/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- * vim: sw=2 ts=8 et : */ /* This Source Code Form is subject to the terms of the Mozilla Public * License, v. 2.0. If a copy of the MPL was not distributed with this * file, You can obtain one at http://mozilla.org/MPL/2.0/. */ #ifndef mozilla_layers_ShadowLayers_h #define mozilla_layers_ShadowLayers_h 1 #include // for size_t #include // for uint64_t #include "gfxTypes.h" #include "gfxPoint.h" // for gfxIntSize #include "mozilla/Attributes.h" // for MOZ_OVERRIDE #include "mozilla/WidgetUtils.h" // for ScreenRotation #include "mozilla/dom/ScreenOrientation.h" // for ScreenOrientation #include "mozilla/ipc/SharedMemory.h" // for SharedMemory, etc #include "mozilla/layers/CompositableForwarder.h" #include "mozilla/layers/CompositorTypes.h" // for OpenMode, etc #include "nsCOMPtr.h" // for already_AddRefed #include "nsRegion.h" // for nsIntRegion #include "nsTArrayForwardDeclare.h" // for InfallibleTArray struct nsIntPoint; struct nsIntRect; class gfxASurface; namespace mozilla { namespace layers { class BasicTiledLayerBuffer; class CanvasClient; class CanvasLayerComposite; class CanvasSurface; class ColorLayerComposite; class CompositableChild; class ContainerLayerComposite; class ContentClient; class ContentClientRemote; class EditReply; class ImageClient; class ImageLayerComposite; class Layer; class OptionalThebesBuffer; class PLayerChild; class PLayerTransactionChild; class PLayerTransactionParent; class LayerTransactionChild; class RefLayerComposite; class ShadowableLayer; class Shmem; class ShmemTextureClient; class SurfaceDescriptor; class TextureClient; class ThebesLayerComposite; class ThebesBuffer; class ThebesBufferData; class TiledLayerComposer; class Transaction; /** * We want to share layer trees across thread contexts and address * spaces for several reasons; chief among them * * - a parent process can paint a child process's layer tree while * the child process is blocked, say on content script. This is * important on mobile devices where UI responsiveness is key. * * - a dedicated "compositor" process can asynchronously (wrt the * browser process) composite and animate layer trees, allowing a * form of pipeline parallelism between compositor/browser/content * * - a dedicated "compositor" process can take all responsibility for * accessing the GPU, which is desirable on systems with * buggy/leaky drivers because the compositor process can die while * browser and content live on (and failover mechanisms can be * installed to quickly bring up a replacement compositor) * * The Layers model has a crisply defined API, which makes it easy to * safely "share" layer trees. The ShadowLayers API extends Layers to * allow a remote, parent process to access a child process's layer * tree. * * ShadowLayerForwarder publishes a child context's layer tree to a * parent context. This comprises recording layer-tree modifications * into atomic transactions and pushing them over IPC. * * LayerManagerComposite grafts layer subtrees published by child-context * ShadowLayerForwarder(s) into a parent-context layer tree. * * (Advanced note: because our process tree may have a height >2, a * non-leaf subprocess may both receive updates from child processes * and publish them to parent processes. Put another way, * LayerManagers may be both LayerManagerComposites and * ShadowLayerForwarders.) * * There are only shadow types for layers that have different shadow * vs. not-shadow behavior. ColorLayers and ContainerLayers behave * the same way in both regimes (so far). * * * The mecanism to shadow the layer tree on the compositor through IPC works as * follows: * The layer tree is managed on the content thread, and shadowed in the compositor * thread. The shadow layer tree is only kept in sync with whatever happens in * the content thread. To do this we use IPDL protocols. IPDL is a domain * specific language that describes how two processes or thread should * communicate. C++ code is generated from .ipdl files to implement the message * passing, synchronization and serialization logic. To use the generated code * we implement classes that inherit the generated IPDL actor. the ipdl actors * of a protocol PX are PXChild or PXParent (the generated class), and we * conventionally implement XChild and XParent. The Parent side of the protocol * is the one that lives on the compositor thread. Think of IPDL actors as * endpoints of communication. they are useful to send messages and also to * dispatch the message to the right actor on the other side. One nice property * of an IPDL actor is that when an actor, say PXChild is sent in a message, the * PXParent comes out in the other side. we use this property a lot to dispatch * messages to the right layers and compositable, each of which have their own * ipdl actor on both side. * * Most of the synchronization logic happens in layer transactions and * compositable transactions. * A transaction is a set of changes to the layers and/or the compositables * that are sent and applied together to the compositor thread to keep the * LayerComposite in a coherent state. * Layer transactions maintain the shape of the shadow layer tree, and * synchronize the texture data held by compositables. Layer transactions * are always between the content thread and the compositor thread. * Compositable transactions are subset of a layer transaction with which only * compositables and textures can be manipulated, and does not always originate * from the content thread. (See CompositableForwarder.h and ImageBridgeChild.h) */ class ShadowLayerForwarder : public CompositableForwarder { friend class AutoOpenSurface; friend class DeprecatedTextureClientShmem; friend class ContentClientIncremental; friend class ClientLayerManager; public: virtual ~ShadowLayerForwarder(); /** * Setup the IPDL actor for aCompositable to be part of layers * transactions. */ void Connect(CompositableClient* aCompositable); virtual void CreatedSingleBuffer(CompositableClient* aCompositable, const SurfaceDescriptor& aDescriptor, const TextureInfo& aTextureInfo, const SurfaceDescriptor* aDescriptorOnWhite = nullptr) MOZ_OVERRIDE; virtual void CreatedIncrementalBuffer(CompositableClient* aCompositable, const TextureInfo& aTextureInfo, const nsIntRect& aBufferRect) MOZ_OVERRIDE; virtual void CreatedDoubleBuffer(CompositableClient* aCompositable, const SurfaceDescriptor& aFrontDescriptor, const SurfaceDescriptor& aBackDescriptor, const TextureInfo& aTextureInfo, const SurfaceDescriptor* aFrontDescriptorOnWhite = nullptr, const SurfaceDescriptor* aBackDescriptorOnWhite = nullptr) MOZ_OVERRIDE; virtual void DestroyThebesBuffer(CompositableClient* aCompositable) MOZ_OVERRIDE; /** * Adds an edit in the layers transaction in order to attach * the corresponding compositable and layer on the compositor side. * Connect must have been called on aCompositable beforehand. */ void Attach(CompositableClient* aCompositable, ShadowableLayer* aLayer); /** * Adds an edit in the transaction in order to attach a Compositable that * is not managed by this ShadowLayerForwarder (for example, by ImageBridge * in the case of async-video). * Since the compositable is not managed by this forwarder, we can't use * the compositable or it's IPDL actor here, so we use an ID instead, that * is matched on the compositor side. */ void AttachAsyncCompositable(uint64_t aCompositableID, ShadowableLayer* aLayer); /** * Begin recording a transaction to be forwarded atomically to a * LayerManagerComposite. */ void BeginTransaction(const nsIntRect& aTargetBounds, ScreenRotation aRotation, const nsIntRect& aClientBounds, mozilla::dom::ScreenOrientation aOrientation); /** * The following methods may only be called after BeginTransaction() * but before EndTransaction(). They mirror the LayerManager * interface in Layers.h. */ /** * Notify the shadow manager that a new, "real" layer has been * created, and a corresponding shadow layer should be created in * the compositing process. */ void CreatedThebesLayer(ShadowableLayer* aThebes); void CreatedContainerLayer(ShadowableLayer* aContainer); void CreatedImageLayer(ShadowableLayer* aImage); void CreatedColorLayer(ShadowableLayer* aColor); void CreatedCanvasLayer(ShadowableLayer* aCanvas); void CreatedRefLayer(ShadowableLayer* aRef); /** * The specified layer is destroying its buffers. * |aBackBufferToDestroy| is deallocated when this transaction is * posted to the parent. During the parent-side transaction, the * shadow is told to destroy its front buffer. This can happen when * a new front/back buffer pair have been created because of a layer * resize, e.g. */ virtual void DestroyedThebesBuffer(const SurfaceDescriptor& aBackBufferToDestroy) MOZ_OVERRIDE; /** * At least one attribute of |aMutant| has changed, and |aMutant| * needs to sync to its shadow layer. This initial implementation * forwards all attributes when any is mutated. */ void Mutated(ShadowableLayer* aMutant); void SetRoot(ShadowableLayer* aRoot); /** * Insert |aChild| after |aAfter| in |aContainer|. |aAfter| can be * nullptr to indicated that |aChild| should be appended to the end of * |aContainer|'s child list. */ void InsertAfter(ShadowableLayer* aContainer, ShadowableLayer* aChild, ShadowableLayer* aAfter = nullptr); void RemoveChild(ShadowableLayer* aContainer, ShadowableLayer* aChild); void RepositionChild(ShadowableLayer* aContainer, ShadowableLayer* aChild, ShadowableLayer* aAfter = nullptr); /** * Set aMaskLayer as the mask on aLayer. * Note that only image layers are properly supported * LayerTransactionParent::UpdateMask and accompanying ipdl * will need changing to update properties for other kinds * of mask layer. */ void SetMask(ShadowableLayer* aLayer, ShadowableLayer* aMaskLayer); /** * Notify the compositor that a tiled layer buffer has changed * that needs to be synced to the shadow retained copy. The tiled * layer buffer will operate directly on the shadow retained buffer * and is free to choose it's own internal representation (double buffering, * copy on write, tiling). */ virtual void PaintedTiledLayerBuffer(CompositableClient* aCompositable, const SurfaceDescriptorTiles& aTileLayerDescriptor) MOZ_OVERRIDE; /** * Notify the compositor that a compositable will be updated asynchronously * through ImageBridge, using an ID to connect the protocols on the * compositor side. */ void AttachAsyncCompositable(PLayerTransactionChild* aLayer, uint64_t aID); /** * Communicate to the compositor that the texture identified by aLayer * and aIdentifier has been updated to aImage. */ virtual void UpdateTexture(CompositableClient* aCompositable, TextureIdentifier aTextureId, SurfaceDescriptor* aDescriptor) MOZ_OVERRIDE; /** * Same as above, but performs an asynchronous layer transaction */ virtual void UpdateTextureNoSwap(CompositableClient* aCompositable, TextureIdentifier aTextureId, SurfaceDescriptor* aDescriptor) MOZ_OVERRIDE; /** * Communicate to the compositor that aRegion in the texture identified by aLayer * and aIdentifier has been updated to aThebesBuffer. */ virtual void UpdateTextureRegion(CompositableClient* aCompositable, const ThebesBufferData& aThebesBufferData, const nsIntRegion& aUpdatedRegion) MOZ_OVERRIDE; virtual void UpdateTextureIncremental(CompositableClient* aCompositable, TextureIdentifier aTextureId, SurfaceDescriptor& aDescriptor, const nsIntRegion& aUpdatedRegion, const nsIntRect& aBufferRect, const nsIntPoint& aBufferRotation) MOZ_OVERRIDE; /** * Communicate the picture rect of an image to the compositor */ void UpdatePictureRect(CompositableClient* aCompositable, const nsIntRect& aRect); /** * See CompositableForwarder::AddTexture */ virtual bool AddTexture(CompositableClient* aCompositable, TextureClient* aClient) MOZ_OVERRIDE; /** * See CompositableForwarder::RemoveTexture */ virtual void RemoveTexture(CompositableClient* aCompositable, uint64_t aTextureID, TextureFlags aFlags) MOZ_OVERRIDE; /** * See CompositableForwarder::UpdatedTexture */ virtual void UpdatedTexture(CompositableClient* aCompositable, TextureClient* aTexture, nsIntRegion* aRegion) MOZ_OVERRIDE; /** * See CompositableForwarder::UseTexture */ virtual void UseTexture(CompositableClient* aCompositable, TextureClient* aClient) MOZ_OVERRIDE; /** * End the current transaction and forward it to LayerManagerComposite. * |aReplies| are directions from the LayerManagerComposite to the * caller of EndTransaction(). */ bool EndTransaction(InfallibleTArray* aReplies, bool* aSent); /** * Set an actor through which layer updates will be pushed. */ void SetShadowManager(PLayerTransactionChild* aShadowManager); /** * True if this is forwarding to a LayerManagerComposite. */ bool HasShadowManager() const { return !!mShadowManager; } LayerTransactionChild* GetShadowManager() const { return mShadowManager.get(); } virtual void WindowOverlayChanged() { mWindowOverlayChanged = true; } /** * The following Alloc/Open/Destroy interfaces abstract over the * details of working with surfaces that are shared across * processes. They provide the glue between C++ Layers and the * LayerComposite IPC system. * * The basic lifecycle is * * - a Layer needs a buffer. Its ShadowableLayer subclass calls * AllocBuffer(), then calls one of the Created*Buffer() methods * above to transfer the (temporary) front buffer to its * LayerComposite in the other process. The Layer needs a * gfxASurface to paint, so the ShadowableLayer uses * OpenDescriptor(backBuffer) to get that surface, and hands it * out to the Layer. * * - a Layer has painted new pixels. Its ShadowableLayer calls one * of the Painted*Buffer() methods above with the back buffer * descriptor. This notification is forwarded to the LayerComposite, * which uses OpenDescriptor() to access the newly-painted pixels. * The LayerComposite then updates its front buffer in a Layer- and * platform-dependent way, and sends a surface descriptor back to * the ShadowableLayer that becomes its new back back buffer. * * - a Layer wants to destroy its buffers. Its ShadowableLayer * calls Destroyed*Buffer(), which gives up control of the back * buffer descriptor. The actual back buffer surface is then * destroyed using DestroySharedSurface() just before notifying * the parent process. When the parent process is notified, the * LayerComposite also calls DestroySharedSurface() on its front * buffer, and the double-buffer pair is gone. */ // ISurfaceAllocator virtual bool AllocUnsafeShmem(size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aType, mozilla::ipc::Shmem* aShmem) MOZ_OVERRIDE; virtual bool AllocShmem(size_t aSize, mozilla::ipc::SharedMemory::SharedMemoryType aType, mozilla::ipc::Shmem* aShmem) MOZ_OVERRIDE; virtual void DeallocShmem(mozilla::ipc::Shmem& aShmem) MOZ_OVERRIDE; virtual bool IPCOpen() const MOZ_OVERRIDE; /** * Construct a shadow of |aLayer| on the "other side", at the * LayerManagerComposite. */ PLayerChild* ConstructShadowFor(ShadowableLayer* aLayer); /** * Flag the next paint as the first for a document. */ void SetIsFirstPaint() { mIsFirstPaint = true; } static void PlatformSyncBeforeUpdate(); static already_AddRefed OpenDescriptor(OpenMode aMode, const SurfaceDescriptor& aSurface); protected: ShadowLayerForwarder(); #ifdef DEBUG void CheckSurfaceDescriptor(const SurfaceDescriptor* aDescriptor) const; #else void CheckSurfaceDescriptor(const SurfaceDescriptor* aDescriptor) const {} #endif RefPtr mShadowManager; #ifdef MOZ_HAVE_SURFACEDESCRIPTORGRALLOC // from ISurfaceAllocator virtual PGrallocBufferChild* AllocGrallocBuffer(const gfxIntSize& aSize, uint32_t aFormat, uint32_t aUsage, MaybeMagicGrallocBufferHandle* aHandle) MOZ_OVERRIDE; #endif private: /** * Try to query the content type efficiently, but at worst map the * surface and return it in *aSurface. */ static gfxContentType GetDescriptorSurfaceContentType(const SurfaceDescriptor& aDescriptor, OpenMode aMode, gfxASurface** aSurface); /** * It can be expensive to open a descriptor just to query its * content type. If the platform impl can do this cheaply, it will * set *aContent and return true. */ static bool PlatformGetDescriptorSurfaceContentType(const SurfaceDescriptor& aDescriptor, OpenMode aMode, gfxContentType* aContent, gfxASurface** aSurface); // (Same as above, but for surface size.) static gfxIntSize GetDescriptorSurfaceSize(const SurfaceDescriptor& aDescriptor, OpenMode aMode, gfxASurface** aSurface); static bool PlatformGetDescriptorSurfaceSize(const SurfaceDescriptor& aDescriptor, OpenMode aMode, gfxIntSize* aSize, gfxASurface** aSurface); // And again, for the image format. // This function will return gfxImageFormatUnknown only if |aDescriptor| // describes a non-ImageSurface. static gfxImageFormat GetDescriptorSurfaceImageFormat(const SurfaceDescriptor& aDescriptor, OpenMode aMode, gfxASurface** aSurface); static bool PlatformGetDescriptorSurfaceImageFormat(const SurfaceDescriptor& aDescriptor, OpenMode aMode, gfxImageFormat* aContent, gfxASurface** aSurface); static already_AddRefed PlatformOpenDescriptor(OpenMode aMode, const SurfaceDescriptor& aDescriptor); /** * Make this descriptor unusable for gfxASurface clients. A * private interface with AutoOpenSurface. */ static void CloseDescriptor(const SurfaceDescriptor& aDescriptor); static bool PlatformCloseDescriptor(const SurfaceDescriptor& aDescriptor); bool PlatformDestroySharedSurface(SurfaceDescriptor* aSurface); Transaction* mTxn; DiagnosticTypes mDiagnosticTypes; bool mIsFirstPaint; bool mWindowOverlayChanged; }; class CompositableClient; /** * A ShadowableLayer is a Layer can be shared with a parent context * through a ShadowLayerForwarder. A ShadowableLayer maps to a * Shadow*Layer in a parent context. * * Note that ShadowLayers can themselves be ShadowableLayers. */ class ShadowableLayer { public: virtual ~ShadowableLayer() {} virtual Layer* AsLayer() = 0; /** * True if this layer has a shadow in a parent process. */ bool HasShadow() { return !!mShadow; } /** * Return the IPC handle to a Shadow*Layer referring to this if one * exists, nullptr if not. */ PLayerChild* GetShadow() { return mShadow; } virtual CompositableClient* GetCompositableClient() { return nullptr; } protected: ShadowableLayer() : mShadow(nullptr) {} PLayerChild* mShadow; }; } // namespace layers } // namespace mozilla #endif // ifndef mozilla_layers_ShadowLayers_h