointerNull::get(T_pint8_derived) : ctx.builder.CreateBitCast( decay_derived(data_pointer(ctx, val)), T_pint8_derived) }; Value *ret = ctx.builder.CreateCall(prepare_call(jl_object_id__func), makeArrayRef(args)); JL_GC_POP(); return mark_or_box_ccall_result(ctx, ret, retboxed, rt, unionall, static_rt); } } jl_cgval_t retval = sig.emit_a_ccall( ctx, symarg, argv, gc_uses, static_rt); JL_GC_POP(); return retval; } jl_cgval_t function_sig_t::emit_a_ccall( jl_codectx_t &ctx, const native_sym_arg_t &symarg, jl_cgval_t *argv, SmallVector &gc_uses, bool static_rt) const { if (!err_msg.empty()) { emit_error(ctx, err_msg); return jl_cgval_t(); } FunctionType *functype = this->functype(); Value **argvals = (Value**) alloca((nccallargs + sret) * sizeof(Value*)); for (size_t ai = 0; ai < nccallargs; ai++) { // Current C function parameter jl_cgval_t &arg = argv[ai]; jl_value_t *jargty = jl_svecref(at, ai); // Julia type of the current parameter Type *largty = fargt.at(ai); // LLVM type of the current parameter bool toboxed = fargt_isboxed.at(ai); Type *pargty = fargt_sig.at(ai + sret); // LLVM coercion type bool byRef = byRefList.at(ai); // Argument attributes // if we know the function sparams, try to fill those in now // so that the julia_to_native type checks are more likely to be doable (e.g. concrete types) at compile-time jl_value_t *jargty_in_env = jargty; if (ctx.spvals_ptr == NULL && !toboxed && unionall_env && jl_has_typevar_from_unionall(jargty, unionall_env) && jl_svec_len(ctx.linfo->sparam_vals) > 0) { jargty_in_env = jl_instantiate_type_in_env(jargty_in_env, unionall_env, jl_svec_data(ctx.linfo->sparam_vals)); if (jargty_in_env != jargty) jl_add_method_root(ctx, jargty_in_env); } Value *v; if (jl_is_abstract_ref_type(jargty)) { if (!jl_is_cpointer_type(arg.typ)) { emit_cpointercheck(ctx, arg, "ccall: argument to Ref{T} is not a pointer"); arg.typ = (jl_value_t*)jl_voidpointer_type; arg.isboxed = false; } jargty_in_env = (jl_value_t*)jl_voidpointer_type; } v = julia_to_native(ctx, largty, toboxed, jargty_in_env, unionall_env, arg, byRef, ai); bool issigned = jl_signed_type && jl_subtype(jargty, (jl_value_t*)jl_signed_type); if (byRef) { v = decay_derived(v); // julia_to_native should already have done the alloca and store assert(v->getType() == pargty); } else { v = llvm_type_rewrite(ctx, v, pargty, issigned); } if (isa(v)) { return jl_cgval_t(); } assert(v->getType() == pargty); argvals[ai + sret] = v; } Value *result = NULL; // First, if the ABI requires us to provide the space for the return // argument, allocate the box and store that as the first argument type bool sretboxed = false; if (sret) { assert(!retboxed && jl_is_datatype(rt) && "sret return type invalid"); if (jl_is_pointerfree(rt)) { result = emit_static_alloca(ctx, lrt); argvals[0] = ctx.builder.CreateBitCast(result, fargt_sig.at(0)); } else { // XXX: result needs to be zero'd and given a GC root here // and has incorrect write barriers. // instead this code path should behave like `unsafe_load` assert(jl_datatype_size(rt) > 0 && "sret shouldn't be a singleton instance"); result = emit_allocobj(ctx, jl_datatype_size(rt), literal_pointer_val(ctx, (jl_value_t*)rt)); sretboxed = true; gc_uses.push_back(result); argvals[0] = ctx.builder.CreateBitCast(emit_pointer_from_objref(ctx, result), fargt_sig.at(0)); } } // make LLVM function object for the target // keep this close to the function call, so that the compiler can // optimize the global pointer load in the common case Value *llvmf; if (llvmcall) { if (symarg.jl_ptr != NULL) { jl_error("llvmcall doesn't support dynamic pointers"); } else if (symarg.fptr != NULL) { jl_error("llvmcall doesn't support static pointers"); } else if (symarg.f_lib != NULL) { jl_error("llvmcall doesn't support dynamic libraries"); } else { assert(symarg.f_name != NULL); const char* f_name = symarg.f_name; bool f_extern = (strncmp(f_name, "extern ", 7) == 0); if (f_extern) f_name += 7; llvmf = jl_Module->getOrInsertFunction(f_name, functype) #if JL_LLVM_VERSION >= 90000 .getCallee(); #else ; #endif if (!f_extern && (!isa(llvmf) || cast(llvmf)->getIntrinsicID() == Intrinsic::not_intrinsic)) jl_error("llvmcall only supports intrinsic calls"); } } else if (symarg.jl_ptr != NULL) { null_pointer_check(ctx, symarg.jl_ptr); Type *funcptype = PointerType::get(functype, 0); llvmf = ctx.builder.CreateIntToPtr(symarg.jl_ptr, funcptype); } else if (symarg.fptr != NULL) { Type *funcptype = PointerType::get(functype, 0); llvmf = literal_static_pointer_val((void*)(uintptr_t)symarg.fptr, funcptype); if (imaging_mode) jl_printf(JL_STDERR,"WARNING: literal address used in ccall for %s; code cannot be statically compiled\n", symarg.f_name); } else { assert(symarg.f_name != NULL); PointerType *funcptype = PointerType::get(functype, 0); if (imaging_mode) { // vararg requires musttail, // but musttail is incompatible with noreturn. if (functype->isVarArg()) llvmf = runtime_sym_lookup(ctx, funcptype, symarg.f_lib, symarg.f_name, ctx.f); else llvmf = emit_plt(ctx, functype, attributes, cc, symarg.f_lib, symarg.f_name); } else { void *symaddr; void *libsym = jl_get_library_(symarg.f_lib, 0); if (!libsym || !jl_dlsym(libsym, symarg.f_name, &symaddr, 0)) { // either the library or the symbol could not be found, place a runtime // lookup here instead. llvmf = runtime_sym_lookup(ctx, funcptype, symarg.f_lib, symarg.f_name, ctx.f); } else { // since we aren't saving this code, there's no sense in // putting anything complicated here: just JIT the function address llvmf = literal_static_pointer_val(symaddr, funcptype); } } } OperandBundleDef OpBundle("jl_roots", gc_uses); // the actual call Value *ret = ctx.builder.CreateCall(prepare_call(llvmf), ArrayRef(&argvals[0], nccallargs + sret), ArrayRef(&OpBundle, gc_uses.empty() ? 0 : 1)); ((CallInst*)ret)->setAttributes(attributes); if (cc != CallingConv::C) ((CallInst*)ret)->setCallingConv(cc); if (!sret) result = ret; if (0) { // Enable this to turn on SSPREQ (-fstack-protector) on the function containing this ccall ctx.f->addFnAttr(Attribute::StackProtectReq); } if (rt == jl_bottom_type) { CreateTrap(ctx.builder); return jl_cgval_t(); } // Finally we need to box the result into julia type // However, if we have already created a box for the return // type because the ABI required us to pass a pointer (sret), // then we do not need to do this. bool jlretboxed; if (retboxed) { assert(!sret); jlretboxed = true; } else if (sret) { jlretboxed = sretboxed; if (!jlretboxed) { // something alloca'd above is SSA if (static_rt) return mark_julia_slot(result, rt, NULL, tbaa_stack); result = ctx.builder.CreateLoad(result); } } else { Type *jlrt = julia_type_to_llvm(ctx, rt, &jlretboxed); // compute the real "julian" return type and compute whether it is boxed if (type_is_ghost(jlrt)) { return ghostValue(rt); } else if (jl_is_datatype(rt) && jl_is_datatype_singleton((jl_datatype_t*)rt)) { return mark_julia_const(((jl_datatype_t*)rt)->instance); } else if (jlretboxed && !retboxed) { assert(jl_is_datatype(rt)); if (static_rt) { Value *runtime_bt = literal_pointer_val(ctx, rt); size_t rtsz = jl_datatype_size(rt); assert(rtsz > 0); Value *strct = emit_allocobj(ctx, rtsz, runtime_bt); MDNode *tbaa = jl_is_mutable(rt) ? tbaa_mutab : tbaa_immut; int boxalign = julia_alignment(rt); // copy the data from the return value to the new struct const DataLayout &DL = jl_data_layout; auto resultTy = result->getType(); if (DL.getTypeStoreSize(resultTy) > rtsz) { // ARM and AArch64 can use a LLVM type larger than the julia type. // When this happens, cast through memory. auto slot = emit_static_alloca(ctx, resultTy); slot->setAlignment(Align(boxalign)); ctx.builder.CreateAlignedStore(result, slot, boxalign); emit_memcpy(ctx, strct, tbaa, slot, tbaa, rtsz, boxalign, tbaa); } else { init_bits_value(ctx, strct, result, tbaa, boxalign); } return mark_julia_type(ctx, strct, true, rt); } jlretboxed = false; // trigger mark_or_box_ccall_result to build the runtime box } else if (lrt != prt) { assert(jlrt == lrt || !lrt->isStructTy()); // julia_type_to_llvm and julia_struct_to_llvm should be returning the same StructType result = llvm_type_rewrite(ctx, result, lrt, false); } } return mark_or_box_ccall_result(ctx, result, jlretboxed, rt, unionall_env, static_rt); }