https://github.com/JuliaLang/julia
Raw File
Tip revision: 19804ae4a5182e13532cd3a141500c56081659cb authored by Keno Fischer on 03 April 2017, 22:15:08 UTC
Add another round of LICM
Tip revision: 19804ae
int.jl
# This file is a part of Julia. License is MIT: http://julialang.org/license

## integer arithmetic ##

# The tuples and types that do not include 128 bit sizes are necessary to handle
# certain issues on 32-bit machines, and also to simplify promotion rules, as
# they are also used elsewhere where Int128/UInt128 support is separated out,
# such as in hashing2.jl

const BitSigned64_types   = (Int8, Int16, Int32, Int64)
const BitUnsigned64_types = (UInt8, UInt16, UInt32, UInt64)
const BitInteger64_types  = (BitSigned64_types..., BitUnsigned64_types...)
const BitSigned_types     = (BitSigned64_types..., Int128)
const BitUnsigned_types   = (BitUnsigned64_types..., UInt128)
const BitInteger_types    = (BitSigned_types..., BitUnsigned_types...)

const BitSigned64    = Union{BitSigned64_types...}
const BitUnsigned64  = Union{BitUnsigned64_types...}
const BitInteger64   = Union{BitInteger64_types...}
const BitSigned      = Union{BitSigned_types...}
const BitUnsigned    = Union{BitUnsigned_types...}
const BitInteger     = Union{BitInteger_types...}
const BitSigned64T   = Union{Type{Int8}, Type{Int16}, Type{Int32}, Type{Int64}}
const BitUnsigned64T = Union{Type{UInt8}, Type{UInt16}, Type{UInt32}, Type{UInt64}}

## integer comparisons ##

<{T<:BitSigned}(x::T, y::T)  = slt_int(x, y)

-(x::BitInteger)             = neg_int(x)
-{T<:BitInteger}(x::T, y::T) = sub_int(x, y)
+{T<:BitInteger}(x::T, y::T) = add_int(x, y)
*{T<:BitInteger}(x::T, y::T) = mul_int(x, y)

inv(x::Integer) = float(one(x)) / float(x)
/{T<:Integer}(x::T, y::T) = float(x) / float(y)
# skip promotion for system integer types
/(x::BitInteger, y::BitInteger) = float(x) / float(y)

"""
    isodd(x::Integer) -> Bool

Returns `true` if `x` is odd (that is, not divisible by 2), and `false` otherwise.

```jldoctest
julia> isodd(9)
true

julia> isodd(10)
false
```
"""
isodd(n::Integer) = rem(n, 2) != 0

"""
    iseven(x::Integer) -> Bool

Returns `true` is `x` is even (that is, divisible by 2), and `false` otherwise.

```jldoctest
julia> iseven(9)
false

julia> iseven(10)
true
```
"""
iseven(n::Integer) = !isodd(n)

signbit(x::Integer) = x < 0
signbit(x::Unsigned) = false

flipsign{T<:BitSigned}(x::T, y::T) = flipsign_int(x, y)

flipsign(x::Signed, y::Signed)  = convert(typeof(x), flipsign(promote_noncircular(x, y)...))
flipsign(x::Signed, y::Float16) = flipsign(x, bitcast(Int16, y))
flipsign(x::Signed, y::Float32) = flipsign(x, bitcast(Int32, y))
flipsign(x::Signed, y::Float64) = flipsign(x, bitcast(Int64, y))
flipsign(x::Signed, y::Real)    = flipsign(x, -oftype(x, signbit(y)))

copysign(x::Signed, y::Signed)  = flipsign(x, x ⊻ y)
copysign(x::Signed, y::Float16) = copysign(x, bitcast(Int16, y))
copysign(x::Signed, y::Float32) = copysign(x, bitcast(Int32, y))
copysign(x::Signed, y::Float64) = copysign(x, bitcast(Int64, y))
copysign(x::Signed, y::Real)    = copysign(x, -oftype(x, signbit(y)))

"""
    abs(x)

The absolute value of `x`.

When `abs` is applied to signed integers, overflow may occur,
resulting in the return of a negative value. This overflow occurs only
when `abs` is applied to the minimum representable value of a signed
integer. That is, when `x == typemin(typeof(x))`, `abs(x) == x < 0`,
not `-x` as might be expected.

```jldoctest
julia> abs(-3)
3

julia> abs(1 + im)
1.4142135623730951

julia> abs(typemin(Int64))
-9223372036854775808
```
"""
function abs end

abs(x::Unsigned) = x
abs(x::Signed) = flipsign(x,x)

~(n::Integer) = -n-1

unsigned(x::Signed) = reinterpret(typeof(convert(Unsigned, zero(x))), x)
unsigned(x::Bool) = convert(Unsigned, x)
unsigned(x) = convert(Unsigned, x)
signed(x::Unsigned) = reinterpret(typeof(convert(Signed, zero(x))), x)
signed(x) = convert(Signed, x)

div(x::Signed, y::Unsigned) = flipsign(signed(div(unsigned(abs(x)), y)), x)
div(x::Unsigned, y::Signed) = unsigned(flipsign(signed(div(x, unsigned(abs(y)))), y))

rem(x::Signed, y::Unsigned) = flipsign(signed(rem(unsigned(abs(x)), y)), x)
rem(x::Unsigned, y::Signed) = rem(x, unsigned(abs(y)))

fld(x::Signed, y::Unsigned) = div(x, y) - (signbit(x) & (rem(x, y) != 0))
fld(x::Unsigned, y::Signed) = div(x, y) - (signbit(y) & (rem(x, y) != 0))


"""
    mod(x, y)
    rem(x, y, RoundDown)

The reduction of `x` modulo `y`, or equivalently, the remainder of `x` after floored
division by `y`, i.e.
```julia
x - y*fld(x,y)
```
if computed without intermediate rounding.

The result will have the same sign as `y`, and magnitude less than `abs(y)` (with some
exceptions, see note below).

!!! note

    When used with floating point values, the exact result may not be representable by the
    type, and so rounding error may occur. In particular, if the exact result is very
    close to `y`, then it may be rounded to `y`.

```jldoctest
julia> mod(8, 3)
2

julia> mod(9, 3)
0

julia> mod(8.9, 3)
2.9000000000000004

julia> mod(eps(), 3)
2.220446049250313e-16

julia> mod(-eps(), 3)
3.0
```
"""
function mod{T<:Integer}(x::T, y::T)
    y == -1 && return T(0)   # avoid potential overflow in fld
    return x - fld(x, y) * y
end
mod(x::Signed, y::Unsigned) = rem(y + unsigned(rem(x, y)), y)
mod(x::Unsigned, y::Signed) = rem(y + signed(rem(x, y)), y)
mod{T<:Unsigned}(x::T, y::T) = rem(x, y)

cld(x::Signed, y::Unsigned) = div(x, y) + (!signbit(x) & (rem(x, y) != 0))
cld(x::Unsigned, y::Signed) = div(x, y) + (!signbit(y) & (rem(x, y) != 0))

# Don't promote integers for div/rem/mod since there is no danger of overflow,
# while there is a substantial performance penalty to 64-bit promotion.
div{T<:BitSigned64}(x::T, y::T) = checked_sdiv_int(x, y)
rem{T<:BitSigned64}(x::T, y::T) = checked_srem_int(x, y)
div{T<:BitUnsigned64}(x::T, y::T) = checked_udiv_int(x, y)
rem{T<:BitUnsigned64}(x::T, y::T) = checked_urem_int(x, y)


# fld(x,y) == div(x,y) - ((x>=0) != (y>=0) && rem(x,y) != 0 ? 1 : 0)
fld{T<:Unsigned}(x::T, y::T) = div(x,y)
function fld{T<:Integer}(x::T, y::T)
    d = div(x, y)
    return d - (signbit(x ⊻ y) & (d * y != x))
end

# cld(x,y) = div(x,y) + ((x>0) == (y>0) && rem(x,y) != 0 ? 1 : 0)
function cld{T<:Unsigned}(x::T, y::T)
    d = div(x, y)
    return d + (d * y != x)
end
function cld{T<:Integer}(x::T, y::T)
    d = div(x, y)
    return d + (((x > 0) == (y > 0)) & (d * y != x))
end

## integer bitwise operations ##

(~)(x::BitInteger)             = not_int(x)
(&){T<:BitInteger}(x::T, y::T) = and_int(x, y)
(|){T<:BitInteger}(x::T, y::T) = or_int(x, y)
xor{T<:BitInteger}(x::T, y::T) = xor_int(x, y)

bswap(x::Union{Int8, UInt8}) = x
bswap(x::Union{Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128}) =
    bswap_int(x)

"""
    count_ones(x::Integer) -> Integer

Number of ones in the binary representation of `x`.

```jldoctest
julia> count_ones(7)
3
```
"""
count_ones(x::BitInteger) = Int(ctpop_int(x))

"""
    leading_zeros(x::Integer) -> Integer

Number of zeros leading the binary representation of `x`.

```jldoctest
julia> leading_zeros(Int32(1))
31
```
"""
leading_zeros(x::BitInteger) = Int(ctlz_int(x))

"""
    trailing_zeros(x::Integer) -> Integer

Number of zeros trailing the binary representation of `x`.

```jldoctest
julia> trailing_zeros(2)
1
```
"""
trailing_zeros(x::BitInteger) = Int(cttz_int(x))

"""
    count_zeros(x::Integer) -> Integer

Number of zeros in the binary representation of `x`.

```jldoctest
julia> count_zeros(Int32(2 ^ 16 - 1))
16
```
"""
count_zeros(  x::Integer) = count_ones(~x)

"""
    leading_ones(x::Integer) -> Integer

Number of ones leading the binary representation of `x`.

```jldoctest
julia> leading_ones(UInt32(2 ^ 32 - 2))
31
```
"""
leading_ones( x::Integer) = leading_zeros(~x)

"""
    trailing_ones(x::Integer) -> Integer

Number of ones trailing the binary representation of `x`.

```jldoctest
julia> trailing_ones(3)
2
```
"""
trailing_ones(x::Integer) = trailing_zeros(~x)

## integer comparisons ##

<{T<:BitUnsigned}(x::T, y::T)  = ult_int(x, y)
<={T<:BitSigned}(x::T, y::T)   = sle_int(x, y)
<={T<:BitUnsigned}(x::T, y::T) = ule_int(x, y)

==(x::Signed,   y::Unsigned) = (x >= 0) & (unsigned(x) == y)
==(x::Unsigned, y::Signed  ) = (y >= 0) & (x == unsigned(y))
<( x::Signed,   y::Unsigned) = (x <  0) | (unsigned(x) <  y)
<( x::Unsigned, y::Signed  ) = (y >= 0) & (x <  unsigned(y))
<=(x::Signed,   y::Unsigned) = (x <  0) | (unsigned(x) <= y)
<=(x::Unsigned, y::Signed  ) = (y >= 0) & (x <= unsigned(y))

## integer shifts ##

# unsigned shift counts always shift in the same direction
>>(x::BitSigned,   y::BitUnsigned) = ashr_int(x, y)
>>(x::BitUnsigned, y::BitUnsigned) = lshr_int(x, y)
<<(x::BitInteger,  y::BitUnsigned) = shl_int(x, y)
>>>(x::BitInteger, y::BitUnsigned) = lshr_int(x, y)
# signed shift counts can shift in either direction
# note: this early during bootstrap, `>=` is not yet available
# note: we only define Int shift counts here; the generic case is handled later
>>(x::BitInteger, y::Int) =
    select_value(0 <= y, x >> unsigned(y), x << unsigned(-y))
<<(x::BitInteger, y::Int) =
    select_value(0 <= y, x << unsigned(y), x >> unsigned(-y))
>>>(x::BitInteger, y::Int) =
    select_value(0 <= y, x >>> unsigned(y), x << unsigned(-y))

## integer conversions ##

for to in BitInteger_types, from in (BitInteger_types..., Bool)
    if !(to === from)
        if to.size < from.size
            if issubtype(to, Signed)
                if issubtype(from, Unsigned)
                    @eval convert(::Type{$to}, x::($from)) =
                        checked_trunc_sint($to, check_top_bit(x))
                else
                    @eval convert(::Type{$to}, x::($from)) =
                        checked_trunc_sint($to, x)
                end
            else
                @eval convert(::Type{$to}, x::($from)) =
                    checked_trunc_uint($to, x)
            end
            @eval rem(x::($from), ::Type{$to}) = trunc_int($to, x)
        elseif from.size < to.size || from === Bool
            if issubtype(from, Signed)
                if issubtype(to, Unsigned)
                    @eval convert(::Type{$to}, x::($from)) =
                        sext_int($to, check_top_bit(x))
                else
                    @eval convert(::Type{$to}, x::($from)) =
                        sext_int($to, x)
                end
                @eval rem(x::($from), ::Type{$to}) = sext_int($to, x)
            else
                @eval convert(::Type{$to}, x::($from)) = zext_int($to, x)
                @eval rem(x::($from), ::Type{$to}) = convert($to, x)
            end
        else
            if !(issubtype(from, Signed) === issubtype(to, Signed))
                # raise InexactError if x's top bit is set
                @eval convert(::Type{$to}, x::($from)) = bitcast($to, check_top_bit(x))
            else
                @eval convert(::Type{$to}, x::($from)) = bitcast($to, x)
            end
            @eval rem(x::($from), ::Type{$to}) = bitcast($to, x)
        end
    end
end

rem{T<:Integer}(x::T, ::Type{T}) = x
rem(x::Integer, ::Type{Bool}) = ((x & 1) != 0)
mod{T<:Integer}(x::Integer, ::Type{T}) = rem(x, T)

unsafe_trunc{T<:Integer}(::Type{T}, x::Integer) = rem(x, T)
for (Ts, Tu) in ((Int8, UInt8), (Int16, UInt16), (Int32, UInt32), (Int64, UInt64), (Int128, UInt128))
    @eval convert(::Type{Signed}, x::$Tu) = convert($Ts, x)
    @eval convert(::Type{Unsigned}, x::$Ts) = convert($Tu, x)
end

convert(::Type{Signed}, x::Union{Float32, Float64, Bool}) = convert(Int, x)
convert(::Type{Unsigned}, x::Union{Float32, Float64, Bool}) = convert(UInt, x)

convert(::Type{Integer}, x::Integer) = x
convert(::Type{Integer}, x::Real) = convert(Signed, x)

round(x::Integer) = x
trunc(x::Integer) = x
floor(x::Integer) = x
 ceil(x::Integer) = x

round{T<:Integer}(::Type{T}, x::Integer) = convert(T, x)
trunc{T<:Integer}(::Type{T}, x::Integer) = convert(T, x)
floor{T<:Integer}(::Type{T}, x::Integer) = convert(T, x)
 ceil{T<:Integer}(::Type{T}, x::Integer) = convert(T, x)

## integer construction ##

macro int128_str(s)
    return parse(Int128, s)
end

macro uint128_str(s)
    return parse(UInt128, s)
end

macro big_str(s)
    n = tryparse(BigInt, s)
    !isnull(n) && return get(n)
    n = tryparse(BigFloat, s)
    !isnull(n) && return get(n)
    message = "invalid number format $s for BigInt or BigFloat"
    return :(throw(ArgumentError($message)))
end

## integer promotions ##

promote_rule(::Type{Int8}, ::Type{Int16})   = Int16
promote_rule(::Type{UInt8}, ::Type{UInt16}) = UInt16
promote_rule(::Type{Int32}, ::Type{<:Union{Int8,Int16}})    = Int32
promote_rule(::Type{UInt32}, ::Type{<:Union{UInt8,UInt16}}) = UInt32
promote_rule(::Type{Int64}, ::Type{<:Union{Int8,Int16,Int32}})     = Int64
promote_rule(::Type{UInt64}, ::Type{<:Union{UInt8,UInt16,UInt32}}) = UInt64
promote_rule(::Type{Int128}, ::Type{<:BitSigned64})    = Int128
promote_rule(::Type{UInt128}, ::Type{<:BitUnsigned64}) = UInt128
for T in BitSigned_types
    @eval promote_rule(::Type{<:Union{UInt8,UInt16}}, ::Type{$T}) =
        $(sizeof(T) < sizeof(Int) ? Int : T)
end
@eval promote_rule(::Type{UInt32}, ::Type{<:Union{Int8,Int16,Int32}}) =
    $(Core.sizeof(Int) == 8 ? Int : UInt)
promote_rule(::Type{UInt32}, ::Type{Int64}) = Int64
promote_rule(::Type{UInt64}, ::Type{<:BitSigned64}) = UInt64
promote_rule(::Type{<:Union{UInt32, UInt64}}, ::Type{Int128}) = Int128
promote_rule(::Type{UInt128}, ::Type{<:BitSigned}) = UInt128

_default_type(::Type{Unsigned}) = UInt
_default_type(::Union{Type{Integer},Type{Signed}}) = Int

## traits ##

typemin(::Type{Int8  }) = Int8(-128)
typemax(::Type{Int8  }) = Int8(127)
typemin(::Type{UInt8 }) = UInt8(0)
typemax(::Type{UInt8 }) = UInt8(255)
typemin(::Type{Int16 }) = Int16(-32768)
typemax(::Type{Int16 }) = Int16(32767)
typemin(::Type{UInt16}) = UInt16(0)
typemax(::Type{UInt16}) = UInt16(65535)
typemin(::Type{Int32 }) = Int32(-2147483648)
typemax(::Type{Int32 }) = Int32(2147483647)
typemin(::Type{UInt32}) = UInt32(0)
typemax(::Type{UInt32}) = UInt32(4294967295)
typemin(::Type{Int64 }) = -9223372036854775808
typemax(::Type{Int64 }) = 9223372036854775807
typemin(::Type{UInt64}) = UInt64(0)
typemax(::Type{UInt64}) = 0xffffffffffffffff
@eval typemin(::Type{UInt128}) = $(convert(UInt128, 0))
@eval typemax(::Type{UInt128}) = $(bitcast(UInt128, convert(Int128, -1)))
@eval typemin(::Type{Int128} ) = $(convert(Int128, 1) << 127)
@eval typemax(::Type{Int128} ) = $(bitcast(Int128, typemax(UInt128) >> 1))

widen(::Type{<:Union{Int8, Int16}}) = Int32
widen(::Type{Int32}) = Int64
widen(::Type{Int64}) = Int128
widen(::Type{<:Union{UInt8, UInt16}}) = UInt32
widen(::Type{UInt32}) = UInt64
widen(::Type{UInt64}) = UInt128

# a few special cases,
# Int64*UInt64 => Int128
# |x|<=2^(k-1), |y|<=2^k-1   =>   |x*y|<=2^(2k-1)-1
widemul(x::Signed,y::Unsigned) = widen(x) * signed(widen(y))
widemul(x::Unsigned,y::Signed) = signed(widen(x)) * widen(y)
# multplication by Bool doesn't require widening
widemul(x::Bool,y::Bool) = x * y
widemul(x::Bool,y::Number) = x * y
widemul(x::Number,y::Bool) = x * y


## wide multiplication, Int128 multiply and divide ##

if Core.sizeof(Int) == 4
    function widemul(u::Int64, v::Int64)
        local u0::UInt64, v0::UInt64, w0::UInt64
        local u1::Int64, v1::Int64, w1::UInt64, w2::Int64, t::UInt64

        u0 = u & 0xffffffff; u1 = u >> 32
        v0 = v & 0xffffffff; v1 = v >> 32
        w0 = u0 * v0
        t = reinterpret(UInt64, u1) * v0 + (w0 >>> 32)
        w2 = reinterpret(Int64, t) >> 32
        w1 = u0 * reinterpret(UInt64, v1) + (t & 0xffffffff)
        hi = u1 * v1 + w2 + (reinterpret(Int64, w1) >> 32)
        lo = w0 & 0xffffffff + (w1 << 32)
        return Int128(hi) << 64 + Int128(lo)
    end

    function widemul(u::UInt64, v::UInt64)
        local u0::UInt64, v0::UInt64, w0::UInt64
        local u1::UInt64, v1::UInt64, w1::UInt64, w2::UInt64, t::UInt64

        u0 = u & 0xffffffff; u1 = u >>> 32
        v0 = v & 0xffffffff; v1 = v >>> 32
        w0 = u0 * v0
        t = u1 * v0 + (w0 >>> 32)
        w2 = t >>> 32
        w1 = u0 * v1 + (t & 0xffffffff)
        hi = u1 * v1 + w2 + (w1 >>> 32)
        lo = w0 & 0xffffffff + (w1 << 32)
        return UInt128(hi) << 64 + UInt128(lo)
    end

    function *(u::Int128, v::Int128)
        u0 = u % UInt64; u1 = Int64(u >> 64)
        v0 = v % UInt64; v1 = Int64(v >> 64)
        lolo = widemul(u0, v0)
        lohi = widemul(reinterpret(Int64, u0), v1)
        hilo = widemul(u1, reinterpret(Int64, v0))
        t = reinterpret(UInt128, hilo) + (lolo >>> 64)
        w1 = reinterpret(UInt128, lohi) + (t & 0xffffffffffffffff)
        return Int128(lolo & 0xffffffffffffffff) + reinterpret(Int128, w1) << 64
    end

    function *(u::UInt128, v::UInt128)
        u0 = u % UInt64; u1 = UInt64(u>>>64)
        v0 = v % UInt64; v1 = UInt64(v>>>64)
        lolo = widemul(u0, v0)
        lohi = widemul(u0, v1)
        hilo = widemul(u1, v0)
        t = hilo + (lolo >>> 64)
        w1 = lohi + (t & 0xffffffffffffffff)
        return (lolo & 0xffffffffffffffff) + UInt128(w1) << 64
    end

    function div(x::Int128, y::Int128)
        (x == typemin(Int128)) & (y == -1) && throw(DivideError())
        return Int128(div(BigInt(x), BigInt(y)))
    end
    function div(x::UInt128, y::UInt128)
        return UInt128(div(BigInt(x), BigInt(y)))
    end

    function rem(x::Int128, y::Int128)
        return Int128(rem(BigInt(x), BigInt(y)))
    end
    function rem(x::UInt128, y::UInt128)
        return UInt128(rem(BigInt(x), BigInt(y)))
    end

    function mod(x::Int128, y::Int128)
        return Int128(mod(BigInt(x), BigInt(y)))
    end
else
    *{T<:Union{Int128,UInt128}}(x::T, y::T)  = mul_int(x, y)

    div(x::Int128,  y::Int128)  = checked_sdiv_int(x, y)
    div(x::UInt128, y::UInt128) = checked_udiv_int(x, y)

    rem(x::Int128,  y::Int128)  = checked_srem_int(x, y)
    rem(x::UInt128, y::UInt128) = checked_urem_int(x, y)
end
back to top