https://github.com/mozilla/gecko-dev
Raw File
Tip revision: 5f34e7c5db22dfb8de4a1495972d16cbe93158ae authored by ffxbld on 26 August 2014, 19:23:57 UTC
Added FENNEC_32_0_RELEASE FENNEC_32_0_BUILD1 tag(s) for changeset 75cd19e6494d. DONTBUILD CLOSED TREE a=release
Tip revision: 5f34e7c
jsatom.cpp
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
 * vim: set ts=8 sts=4 et sw=4 tw=99:
 * This Source Code Form is subject to the terms of the Mozilla Public
 * License, v. 2.0. If a copy of the MPL was not distributed with this
 * file, You can obtain one at http://mozilla.org/MPL/2.0/. */

/*
 * JS atom table.
 */

#include "jsatominlines.h"

#include "mozilla/ArrayUtils.h"
#include "mozilla/RangedPtr.h"

#include <string.h>

#include "jscntxt.h"
#include "jsstr.h"
#include "jstypes.h"

#include "gc/Marking.h"
#include "vm/Xdr.h"

#include "jscntxtinlines.h"
#include "jscompartmentinlines.h"
#include "jsobjinlines.h"

#include "vm/String-inl.h"

using namespace js;
using namespace js::gc;

using mozilla::ArrayEnd;
using mozilla::ArrayLength;
using mozilla::RangedPtr;

const char *
js::AtomToPrintableString(ExclusiveContext *cx, JSAtom *atom, JSAutoByteString *bytes)
{
    JSString *str = js_QuoteString(cx, atom, 0);
    if (!str)
        return nullptr;
    return bytes->encodeLatin1(cx, str);
}

const char * const js::TypeStrings[] = {
    js_undefined_str,
    js_object_str,
    js_function_str,
    js_string_str,
    js_number_str,
    js_boolean_str,
    js_null_str,
};

#define DEFINE_PROTO_STRING(name,code,init,clasp) const char js_##name##_str[] = #name;
JS_FOR_EACH_PROTOTYPE(DEFINE_PROTO_STRING)
#undef DEFINE_PROTO_STRING

#define CONST_CHAR_STR(idpart, id, text) const char js_##idpart##_str[] = text;
FOR_EACH_COMMON_PROPERTYNAME(CONST_CHAR_STR)
#undef CONST_CHAR_STR

/* Constant strings that are not atomized. */
const char js_break_str[]           = "break";
const char js_case_str[]            = "case";
const char js_catch_str[]           = "catch";
const char js_class_str[]           = "class";
const char js_close_str[]           = "close";
const char js_const_str[]           = "const";
const char js_continue_str[]        = "continue";
const char js_debugger_str[]        = "debugger";
const char js_default_str[]         = "default";
const char js_do_str[]              = "do";
const char js_else_str[]            = "else";
const char js_enum_str[]            = "enum";
const char js_export_str[]          = "export";
const char js_extends_str[]         = "extends";
const char js_finally_str[]         = "finally";
const char js_for_str[]             = "for";
const char js_getter_str[]          = "getter";
const char js_if_str[]              = "if";
const char js_implements_str[]      = "implements";
const char js_import_str[]          = "import";
const char js_in_str[]              = "in";
const char js_instanceof_str[]      = "instanceof";
const char js_interface_str[]       = "interface";
const char js_new_str[]             = "new";
const char js_package_str[]         = "package";
const char js_private_str[]         = "private";
const char js_protected_str[]       = "protected";
const char js_public_str[]          = "public";
const char js_send_str[]            = "send";
const char js_setter_str[]          = "setter";
const char js_static_str[]          = "static";
const char js_super_str[]           = "super";
const char js_switch_str[]          = "switch";
const char js_this_str[]            = "this";
const char js_try_str[]             = "try";
const char js_typeof_str[]          = "typeof";
const char js_void_str[]            = "void";
const char js_while_str[]           = "while";
const char js_with_str[]            = "with";

// Use a low initial capacity for atom hash tables to avoid penalizing runtimes
// which create a small number of atoms.
static const uint32_t JS_STRING_HASH_COUNT = 64;

struct CommonNameInfo
{
    const char *str;
    size_t length;
};

bool
JSRuntime::initializeAtoms(JSContext *cx)
{
    atoms_ = cx->new_<AtomSet>();
    if (!atoms_ || !atoms_->init(JS_STRING_HASH_COUNT))
        return false;

    if (parentRuntime) {
        staticStrings = parentRuntime->staticStrings;
        commonNames = parentRuntime->commonNames;
        emptyString = parentRuntime->emptyString;
        permanentAtoms = parentRuntime->permanentAtoms;
        return true;
    }

    permanentAtoms = cx->new_<AtomSet>();
    if (!permanentAtoms || !permanentAtoms->init(JS_STRING_HASH_COUNT))
        return false;

    staticStrings = cx->new_<StaticStrings>();
    if (!staticStrings || !staticStrings->init(cx))
        return false;

    static const CommonNameInfo cachedNames[] = {
#define COMMON_NAME_INFO(idpart, id, text) { js_##idpart##_str, sizeof(text) - 1 },
        FOR_EACH_COMMON_PROPERTYNAME(COMMON_NAME_INFO)
#undef COMMON_NAME_INFO
#define COMMON_NAME_INFO(name, code, init, clasp) { js_##name##_str, sizeof(#name) - 1 },
        JS_FOR_EACH_PROTOTYPE(COMMON_NAME_INFO)
#undef COMMON_NAME_INFO
    };

    commonNames = cx->new_<JSAtomState>();
    if (!commonNames)
        return false;

    ImmutablePropertyNamePtr *names = reinterpret_cast<ImmutablePropertyNamePtr *>(commonNames);
    for (size_t i = 0; i < ArrayLength(cachedNames); i++, names++) {
        JSAtom *atom = Atomize(cx, cachedNames[i].str, cachedNames[i].length, InternAtom);
        if (!atom)
            return false;
        names->init(atom->asPropertyName());
    }
    JS_ASSERT(uintptr_t(names) == uintptr_t(commonNames + 1));

    emptyString = commonNames->empty;
    return true;
}

void
JSRuntime::finishAtoms()
{
    if (atoms_)
        js_delete(atoms_);

    if (!parentRuntime) {
        if (staticStrings)
            js_delete(staticStrings);

        if (commonNames)
            js_delete(commonNames);

        if (permanentAtoms)
            js_delete(permanentAtoms);
    }

    atoms_ = nullptr;
    staticStrings = nullptr;
    commonNames = nullptr;
    permanentAtoms = nullptr;
    emptyString = nullptr;
}

void
js::MarkAtoms(JSTracer *trc)
{
    JSRuntime *rt = trc->runtime();
    for (AtomSet::Enum e(rt->atoms()); !e.empty(); e.popFront()) {
        const AtomStateEntry &entry = e.front();
        if (!entry.isTagged())
            continue;

        JSAtom *atom = entry.asPtr();
        bool tagged = entry.isTagged();
        MarkStringRoot(trc, &atom, "interned_atom");
        if (entry.asPtr() != atom)
            e.rekeyFront(AtomHasher::Lookup(atom), AtomStateEntry(atom, tagged));
    }
}

void
js::MarkPermanentAtoms(JSTracer *trc)
{
    JSRuntime *rt = trc->runtime();

    // Permanent atoms only need to be marked in the runtime which owns them.
    if (rt->parentRuntime)
        return;

    // Static strings are not included in the permanent atoms table.
    if (rt->staticStrings)
        rt->staticStrings->trace(trc);

    if (rt->permanentAtoms) {
        for (AtomSet::Enum e(*rt->permanentAtoms); !e.empty(); e.popFront()) {
            const AtomStateEntry &entry = e.front();

            JSAtom *atom = entry.asPtr();
            MarkPermanentAtom(trc, atom, "permanent_table");
        }
    }
}

void
JSRuntime::sweepAtoms()
{
    if (!atoms_)
        return;

    for (AtomSet::Enum e(*atoms_); !e.empty(); e.popFront()) {
        AtomStateEntry entry = e.front();
        JSAtom *atom = entry.asPtr();
        bool isDying = IsStringAboutToBeFinalized(&atom);

        /* Pinned or interned key cannot be finalized. */
        JS_ASSERT_IF(hasContexts() && entry.isTagged(), !isDying);

        if (isDying)
            e.removeFront();
    }
}

bool
JSRuntime::transformToPermanentAtoms()
{
    JS_ASSERT(!parentRuntime);

    // All static strings were created as permanent atoms, now move the contents
    // of the atoms table into permanentAtoms and mark each as permanent.

    JS_ASSERT(permanentAtoms && permanentAtoms->empty());

    AtomSet *temp = atoms_;
    atoms_ = permanentAtoms;
    permanentAtoms = temp;

    for (AtomSet::Enum e(*permanentAtoms); !e.empty(); e.popFront()) {
        AtomStateEntry entry = e.front();
        JSAtom *atom = entry.asPtr();
        atom->morphIntoPermanentAtom();
    }

    return true;
}

bool
AtomIsInterned(JSContext *cx, JSAtom *atom)
{
    /* We treat static strings as interned because they're never collected. */
    if (StaticStrings::isStatic(atom))
        return true;

    AtomHasher::Lookup lookup(atom);

    /* Likewise, permanent strings are considered to be interned. */
    AtomSet::Ptr p = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
    if (p)
        return true;

    AutoLockForExclusiveAccess lock(cx);

    p = cx->runtime()->atoms().lookup(lookup);
    if (!p)
        return false;

    return p->isTagged();
}

/*
 * When the jschars reside in a freshly allocated buffer the memory can be used
 * as a new JSAtom's storage without copying. The contract is that the caller no
 * longer owns the memory and this method is responsible for freeing the memory.
 */
MOZ_ALWAYS_INLINE
static JSAtom *
AtomizeAndtake(ExclusiveContext *cx, jschar *tbchars, size_t length, InternBehavior ib)
{
    JS_ASSERT(tbchars[length] == 0);

    if (JSAtom *s = cx->staticStrings().lookup(tbchars, length)) {
        js_free(tbchars);
        return s;
    }

    AtomHasher::Lookup lookup(tbchars, length);

    AtomSet::Ptr pp = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
    if (pp) {
        js_free(tbchars);
        return pp->asPtr();
    }

    AutoLockForExclusiveAccess lock(cx);

    /*
     * If a GC occurs at js_NewStringCopy then |p| will still have the correct
     * hash, allowing us to avoid rehashing it. Even though the hash is
     * unchanged, we need to re-lookup the table position because a last-ditch
     * GC will potentially free some table entries.
     */
    AtomSet& atoms = cx->atoms();
    AtomSet::AddPtr p = atoms.lookupForAdd(lookup);
    if (p) {
        JSAtom *atom = p->asPtr();
        p->setTagged(bool(ib));
        js_free(tbchars);
        return atom;
    }

    AutoCompartment ac(cx, cx->atomsCompartment());

    JSFlatString *flat = js_NewString<NoGC>(cx, tbchars, length);
    if (!flat) {
        js_free(tbchars);
        js_ReportOutOfMemory(cx);
        return nullptr;
    }

    JSAtom *atom = flat->morphAtomizedStringIntoAtom();

    if (!atoms.relookupOrAdd(p, lookup, AtomStateEntry(atom, bool(ib)))) {
        js_ReportOutOfMemory(cx); /* SystemAllocPolicy does not report OOM. */
        return nullptr;
    }

    return atom;
}

/* |tbchars| must not point into an inline or short string. */
MOZ_ALWAYS_INLINE
static JSAtom *
AtomizeAndCopyChars(ExclusiveContext *cx, const jschar *tbchars, size_t length, InternBehavior ib)
{
    if (JSAtom *s = cx->staticStrings().lookup(tbchars, length))
         return s;

    AtomHasher::Lookup lookup(tbchars, length);

    AtomSet::Ptr pp = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
    if (pp)
        return pp->asPtr();

    AutoLockForExclusiveAccess lock(cx);

    AtomSet& atoms = cx->atoms();
    AtomSet::AddPtr p = atoms.lookupForAdd(lookup);
    if (p) {
        JSAtom *atom = p->asPtr();
        p->setTagged(bool(ib));
        return atom;
    }

    AutoCompartment ac(cx, cx->atomsCompartment());

    JSFlatString *flat = js_NewStringCopyN<NoGC>(cx, tbchars, length);
    if (!flat) {
        js_ReportOutOfMemory(cx);
        return nullptr;
    }

    JSAtom *atom = flat->morphAtomizedStringIntoAtom();

    // We have held the lock since looking up p, and the operations we've done
    // since then can't GC; therefore the atoms table has not been modified and
    // p is still valid.
    if (!atoms.add(p, AtomStateEntry(atom, bool(ib)))) {
        js_ReportOutOfMemory(cx); /* SystemAllocPolicy does not report OOM. */
        return nullptr;
    }

    return atom;
}

JSAtom *
js::AtomizeString(ExclusiveContext *cx, JSString *str,
                  js::InternBehavior ib /* = js::DoNotInternAtom */)
{
    if (str->isAtom()) {
        JSAtom &atom = str->asAtom();
        /* N.B. static atoms are effectively always interned. */
        if (ib != InternAtom || js::StaticStrings::isStatic(&atom))
            return &atom;

        AtomHasher::Lookup lookup(&atom);

        /* Likewise, permanent atoms are always interned. */
        AtomSet::Ptr p = cx->permanentAtoms().readonlyThreadsafeLookup(lookup);
        if (p)
            return &atom;

        AutoLockForExclusiveAccess lock(cx);

        p = cx->atoms().lookup(lookup);
        JS_ASSERT(p); /* Non-static atom must exist in atom state set. */
        JS_ASSERT(p->asPtr() == &atom);
        JS_ASSERT(ib == InternAtom);
        p->setTagged(bool(ib));
        return &atom;
    }

    const jschar *chars = str->getChars(cx);
    if (!chars)
        return nullptr;

    return AtomizeAndCopyChars(cx, chars, str->length(), ib);
}

JSAtom *
js::Atomize(ExclusiveContext *cx, const char *bytes, size_t length, InternBehavior ib)
{
    CHECK_REQUEST(cx);

    if (!JSString::validateLength(cx, length))
        return nullptr;

    static const unsigned ATOMIZE_BUF_MAX = 32;
    if (length < ATOMIZE_BUF_MAX) {
        /*
         * Avoiding the malloc in InflateString on shorter strings saves us
         * over 20,000 malloc calls on mozilla browser startup. This compares to
         * only 131 calls where the string is longer than a 31 char (net) buffer.
         * The vast majority of atomized strings are already in the hashtable. So
         * js::AtomizeString rarely has to copy the temp string we make.
         */
        jschar inflated[ATOMIZE_BUF_MAX];
        CopyAndInflateChars(inflated, bytes, length);
        return AtomizeAndCopyChars(cx, inflated, length, ib);
    }

    jschar *tbcharsZ = InflateString(cx, bytes, &length);
    if (!tbcharsZ)
        return nullptr;
    return AtomizeAndtake(cx, tbcharsZ, length, ib);
}

JSAtom *
js::AtomizeChars(ExclusiveContext *cx, const jschar *chars, size_t length, InternBehavior ib)
{
    CHECK_REQUEST(cx);

    if (!JSString::validateLength(cx, length))
        return nullptr;

    return AtomizeAndCopyChars(cx, chars, length, ib);
}

JSAtom *
js::AtomizeSubstring(ExclusiveContext *cx, JSString *str, size_t start, size_t length,
                     InternBehavior ib /* = DoNotInternAtom */)
{
    JS_ASSERT(start + length <= str->length());

    JSLinearString *linear = str->ensureLinear(cx);
    if (!linear)
        return nullptr;

    return AtomizeAndCopyChars(cx, linear->chars() + start, length, ib);
}

bool
js::IndexToIdSlow(ExclusiveContext *cx, uint32_t index, MutableHandleId idp)
{
    JS_ASSERT(index > JSID_INT_MAX);

    jschar buf[UINT32_CHAR_BUFFER_LENGTH];
    RangedPtr<jschar> end(ArrayEnd(buf), buf, ArrayEnd(buf));
    RangedPtr<jschar> start = BackfillIndexInCharBuffer(index, end);

    JSAtom *atom = AtomizeChars(cx, start.get(), end - start);
    if (!atom)
        return false;

    idp.set(JSID_FROM_BITS((size_t)atom));
    return true;
}

template <AllowGC allowGC>
static JSAtom *
ToAtomSlow(ExclusiveContext *cx, typename MaybeRooted<Value, allowGC>::HandleType arg)
{
    JS_ASSERT(!arg.isString());

    Value v = arg;
    if (!v.isPrimitive()) {
        if (!cx->shouldBeJSContext() || !allowGC)
            return nullptr;
        RootedValue v2(cx, v);
        if (!ToPrimitive(cx->asJSContext(), JSTYPE_STRING, &v2))
            return nullptr;
        v = v2;
    }

    if (v.isString())
        return AtomizeString(cx, v.toString());
    if (v.isInt32())
        return Int32ToAtom(cx, v.toInt32());
    if (v.isDouble())
        return NumberToAtom(cx, v.toDouble());
    if (v.isBoolean())
        return v.toBoolean() ? cx->names().true_ : cx->names().false_;
    if (v.isNull())
        return cx->names().null;
    return cx->names().undefined;
}

template <AllowGC allowGC>
JSAtom *
js::ToAtom(ExclusiveContext *cx, typename MaybeRooted<Value, allowGC>::HandleType v)
{
    if (!v.isString())
        return ToAtomSlow<allowGC>(cx, v);

    JSString *str = v.toString();
    if (str->isAtom())
        return &str->asAtom();

    return AtomizeString(cx, str);
}

template JSAtom *
js::ToAtom<CanGC>(ExclusiveContext *cx, HandleValue v);

template JSAtom *
js::ToAtom<NoGC>(ExclusiveContext *cx, Value v);

template<XDRMode mode>
bool
js::XDRAtom(XDRState<mode> *xdr, MutableHandleAtom atomp)
{
    if (mode == XDR_ENCODE) {
        uint32_t nchars = atomp->length();
        if (!xdr->codeUint32(&nchars))
            return false;

        jschar *chars = const_cast<jschar *>(atomp->getChars(xdr->cx()));
        if (!chars)
            return false;

        return xdr->codeChars(chars, nchars);
    }

    /* Avoid JSString allocation for already existing atoms. See bug 321985. */
    uint32_t nchars;
    if (!xdr->codeUint32(&nchars))
        return false;

    JSContext *cx = xdr->cx();
    JSAtom *atom;
#if IS_LITTLE_ENDIAN
    /* Directly access the little endian chars in the XDR buffer. */
    const jschar *chars = reinterpret_cast<const jschar *>(xdr->buf.read(nchars * sizeof(jschar)));
    atom = AtomizeChars(cx, chars, nchars);
#else
    /*
     * We must copy chars to a temporary buffer to convert between little and
     * big endian data.
     */
    jschar *chars;
    jschar stackChars[256];
    if (nchars <= ArrayLength(stackChars)) {
        chars = stackChars;
    } else {
        /*
         * This is very uncommon. Don't use the tempLifoAlloc arena for this as
         * most allocations here will be bigger than tempLifoAlloc's default
         * chunk size.
         */
        chars = cx->runtime()->pod_malloc<jschar>(nchars);
        if (!chars)
            return false;
    }

    JS_ALWAYS_TRUE(xdr->codeChars(chars, nchars));
    atom = AtomizeChars(cx, chars, nchars);
    if (chars != stackChars)
        js_free(chars);
#endif /* !IS_LITTLE_ENDIAN */

    if (!atom)
        return false;
    atomp.set(atom);
    return true;
}

template bool
js::XDRAtom(XDRState<XDR_ENCODE> *xdr, MutableHandleAtom atomp);

template bool
js::XDRAtom(XDRState<XDR_DECODE> *xdr, MutableHandleAtom atomp);

back to top