https://github.com/GPflow/GPflow
Raw File
Tip revision: c5e75748673d77f4c4cc04ca48cb7d7e154c975a authored by frgsimpson on 16 February 2022, 19:15:36 UTC
Remove old script
Tip revision: c5e7574
vgp.py
# Copyright 2016-2020 The GPflow Contributors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional

import numpy as np
import tensorflow as tf

import gpflow

from ..base import InputData, MeanAndVariance, Parameter, RegressionData
from ..conditionals import conditional
from ..config import default_float, default_jitter
from ..kernels import Kernel
from ..kullback_leiblers import gauss_kl
from ..likelihoods import Likelihood
from ..mean_functions import MeanFunction, Zero
from ..utilities import triangular
from .model import GPModel
from .training_mixins import InternalDataTrainingLossMixin
from .util import data_input_to_tensor, inducingpoint_wrapper


class VGP(GPModel, InternalDataTrainingLossMixin):
    r"""
    This method approximates the Gaussian process posterior using a multivariate Gaussian.

    The idea is that the posterior over the function-value vector F is
    approximated by a Gaussian, and the KL divergence is minimised between
    the approximation and the posterior.

    This implementation is equivalent to SVGP with X=Z, but is more efficient.
    The whitened representation is used to aid optimization.

    The posterior approximation is

    .. math::

       q(\mathbf f) = N(\mathbf f \,|\, \boldsymbol \mu, \boldsymbol \Sigma)

    """

    def __init__(
        self,
        data: RegressionData,
        kernel: Kernel,
        likelihood: Likelihood,
        mean_function: Optional[MeanFunction] = None,
        num_latent_gps: Optional[int] = None,
    ):
        """
        data = (X, Y) contains the input points [N, D] and the observations [N, P]
        kernel, likelihood, mean_function are appropriate GPflow objects
        """
        if num_latent_gps is None:
            num_latent_gps = self.calc_num_latent_gps_from_data(data, kernel, likelihood)
        super().__init__(kernel, likelihood, mean_function, num_latent_gps)

        self.data = data_input_to_tensor(data)
        X_data, Y_data = self.data
        num_data = X_data.shape[0]
        self.num_data = num_data

        self.q_mu = Parameter(np.zeros((num_data, self.num_latent_gps)))
        q_sqrt = np.array([np.eye(num_data) for _ in range(self.num_latent_gps)])
        self.q_sqrt = Parameter(q_sqrt, transform=triangular())

    def maximum_log_likelihood_objective(self) -> tf.Tensor:
        return self.elbo()

    def elbo(self) -> tf.Tensor:
        r"""
        This method computes the variational lower bound on the likelihood,
        which is:

            E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)]

        with

            q(\mathbf f) = N(\mathbf f \,|\, \boldsymbol \mu, \boldsymbol \Sigma)

        """
        X_data, Y_data = self.data
        # Get prior KL.
        KL = gauss_kl(self.q_mu, self.q_sqrt)

        # Get conditionals
        K = self.kernel(X_data) + tf.eye(self.num_data, dtype=default_float()) * default_jitter()
        L = tf.linalg.cholesky(K)
        fmean = tf.linalg.matmul(L, self.q_mu) + self.mean_function(X_data)  # [NN, ND] -> ND
        q_sqrt_dnn = tf.linalg.band_part(self.q_sqrt, -1, 0)  # [D, N, N]
        L_tiled = tf.tile(tf.expand_dims(L, 0), tf.stack([self.num_latent_gps, 1, 1]))
        LTA = tf.linalg.matmul(L_tiled, q_sqrt_dnn)  # [D, N, N]
        fvar = tf.reduce_sum(tf.square(LTA), 2)

        fvar = tf.transpose(fvar)

        # Get variational expectations.
        var_exp = self.likelihood.variational_expectations(fmean, fvar, Y_data)

        return tf.reduce_sum(var_exp) - KL

    def predict_f(
        self, Xnew: InputData, full_cov: bool = False, full_output_cov: bool = False
    ) -> MeanAndVariance:
        X_data, _ = self.data
        mu, var = conditional(
            Xnew,
            X_data,
            self.kernel,
            self.q_mu,
            q_sqrt=self.q_sqrt,
            full_cov=full_cov,
            white=True,
        )
        return mu + self.mean_function(Xnew), var


class VGPOpperArchambeau(GPModel, InternalDataTrainingLossMixin):
    r"""
    This method approximates the Gaussian process posterior using a multivariate Gaussian.
    The key reference is:
    ::
      @article{Opper:2009,
          title = {The Variational Gaussian Approximation Revisited},
          author = {Opper, Manfred and Archambeau, Cedric},
          journal = {Neural Comput.},
          year = {2009},
          pages = {786--792},
      }
    The idea is that the posterior over the function-value vector F is
    approximated by a Gaussian, and the KL divergence is minimised between
    the approximation and the posterior. It turns out that the optimal
    posterior precision shares off-diagonal elements with the prior, so
    only the diagonal elements of the precision need be adjusted.
    The posterior approximation is
    .. math::
       q(\mathbf f) = N(\mathbf f \,|\, \mathbf K \boldsymbol \alpha,
                         [\mathbf K^{-1} + \textrm{diag}(\boldsymbol \lambda))^2]^{-1})

    This approach has only 2ND parameters, rather than the N + N^2 of vgp,
    but the optimization is non-convex and in practice may cause difficulty.

    """

    def __init__(
        self,
        data: RegressionData,
        kernel: Kernel,
        likelihood: Likelihood,
        mean_function: Optional[MeanFunction] = None,
        num_latent_gps: Optional[int] = None,
    ):
        """
        data = (X, Y) contains the input points [N, D] and the observations [N, P]
        kernel, likelihood, mean_function are appropriate GPflow objects
        """
        if num_latent_gps is None:
            num_latent_gps = self.calc_num_latent_gps_from_data(data, kernel, likelihood)
        super().__init__(kernel, likelihood, mean_function, num_latent_gps)

        self.data = data_input_to_tensor(data)
        X_data, Y_data = self.data
        self.num_data = X_data.shape[0]
        self.q_alpha = Parameter(np.zeros((self.num_data, self.num_latent_gps)))
        self.q_lambda = Parameter(
            np.ones((self.num_data, self.num_latent_gps)), transform=gpflow.utilities.positive()
        )

    def maximum_log_likelihood_objective(self) -> tf.Tensor:
        return self.elbo()

    def elbo(self) -> tf.Tensor:
        r"""
        q_alpha, q_lambda are variational parameters, size [N, R]
        This method computes the variational lower bound on the likelihood,
        which is:
            E_{q(F)} [ \log p(Y|F) ] - KL[ q(F) || p(F)]
        with
            q(f) = N(f | K alpha + mean, [K^-1 + diag(square(lambda))]^-1) .
        """
        X_data, Y_data = self.data

        K = self.kernel(X_data)
        K_alpha = tf.linalg.matmul(K, self.q_alpha)
        f_mean = K_alpha + self.mean_function(X_data)

        # compute the variance for each of the outputs
        I = tf.tile(
            tf.eye(self.num_data, dtype=default_float())[None, ...], [self.num_latent_gps, 1, 1]
        )
        A = (
            I
            + tf.transpose(self.q_lambda)[:, None, ...]
            * tf.transpose(self.q_lambda)[:, :, None, ...]
            * K
        )
        L = tf.linalg.cholesky(A)
        Li = tf.linalg.triangular_solve(L, I)
        tmp = Li / tf.transpose(self.q_lambda)[:, None, ...]
        f_var = 1.0 / tf.square(self.q_lambda) - tf.transpose(tf.reduce_sum(tf.square(tmp), 1))

        # some statistics about A are used in the KL
        A_logdet = 2.0 * tf.reduce_sum(tf.math.log(tf.linalg.diag_part(L)))
        trAi = tf.reduce_sum(tf.square(Li))

        KL = 0.5 * (
            A_logdet
            + trAi
            - self.num_data * self.num_latent_gps
            + tf.reduce_sum(K_alpha * self.q_alpha)
        )

        v_exp = self.likelihood.variational_expectations(f_mean, f_var, Y_data)
        return tf.reduce_sum(v_exp) - KL

    def predict_f(
        self, Xnew: InputData, full_cov: bool = False, full_output_cov: bool = False
    ) -> MeanAndVariance:
        r"""
        The posterior variance of F is given by
            q(f) = N(f | K alpha + mean, [K^-1 + diag(lambda**2)]^-1)
        Here we project this to F*, the values of the GP at Xnew which is given
        by
           q(F*) = N ( F* | K_{*F} alpha + mean, K_{**} - K_{*f}[K_{ff} +
                                           diag(lambda**-2)]^-1 K_{f*} )

        Note: This model currently does not allow full output covariances
        """
        if full_output_cov:
            raise NotImplementedError

        X_data, _ = self.data
        # compute kernel things
        Kx = self.kernel(X_data, Xnew)
        K = self.kernel(X_data)

        # predictive mean
        f_mean = tf.linalg.matmul(Kx, self.q_alpha, transpose_a=True) + self.mean_function(Xnew)

        # predictive var
        A = K + tf.linalg.diag(tf.transpose(1.0 / tf.square(self.q_lambda)))
        L = tf.linalg.cholesky(A)
        Kx_tiled = tf.tile(Kx[None, ...], [self.num_latent_gps, 1, 1])
        LiKx = tf.linalg.triangular_solve(L, Kx_tiled)
        if full_cov:
            f_var = self.kernel(Xnew) - tf.linalg.matmul(LiKx, LiKx, transpose_a=True)
        else:
            f_var = self.kernel(Xnew, full_cov=False) - tf.reduce_sum(tf.square(LiKx), axis=1)
        return f_mean, tf.transpose(f_var)
back to top