Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

https://github.com/koffie/mdmagma
22 August 2025, 12:46:07 UTC
  • Code
  • Branches (5)
  • Releases (0)
  • Visits
    • Branches
    • Releases
    • HEAD
    • refs/heads/master
    • refs/heads/patch-1
    • refs/tags/v0.1.0
    • refs/tags/v0.2.0
    • refs/tags/v0.2.1
    • f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352
    No releases to show
  • 6cabcdb
  • /
  • hecke_operators.m
Raw File Download
Take a new snapshot of a software origin

If the archived software origin currently browsed is not synchronized with its upstream version (for instance when new commits have been issued), you can explicitly request Software Heritage to take a new snapshot of it.

Use the form below to proceed. Once a request has been submitted and accepted, it will be processed as soon as possible. You can then check its processing state by visiting this dedicated page.
swh spinner

Processing "take a new snapshot" request ...

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • content
  • directory
  • revision
  • snapshot
origin badgecontent badge Iframe embedding
swh:1:cnt:ff9d444f6e4aaf39f97554df720b944413f896ea
origin badgedirectory badge Iframe embedding
swh:1:dir:6cabcdbbecaf6447c0138c3e9b1dfeac3ce95f9f
origin badgerevision badge
swh:1:rev:f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352
origin badgesnapshot badge
swh:1:snp:69a0fcb477f0fe8dbd9256da2f6292c8d8cf7556

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • content
  • directory
  • revision
  • snapshot
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Tip revision: f69d0e06f67b9ac6f57e7d8e6ba3b3d69e650352 authored by Maarten Derickx on 02 November 2020, 22:43:35 UTC
Quickly lists all non cuspidal places up to diamond operators on X_1(N)
Tip revision: f69d0e0
hecke_operators.m
load "X_1_n.m";

function pIsogeniesFiniteField1(E,p);
//Returns the p+1 elliptic curves that are p-isogenous to an initial E
//curve defined over a finite field
//Raises an error in characteristic 2,3 or if E is supersingular 
    Fq := BaseRing(E);
    jE := jInvariant(E);
    fp := ClassicalModularPolynomial(p);
    fp := ChangeRing(Parent(fp),Fq) ! fp;
    fpjE := UnivariatePolynomial(Evaluate(fp,2,jE));
    Fqn := SplittingField(fpjE);
    
    A2 := AffineSpace(Fqn,2);
    X0p := ModularCurve(A2,"Canonical",p);
    mp := ModuliPoints(X0p,BaseChange(E,Fqn));
    assert #mp eq p+1;
    return [Isogeny(BaseChange(E,Fqn),x) : x in mp];
end function;

function pIsogeniesFiniteField(E,p);
//Returns the p+1 elliptic curves that are p-isogenous to an initial E
//curve defined over a finite field
    assert IsPrime(p);
    //assert p ne 2; 
    Fq := BaseRing(E);
    fp := DivisionPolynomial(E,p);
    Fqn := SplittingField(fp);
    Fq2n := RandomExtension(Fqn, 2);
    xi := Roots(ChangeRing(fp,Fq2n));
    Eq2n := BaseChange(E,Fq2n);
    fE := DefiningEquation(Eq2n);
    yi := [Roots(UnivariatePolynomial(Evaluate(Evaluate(fE,3,1),1,x[1])))[1][1] : x in xi];
    Pi := [E(Fq2n) ! [xi[i][1],yi[i]] : i in [1..#xi]];
    //now Pi is a list with all torsion points
    
    R<X> := PolynomialRing(Fq2n);
    kernel_polynomials := {&*[X-(j*P)[1] : j in [1..Ceiling((p-1)/2)]] : P in Pi};
    isogenies := [PowerStructure(MapSch) | ];
    for f in kernel_polynomials do;
        Ef,phi := IsogenyFromKernel(Eq2n,f);

        Append(~isogenies,phi);
    end for;
    return isogenies;
end function;



function TateNormalForm_bc(E,P);
//Return the b,c of the tate normal form of (E,P) as in equation (2) of http://arxiv.org/pdf/1307.5719v1.pdf
    assert P[3] eq 1;
    x0:=P[1];
    y0:=P[2];

    a1,a2,a3,a4,a6:=Explode(aInvariants(E));	
    aa1:=a1;
    aa3:=2*y0+a3+a1*x0;
    aa2:=3*x0+a2;
    aa4:=3*x0^2+2*x0*a2+a4-a1*y0;

    aaa1:=2*aa4/aa3+aa1;
    aaa3:=aa3;
    aaa2:=aa2-(aa4/aa3)^2-aa1*aa4/aa3;


    b:=-aaa2^3/aaa3^2;
    c:=-(aaa1*aaa2-aaa3)/aaa3;
    return [b,c];
end function;

function TateNormalForm_xy(E,P);
//return the x,y of the tate normal form of (E,P) as in section 2.1 http://arxiv.org/pdf/1307.5719v1.pdf
    b,c := Explode(TateNormalForm_bc(E,P));
    r := b/c;
    s := c^2/(b-c);
    t := (r*s-2*r+1);
    x := (s-r)/t;
    y := t/(s^2-s-r+1);
    return [x,y];
end function;


function MyMultiset(itterable);
    uniques := [];
    for i in itterable do;
        if i notin uniques then;
            Append(~uniques,i);
        end if;
    end for;
    
    return [<j,#[1 : i in itterable | i eq j]> : j in uniques];
end function;

function Tp_X1N_noncuspidal_place(P,p);
    assert IsPrime(p);
    ZZ := IntegerRing();
    E := EllipticCurveFromX1Place(P);
    X1N := Curve(P);
    assert Characteristic(BaseRing(X1N)) ne p;
    isogenies := pIsogeniesFiniteField(E,p);
    Eq2n := Domain(isogenies[1]);
    Fq2n := BaseRing(Eq2n);

    Pi := [<Codomain(phi),phi(Eq2n ! [0,0])> : phi in isogenies];
    xyi := [TateNormalForm_xy(P[1],P[2]) : P in Pi];
    places := [Places(X1N(Fq2n) ! xy) : xy in xyi];
    assert &and[#p eq 1 :  p in places];
    places := MyMultiset(&cat places);
    d := Degree(P);
    return &+[ (ZZ ! (place[2]*d/Degree(place[1])))*place[1] : place in places]; 
end function;

function Tp_X1N_noncuspidal(D,p);
  P,e := Support(D);
  return &+[e[i]*Tp_X1N_noncuspidal_place(P[i],p) : i in [1..#P]]; 
end function;

function diamond_operator_X1N_noncuspidal_place(P,d);
    E := EllipticCurveFromX1Place(P);
    X1N := Curve(P);
    Fq := BaseRing(E);
    xy := TateNormalForm_xy(E,d*(E ! [0,0]));
    dP := Places(X1N(Fq) ! xy);
    assert #dP eq 1;
    return dP[1];
end function;

function diamond_operator_X1N_noncuspidal(D,p);
  P,e := Support(D);
  return &+[e[i]*diamond_operator_X1N_noncuspidal_place(P[i],p) : i in [1..#P]]; 
end function;


function Tp_pdp_1_noncuspidal_place(P,p);
    return Tp_X1N_noncuspidal_place(P,p)-p*diamond_operator_X1N_noncuspidal_place(P,p)-P;
end function;

function Tp_pdp_1_noncuspidal(D,p);
  P,e := Support(D);
  return &+[e[i]*Tp_pdp_1_noncuspidal_place(P[i],p) : i in [1..#P]]; 
end function;


function PositiveRankHeckePolynomial(S,n);
//Returns the characteristic polynomial of the hecke operator n on the subspace
//of the cuspidal modular symbol spaces S corresponding to the part where the LRatio is 0
//Under BSD this is exactly the part corresponding to the part of S where the corresponding abelian variety has positive rank
 return &*[HeckePolynomial(Si,n) : Si in NewformDecomposition(S) | LRatio(AssociatedNewSpace(Si),1) eq 0];
end function;



function PositiveRankHeckePolynomialX1N(N,n,chars);
//The input space needs to be cuspidal of sign 0
//Returns the characteristic polynomial of the hecke operator n on the subspace
//of the cuspidal modular symbol spaces S corresponding to the part where the LRatio is 0
//with respect to at least one of the characters in chars
//Under BSD this is exactly the part corresponding to the part of S where the corresponding abelian variety when twisted by one of the characters has positive rank

  D := FullDirichletGroup(N);
  chars := [D ! chi : chi in chars];
  ann_pol := 1;
  for d in Elements(D) do;
    M := ModularSymbols(d,2,0);
    S := CuspidalSubspace(M);
    for Si in NewformDecomposition(S) do;
      Snew := AssociatedNewSpace(Si);
      rank_0 := &or[Dimension(Snew)/2 ne Dimension(TwistedWindingSubmodule(Snew,1,chi)) : chi in chars];
      if rank_0 then;
        ann_pol := ann_pol*Sqrt(HeckePolynomial(Si,n));
      end if;
    end for;
  end for;
  return ann_pol;
end function;




    

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API