Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

  • 2837cec
  • /
  • c
  • /
  • MT19937.h
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
content badge Iframe embedding
swh:1:cnt:fdc76bd4ad6004491e5fde8e8b9c39d7e0698281
directory badge Iframe embedding
swh:1:dir:fed0c944d4de09d9eb9eb6c7631f54d261e98a9a
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
MT19937.h
#pragma once
#include <unistd.h>
#include <time.h>
#ifndef _XOPEN_SOURCE
#define _XOPEN_SOURCE 600
#endif

/** New functionality:
 *
 *  __cycle__ (def: 500): defines the size of random number array in bytes*16. 
 *  It should be larger than 382, otherwise will SEG-FAULT. 
 *
 *	rand64_t: 64-bit type for access of random bytes
 *	dw128_t	: 128-bit type for SIMD instructions
 *
 *  mt_init(): initializes PRN generator. Seeds from CPU time, PID, and parent 
 *  PID. Can be called multiple times without any issues or overhead. 
 *
 *  wide_uniform()              -> 128 random bits.
 *  uniform_double_PRN()        -> uniform double PRN on domain [0, 1).
 *  rand_long(unsigned long n)  -> uniform unsigned long PRN on [0, n).
 *  rand_long64()               -> uniform unsigned long PRN on [2, 2^64).
 *
 *  static rand64_t Rand: a public random variable that points to the next 
 *  unused element in the random number array. This pointer allows for more
 *  rapid access of these numbers, but can SEG FAULT if used improperly. 
 *  After 64 random bits are used, this pointer should be incremented. Call
 *  MT_FLUSH() every two times this pointer is incremented to avoid a SEG FAULT.
 *
 *	MT_FLUSH(): repopulates array of random numbers when Rand is near end of 
 *	array and moves Rand back to beginning of array.  
 * 
 *  Defining the variable REPORT_PRNS will execute a command that reports the
 *  number of PRNs used during execution at exit. 
 * 
 *	Lastly, this code now uses 19937 as the default Mersenne Prime.
 *
 **/

#define __cycle__		500	

/** 
 * Original Documentation: 
 *
 *
 * @file SFMT.h 
 *
 * @brief SIMD oriented Fast Mersenne Twister(SFMT) pseudorandom
 * number generator
 *
 * @author Mutsuo Saito (Hiroshima University)
 * @author Makoto Matsumoto (Hiroshima University)
 *
 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University. All rights reserved.
 *
 * The new BSD License is applied to this software.
 * see LICENSE.txt
 *
 * @note We assume that your system has inttypes.h.  If your system
 * doesn't have inttypes.h, you have to typedef uint32_t and uint64_t,
 * and you have to define PRIu64 and PRIx64 in this file as follows:
 * @verbatim
 typedef unsigned int uint32_t
 typedef unsigned long long uint64_t  
 #define PRIu64 "llu"
 #define PRIx64 "llx"
@endverbatim
 * uint32_t must be exactly 32-bit unsigned integer type (no more, no
 * less), and uint64_t must be exactly 64-bit unsigned integer type.
 * PRIu64 and PRIx64 are used for printf function to print 64-bit
 * unsigned int and 64-bit unsigned int in hexadecimal format.
 */
 
#ifndef SFMT_H
#define SFMT_H

#define MEXP	19937

#include <stdio.h>

#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L)
  #include <inttypes.h>
#elif defined(_MSC_VER) || defined(__BORLANDC__)
  typedef unsigned int uint32_t;
  typedef unsigned __int64 uint64_t;
  #define inline __inline
#else
  #include <inttypes.h>
  #if defined(__GNUC__)
    #define inline __inline__
  #endif
#endif

#ifndef PRIu64
  #if defined(_MSC_VER) || defined(__BORLANDC__)
    #define PRIu64 "I64u"
    #define PRIx64 "I64x"
  #else
    #define PRIu64 "llu"
    #define PRIx64 "llx"
  #endif
#endif

#if defined(__GNUC__)
#define ALWAYSINLINE __attribute__((always_inline))
#else
#define ALWAYSINLINE
#endif

#if defined(_MSC_VER)
  #if _MSC_VER >= 1200
    #define PRE_ALWAYS __forceinline
  #else
    #define PRE_ALWAYS inline
  #endif
#else
  #define PRE_ALWAYS inline
#endif



#endif


/** 
 * @file  SFMT.c
 * @brief SIMD oriented Fast Mersenne Twister(SFMT)
 *
 * @author Mutsuo Saito (Hiroshima University)
 * @author Makoto Matsumoto (Hiroshima University)
 *
 * Copyright (C) 2006,2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University. All rights reserved.
 *
 * The new BSD License is applied to this software, see LICENSE.txt
 */
#include <string.h>
#include <assert.h>

#ifndef SFMT_PARAMS_H
#define SFMT_PARAMS_H

/*-----------------
  BASIC DEFINITIONS
  -----------------*/
/** Mersenne Exponent. The period of the sequence 
 *  is a multiple of 2^MEXP-1.
 * #define MEXP 19937 */
/** SFMT generator has an internal state array of 128-bit integers,
 * and iN is its size. */
#define iN (MEXP / 128 + 1)
/** N32 is the size of internal state array when regarded as an array
 * of 32-bit integers.*/
#define N32 (iN * 4)
/** N64 is the size of internal state array when regarded as an array
 * of 64-bit integers.*/
#define N64 (iN * 2)

/*----------------------
  the parameters of SFMT
  following definitions are in paramsXXXX.h file.
  ----------------------*/
/** the pick up position of the array.Fwd: Renting the Harvard Cabin
#define POS1 122 
*/

/** the parameter of shift left as four 32-bit registers.
#define SL1 18
 */

/** the parameter of shift left as one 128-bit register. 
 * The 128-bit integer is shifted by (SL2 * 8) bits. 
#define SL2 1 
*/

/** the parameter of shift right as four 32-bit registers.
#define SR1 11
*/

/** the parameter of shift right as one 128-bit register. 
 * The 128-bit integer is shifted by (SL2 * 8) bits. 
#define SR2 1 
*/

/** A bitmask, used in the recursion.  These parameters are introduced
 * to break symmetry of SIMD.
#define MSK1 0xdfffffefU
#define MSK2 0xddfecb7fU
#define MSK3 0xbffaffffU
#define MSK4 0xbffffff6U 
*/

/** These definitions are part of a 128-bit period certification vector.
#define PARITY1	0x00000001U
#define PARITY2	0x00000000U
#define PARITY3	0x00000000U
#define PARITY4	0xc98e126aU
*/

#ifndef SFMT_PARAMS19937_H
#define SFMT_PARAMS19937_H

#define POS1	122
#define SL1	18
#define SL2	1
#define SR1	11
#define SR2	1
#define MSK1	0xdfffffefU
#define MSK2	0xddfecb7fU
#define MSK3	0xbffaffffU
#define MSK4	0xbffffff6U
#define PARITY1	0x00000001U
#define PARITY2	0x00000000U
#define PARITY3	0x00000000U
#define PARITY4	0x13c9e684U


/* PARAMETERS FOR ALTIVEC */
#if defined(__APPLE__)	/* For OSX */
    #define ALTI_SL1	(vector unsigned int)(SL1, SL1, SL1, SL1)
    #define ALTI_SR1	(vector unsigned int)(SR1, SR1, SR1, SR1)
    #define ALTI_MSK	(vector unsigned int)(MSK1, MSK2, MSK3, MSK4)
    #define ALTI_MSK64 \
	(vector unsigned int)(MSK2, MSK1, MSK4, MSK3)
    #define ALTI_SL2_PERM \
	(vector unsigned char)(1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8)
    #define ALTI_SL2_PERM64 \
	(vector unsigned char)(1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0)
    #define ALTI_SR2_PERM \
	(vector unsigned char)(7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14)
    #define ALTI_SR2_PERM64 \
	(vector unsigned char)(15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14)
#else	/* For OTHER OSs(Linux?) */
    #define ALTI_SL1	{SL1, SL1, SL1, SL1}
    #define ALTI_SR1	{SR1, SR1, SR1, SR1}
    #define ALTI_MSK	{MSK1, MSK2, MSK3, MSK4}
    #define ALTI_MSK64	{MSK2, MSK1, MSK4, MSK3}
    #define ALTI_SL2_PERM	{1,2,3,23,5,6,7,0,9,10,11,4,13,14,15,8}
    #define ALTI_SL2_PERM64	{1,2,3,4,5,6,7,31,9,10,11,12,13,14,15,0}
    #define ALTI_SR2_PERM	{7,0,1,2,11,4,5,6,15,8,9,10,17,12,13,14}
    #define ALTI_SR2_PERM64	{15,0,1,2,3,4,5,6,17,8,9,10,11,12,13,14}
#endif	/* For OSX */
#define IDSTR	"SFMT-19937:122-18-1-11-1:dfffffef-ddfecb7f-bffaffff-bffffff6"

#endif /* SFMT_PARAMS19937_H */
#endif /* SFMT_PARAMS_H */

/*------------------------------------------------------
  128-bit SIMD data type for SSE2 or standard C
  ------------------------------------------------------*/
#if defined(__SSE2__)
  #include <emmintrin.h>

/** 128-bit data structure */
union W128_T {
    __m128i si;
    uint32_t u[4];
    double d[2];
};
/** 128-bit data type */
typedef union W128_T w128_t;

#else

/** 128-bit data structure */
struct W128_T {
    uint32_t u[4];
};
/** 128-bit data type */
typedef struct W128_T w128_t;

#endif

/* Container for random digits */

typedef union RAND64_t {
	uint8_t  s[8];
	uint32_t i[2];
	double d;
	float f[2];
	uint64_t l;
	signed long sl;
} rand64_t;

typedef union dW128_T {
    __m128i si;
    __m128d sd;
    uint64_t l[2];
    uint32_t i[4];
    double d[2];
} dw128_t;

/*--------------------------------------
  FILE GLOBAL VARIABLES
  internal state, index counter and flag 
  --------------------------------------*/
/** the 128-bit internal state array */
static w128_t sfmt[iN];
/** the 32bit integer pointer to the 128-bit internal state array */
static uint32_t *psfmt32 = &sfmt[0].u[0];
/** index counter to the 32-bit internal state array */
static int idx;
/** a flag: it is 0 if and only if the internal state is not yet
 * initialized. */
/** a parity check vector which certificate the period of 2^{MEXP} */
static uint32_t parity[4] = {PARITY1, PARITY2, PARITY3, PARITY4};

/*----------------
  STATIC FUNCTIONS
  ----------------*/
static void gen_rand_array(w128_t *array, int size);
inline static uint32_t func1(uint32_t x);
inline static uint32_t func2(uint32_t x);
static void period_certification(void);

static void mt_init(void);
static inline dw128_t wide_uniform(void);
static inline double uniform_double_PRN(void);
static inline unsigned long rand_long(unsigned long n);
static inline unsigned long rand_long64(void); 
void _report_PRN_total(void);
#if defined(__SSE2__)
/** 
 * @file  SFMT-sse2.h
 * @brief SIMD oriented Fast Mersenne Twister(SFMT) for Intel SSE2
 *
 * @author Mutsuo Saito (Hiroshima University)Fwd: Renting the Harvard Cabin
 * @author Makoto Matsumoto (Hiroshima University)
 *
 * @note We assume LITTLE ENDIAN in this file
 *
 * Copyright (C) 2006, 2007 Mutsuo Saito, Makoto Matsumoto and Hiroshima
 * University. All rights reserved.
 *
 * The new BSD License is applied to this software, see LICENSE.txt
 */

#ifndef SFMT_SSE2_H
#define SFMT_SSE2_H



PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, __m128i c,
				   __m128i d, __m128i mask) ALWAYSINLINE;

/**
 * This function represents the recursion formula.
 * @param a a 128-bit part of the interal state array
 * @param b a 128-bit part of the interal state array
 * @param c a 128-bit part of the interal state array
 * @param d a 128-bit part of the interal state array
 * @param mask 128-bit mask
 * @return output
 */
PRE_ALWAYS static __m128i mm_recursion(__m128i *a, __m128i *b, 
				   __m128i c, __m128i d, __m128i mask) {
    __m128i v, x, y, z;
    
    x = _mm_load_si128(a);
    y = _mm_srli_epi32(*b, SR1);
    z = _mm_srli_si128(c, SR2);
    v = _mm_slli_epi32(d, SL1);
    z = _mm_xor_si128(z, x);
    z = _mm_xor_si128(z, v);
    x = _mm_slli_si128(x, SL2);
    y = _mm_and_si128(y, mask);
    z = _mm_xor_si128(z, x);
    z = _mm_xor_si128(z, y);
    return z;
}

/**
 * This function fills the user-specified array with pseudorandom
 * integers.
 *
 * @param array an 128-bit array to be filled by pseudorandom numbers.  
 * @param size number of 128-bit pesudorandom numbers to be generated.
 */
static void gen_rand_array(w128_t *array, int size) {
    int i, j;
    __m128i r, r1, r2, mask;
    mask = _mm_set_epi32(MSK4, MSK3, MSK2, MSK1);

    r1 = _mm_load_si128(&sfmt[iN - 2].si);
    r2 = _mm_load_si128(&sfmt[iN - 1].si);
    for (i = 0; i < iN - POS1; i++) {
	r = mm_recursion(&sfmt[i].si, &sfmt[i + POS1].si, r1, r2, mask);
	_mm_store_si128(&array[i].si, r);
	r1 = r2;
	r2 = r;
    }
    for (; i < iN; i++) {
	r = mm_recursion(&sfmt[i].si, &array[i + POS1 - iN].si, r1, r2, mask);
	_mm_store_si128(&array[i].si, r);
	r1 = r2;
	r2 = r;
    }
    /* main loop */
    for (; i < size - iN; i++) {
	r = mm_recursion(&array[i - iN].si, &array[i + POS1 - iN].si, r1, r2,
			 mask);
	_mm_store_si128(&array[i].si, r);
	r1 = r2;
	r2 = r;
    }
    for (j = 0; j < 2 * iN - size; j++) {
	r = _mm_load_si128(&array[j + size - iN].si);
	_mm_store_si128(&sfmt[j].si, r);
    }
    for (; i < size; i++) {
	r = mm_recursion(&array[i - iN].si, &array[i + POS1 - iN].si, r1, r2,
			 mask);
	_mm_store_si128(&array[i].si, r);
	_mm_store_si128(&sfmt[j++].si, r);
	r1 = r2;
	r2 = r;
    }
}

#endif

#endif


/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func1(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1664525UL;
}

/**
 * This function represents a function used in the initialization
 * by init_by_array
 * @param x 32-bit integer
 * @return 32-bit integer
 */
static uint32_t func2(uint32_t x) {
    return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
}

/**
 * This function certificate the period of 2^{MEXP}
 */
static void period_certification(void) {
    int inner = 0;
    int i, j;
    uint32_t work;union dW128_T {
    __m128i si;
    __m128d sd;
    uint64_t u[2];
    uint32_t u32[4];
    double d[2];
};


    for (i = 0; i < 4; i++)
	inner ^= psfmt32[i] & parity[i];
    for (i = 16; i > 0; i >>= 1)
	inner ^= inner >> i;
    inner &= 1;
    /* check OK */
    if (inner == 1) {
	return;
    }
    /* check NG, and modification */
    for (i = 0; i < 4; i++) {
	work = 1;
};

	for (j = 0; j < 32; j++) {
	    if ((work & parity[i]) != 0) {
		psfmt32[i] ^= work;
		return;
	    }
	    work = work << 1;
	}
}

/*----------------
  PUBLIC FUNCTIONS
  ----------------*/

/**
 * This function initializes the internal state array,
 * with an array of 32-bit integers used as the seeds
 * @param init_key the array of 32-bit integers, used as a seed.
 * @param key_length the length of init_key.
 */
#define __EXP_SET__		0x3ff0000000000000

static w128_t iRandS[__cycle__], *iRend = &iRandS[__cycle__-1]; 
rand64_t *Rand;

static __m128d sse2_double_m_one;
static __m128i sse2_int_set;

#ifdef REPORT_PRNS
static long __n_cycles__ = 0;

static void _report_PRN_total(void) {
    printf("Used ~%ld 64-bit uniform PRNs.\n", 2*__cycle__*__n_cycles__ + Rand - (rand64_t *)iRandS); /* __cycle__ is in dimensions of 128-bit SIMD */    
}
#endif 

static void mt_init(void) {
        /* Avoid initializing twice */
    static int old = 0;
    if (old==1) return;
    old = 1;
        /* Use Process ID, Parent Process ID, and current time to seed the PRNG */
#ifdef _WIN32
    uint32_t init_key[] = {(int)getpid(), (int)time(NULL)}, key_length = 2;
#else
    uint32_t init_key[] = {(int)getpid(), (int)time(NULL), (int)getppid()}, key_length = 3;
#endif
        /* See http://www.math.sci.hiroshima-u.ac.jp/~%20m-mat/MT/SFMT/index.html 
         * for the remainder. */
#ifdef REPORT_PRNS
    atexit(_report_PRN_total);
#endif
    sse2_double_m_one = _mm_set_pd(-1.0, -1.0);
    sse2_int_set = _mm_set_epi64((__m64)__EXP_SET__, (__m64)__EXP_SET__);
    
    int i, j, count;
    uint32_t r;
    int lag;
    int mid;
    int size = iN * 4;
    if (size >= 623) {
	  lag = 11;
    } else if (size >= 68) {
	  lag = 7;
    } else if (size >= 39) {
	  lag = 5;
    } else {
	  lag = 3;
    }
    mid = (size - lag) / 2;

    memset(sfmt, 0x8b, sizeof(sfmt));
    if (key_length + 1 > N32) {
	count = key_length + 1;
    } else {
	count = N32;
    }
    r = func1(psfmt32[0] ^ psfmt32[mid] 
	      ^ psfmt32[N32 - 1]);
    psfmt32[mid] += r;

    r += key_length;
    psfmt32[mid + lag] += r;
    psfmt32[0] = r;

    count--;
    for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
	r = func1(psfmt32[i] ^ psfmt32[(i + mid) % N32] 
		  ^ psfmt32[(i + N32 - 1) % N32]);
	psfmt32[(i + mid) % N32] += r;
	r += init_key[j] + i;
	psfmt32[(i + mid + lag) % N32] += r;
	psfmt32[i] = r;
	i = (i + 1) % N32;
    }
    for (; j < count; j++) {
	r = func1(psfmt32[i] ^ psfmt32[(i + mid) % N32] 
		  ^ psfmt32[(i + N32 - 1) % N32]);
	psfmt32[(i + mid) % N32] += r;
	r += i;
	psfmt32[(i + mid + lag) % N32] += r;
	psfmt32[i] = r;
	i = (i + 1) % N32;
    }
    for (j = 0; j < N32; j++) {
	r = func2(psfmt32[i] + psfmt32[(i + mid) % N32] 
		  + psfmt32[(i + N32 - 1) % N32]);
	psfmt32[(i + mid) % N32] ^= r;
	r -= i;
	psfmt32[(i + mid + lag) % N32] ^= r;
	sse2_double_m_one = _mm_set_pd(-1.0, -1.0);
	psfmt32[i] = r;
	i = (i + 1) % N32;
    }

    idx = N32;
    period_certification();
	gen_rand_array(iRandS,__cycle__); 
	Rand = (rand64_t *)iRandS;
}

#ifdef REPORT_PRNS
#define INCREMENT_N_CYCLES() (__n_cycles__++);
#else
#define INCREMENT_N_CYCLES() ;
#endif

#define MT_FLUSH() { if (Rand > (rand64_t *)iRend) { \
gen_rand_array(iRandS,__cycle__); \
Rand = (rand64_t *) iRandS; \
INCREMENT_N_CYCLES() \
}; } 

static inline dw128_t wide_uniform(void) {
  MT_FLUSH();
  dw128_t W;
  W.si = _mm_set_epi64x(Rand[0].l, Rand[1].l);	
  Rand+=2;
  W.si = _mm_or_si128(_mm_srli_epi64(W.si, 2), sse2_int_set); 
  W.sd = _mm_add_pd(W.sd, sse2_double_m_one);
  return W;
}

static inline double uniform_double_PRN(void) {
  MT_FLUSH();
  Rand->l = (Rand->l >> 2) | __EXP_SET__;
  return Rand++->d - 1;
}

static inline unsigned long rand_long(unsigned long n){
  MT_FLUSH();
  return Rand++->l % n;
}

static inline unsigned long rand_long64(void){
  MT_FLUSH();
  return Rand++->l;
}

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top