https://github.com/mbostock/d3
Raw File
Tip revision: 594c2d24aa3b7e3c3fd661c1684c765a0185e6eb authored by Mike Bostock on 16 October 2014, 17:06:17 UTC
Use for…of instead of manual iteration.
Tip revision: 594c2d2
d3.js
!function(){
  var d3 = {version: "3.4.12"}; // semver
if (!Date.now) Date.now = function() {
  return +new Date;
};
var d3_arraySlice = [].slice,
    d3_array = function(list) { return d3_arraySlice.call(list); }; // conversion for NodeLists

var d3_document = document,
    d3_documentElement = d3_document.documentElement,
    d3_window = window;

// Redefine d3_array if the browser doesn’t support slice-based conversion.
try {
  d3_array(d3_documentElement.childNodes)[0].nodeType;
} catch(e) {
  d3_array = function(list) {
    var i = list.length, array = new Array(i);
    while (i--) array[i] = list[i];
    return array;
  };
}

try {
  d3_document.createElement("div").style.setProperty("opacity", 0, "");
} catch (error) {
  var d3_element_prototype = d3_window.Element.prototype,
      d3_element_setAttribute = d3_element_prototype.setAttribute,
      d3_element_setAttributeNS = d3_element_prototype.setAttributeNS,
      d3_style_prototype = d3_window.CSSStyleDeclaration.prototype,
      d3_style_setProperty = d3_style_prototype.setProperty;
  d3_element_prototype.setAttribute = function(name, value) {
    d3_element_setAttribute.call(this, name, value + "");
  };
  d3_element_prototype.setAttributeNS = function(space, local, value) {
    d3_element_setAttributeNS.call(this, space, local, value + "");
  };
  d3_style_prototype.setProperty = function(name, value, priority) {
    d3_style_setProperty.call(this, name, value + "", priority);
  };
}

d3.ascending = d3_ascending;

function d3_ascending(a, b) {
  return a < b ? -1 : a > b ? 1 : a >= b ? 0 : NaN;
}
d3.descending = function(a, b) {
  return b < a ? -1 : b > a ? 1 : b >= a ? 0 : NaN;
};
d3.min = function(array, f) {
  var i = -1,
      n = array.length,
      a,
      b;
  if (arguments.length === 1) {
    while (++i < n && !((a = array[i]) != null && a <= a)) a = undefined;
    while (++i < n) if ((b = array[i]) != null && a > b) a = b;
  } else {
    while (++i < n && !((a = f.call(array, array[i], i)) != null && a <= a)) a = undefined;
    while (++i < n) if ((b = f.call(array, array[i], i)) != null && a > b) a = b;
  }
  return a;
};
d3.max = function(array, f) {
  var i = -1,
      n = array.length,
      a,
      b;
  if (arguments.length === 1) {
    while (++i < n && !((a = array[i]) != null && a <= a)) a = undefined;
    while (++i < n) if ((b = array[i]) != null && b > a) a = b;
  } else {
    while (++i < n && !((a = f.call(array, array[i], i)) != null && a <= a)) a = undefined;
    while (++i < n) if ((b = f.call(array, array[i], i)) != null && b > a) a = b;
  }
  return a;
};
d3.extent = function(array, f) {
  var i = -1,
      n = array.length,
      a,
      b,
      c;
  if (arguments.length === 1) {
    while (++i < n && !((a = c = array[i]) != null && a <= a)) a = c = undefined;
    while (++i < n) if ((b = array[i]) != null) {
      if (a > b) a = b;
      if (c < b) c = b;
    }
  } else {
    while (++i < n && !((a = c = f.call(array, array[i], i)) != null && a <= a)) a = undefined;
    while (++i < n) if ((b = f.call(array, array[i], i)) != null) {
      if (a > b) a = b;
      if (c < b) c = b;
    }
  }
  return [a, c];
};
d3.sum = function(array, f) {
  var s = 0,
      n = array.length,
      a,
      i = -1;

  if (arguments.length === 1) {
    while (++i < n) if (!isNaN(a = +array[i])) s += a;
  } else {
    while (++i < n) if (!isNaN(a = +f.call(array, array[i], i))) s += a;
  }

  return s;
};
function d3_number(x) {
  return x != null && !isNaN(x);
}

d3.mean = function(array, f) {
  var s = 0,
      n = array.length,
      a,
      i = -1,
      j = n;
  if (arguments.length === 1) {
    while (++i < n) if (d3_number(a = array[i])) s += a; else --j;
  } else {
    while (++i < n) if (d3_number(a = f.call(array, array[i], i))) s += a; else --j;
  }
  return j ? s / j : undefined;
};
// R-7 per <http://en.wikipedia.org/wiki/Quantile>
d3.quantile = function(values, p) {
  var H = (values.length - 1) * p + 1,
      h = Math.floor(H),
      v = +values[h - 1],
      e = H - h;
  return e ? v + e * (values[h] - v) : v;
};

d3.median = function(array, f) {
  if (arguments.length > 1) array = array.map(f);
  array = array.filter(d3_number);
  return array.length ? d3.quantile(array.sort(d3_ascending), .5) : undefined;
};

function d3_bisector(compare) {
  return {
    left: function(a, x, lo, hi) {
      if (arguments.length < 3) lo = 0;
      if (arguments.length < 4) hi = a.length;
      while (lo < hi) {
        var mid = lo + hi >>> 1;
        if (compare(a[mid], x) < 0) lo = mid + 1;
        else hi = mid;
      }
      return lo;
    },
    right: function(a, x, lo, hi) {
      if (arguments.length < 3) lo = 0;
      if (arguments.length < 4) hi = a.length;
      while (lo < hi) {
        var mid = lo + hi >>> 1;
        if (compare(a[mid], x) > 0) hi = mid;
        else lo = mid + 1;
      }
      return lo;
    }
  };
}

var d3_bisect = d3_bisector(d3_ascending);
d3.bisectLeft = d3_bisect.left;
d3.bisect = d3.bisectRight = d3_bisect.right;

d3.bisector = function(f) {
  return d3_bisector(f.length === 1
      ? function(d, x) { return d3_ascending(f(d), x); }
      : f);
};
d3.shuffle = function(array) {
  var m = array.length, t, i;
  while (m) {
    i = Math.random() * m-- | 0;
    t = array[m], array[m] = array[i], array[i] = t;
  }
  return array;
};
d3.permute = function(array, indexes) {
  var i = indexes.length, permutes = new Array(i);
  while (i--) permutes[i] = array[indexes[i]];
  return permutes;
};
d3.pairs = function(array) {
  var i = 0, n = array.length - 1, p0, p1 = array[0], pairs = new Array(n < 0 ? 0 : n);
  while (i < n) pairs[i] = [p0 = p1, p1 = array[++i]];
  return pairs;
};

d3.zip = function() {
  if (!(n = arguments.length)) return [];
  for (var i = -1, m = d3.min(arguments, d3_zipLength), zips = new Array(m); ++i < m;) {
    for (var j = -1, n, zip = zips[i] = new Array(n); ++j < n;) {
      zip[j] = arguments[j][i];
    }
  }
  return zips;
};

function d3_zipLength(d) {
  return d.length;
}

d3.transpose = function(matrix) {
  return d3.zip.apply(d3, matrix);
};
d3.keys = function(map) {
  var keys = [];
  for (var key in map) keys.push(key);
  return keys;
};
d3.values = function(map) {
  var values = [];
  for (var key in map) values.push(map[key]);
  return values;
};
d3.entries = function(map) {
  var entries = [];
  for (var key in map) entries.push({key: key, value: map[key]});
  return entries;
};
d3.merge = function(arrays) {
  var n = arrays.length,
      m,
      i = -1,
      j = 0,
      merged,
      array;

  while (++i < n) j += arrays[i].length;
  merged = new Array(j);

  while (--n >= 0) {
    array = arrays[n];
    m = array.length;
    while (--m >= 0) {
      merged[--j] = array[m];
    }
  }

  return merged;
};
var abs = Math.abs;

d3.range = function(start, stop, step) {
  if (arguments.length < 3) {
    step = 1;
    if (arguments.length < 2) {
      stop = start;
      start = 0;
    }
  }
  if ((stop - start) / step === Infinity) throw new Error("infinite range");
  var range = [],
       k = d3_range_integerScale(abs(step)),
       i = -1,
       j;
  start *= k, stop *= k, step *= k;
  if (step < 0) while ((j = start + step * ++i) > stop) range.push(j / k);
  else while ((j = start + step * ++i) < stop) range.push(j / k);
  return range;
};

function d3_range_integerScale(x) {
  var k = 1;
  while (x * k % 1) k *= 10;
  return k;
}
function d3_class(ctor, properties) {
  try {
    for (var key in properties) {
      Object.defineProperty(ctor.prototype, key, {
        value: properties[key],
        enumerable: false
      });
    }
  } catch (e) {
    ctor.prototype = properties;
  }
}

d3.map = function(object) {
  var map = new d3_Map;
  if (object instanceof d3_Map) object.forEach(function(key, value) { map.set(key, value); });
  else for (var key in object) map.set(key, object[key]);
  return map;
};

function d3_Map() {
  this._ = new Map;
}

d3_class(d3_Map, {
  has: function(key) {
    return this._.has(key + "");
  },
  get: function(key) {
    return this._.get(key + "");
  },
  set: function(key, value) {
    return this._.set(key + "", value);
  },
  remove: function(key) {
    return this._.delete(key + "");
  },
  keys: function() {
    var keys = [];
    for (var key of this._.keys()) {
      keys.push(key);
    }
    return keys;
  },
  values: function() {
    var values = [];
    for (var value of this._.values()) {
      values.push(value);
    }
    return values;
  },
  entries: function() {
    var entries = [];
    for (var entry of this._) {
      entries.push({key: entry[0], value: entry[1]});
    }
    return entries;
  },
  size: function() {
    return this._.size;
  },
  empty: function() {
    return !!this._.size;
  },
  forEach: function(f) {
    for (var entry of this._) {
      f.apply(this, entry);
    }
  }
});

d3.nest = function() {
  var nest = {},
      keys = [],
      sortKeys = [],
      sortValues,
      rollup;

  function map(mapType, array, depth) {
    if (depth >= keys.length) return rollup
        ? rollup.call(nest, array) : (sortValues
        ? array.sort(sortValues)
        : array);

    var i = -1,
        n = array.length,
        key = keys[depth++],
        keyValue,
        object,
        setter,
        valuesByKey = new d3_Map,
        values;

    while (++i < n) {
      if (values = valuesByKey.get(keyValue = key(object = array[i]))) {
        values.push(object);
      } else {
        valuesByKey.set(keyValue, [object]);
      }
    }

    if (mapType) {
      object = mapType();
      setter = function(keyValue, values) {
        object.set(keyValue, map(mapType, values, depth));
      };
    } else {
      object = {};
      setter = function(keyValue, values) {
        object[keyValue] = map(mapType, values, depth);
      };
    }

    valuesByKey.forEach(setter);
    return object;
  }

  function entries(map, depth) {
    if (depth >= keys.length) return map;

    var array = [],
        sortKey = sortKeys[depth++];

    map.forEach(function(key, keyMap) {
      array.push({key: key, values: entries(keyMap, depth)});
    });

    return sortKey
        ? array.sort(function(a, b) { return sortKey(a.key, b.key); })
        : array;
  }

  nest.map = function(array, mapType) {
    return map(mapType, array, 0);
  };

  nest.entries = function(array) {
    return entries(map(d3.map, array, 0), 0);
  };

  nest.key = function(d) {
    keys.push(d);
    return nest;
  };

  // Specifies the order for the most-recently specified key.
  // Note: only applies to entries. Map keys are unordered!
  nest.sortKeys = function(order) {
    sortKeys[keys.length - 1] = order;
    return nest;
  };

  // Specifies the order for leaf values.
  // Applies to both maps and entries array.
  nest.sortValues = function(order) {
    sortValues = order;
    return nest;
  };

  nest.rollup = function(f) {
    rollup = f;
    return nest;
  };

  return nest;
};

d3.set = function(array) {
  var set = new d3_Set;
  if (array) for (var i = 0, n = array.length; i < n; ++i) set.add(array[i]);
  return set;
};

function d3_Set() {
  this._ = new Set;
}

d3_class(d3_Set, {
  has: function(value) {
    return this._.has(value + "");
  },
  add: function(value) {
    return this._.add(value + "");
  },
  remove: function(value) {
    return this._.delete(value + "");
  },
  values: function() {
    var values = [];
    for (var value of this._.values()) {
      values.push(value);
    }
    return values;
  },
  size: function() {
    return this._.size;
  },
  empty: function() {
    return !!this._.size;
  },
  forEach: function(f) {
    for (var value of this._) {
      f.call(this, value);
    }
  }
});
d3.behavior = {};
// Copies a variable number of methods from source to target.
d3.rebind = function(target, source) {
  var i = 1, n = arguments.length, method;
  while (++i < n) target[method = arguments[i]] = d3_rebind(target, source, source[method]);
  return target;
};

// Method is assumed to be a standard D3 getter-setter:
// If passed with no arguments, gets the value.
// If passed with arguments, sets the value and returns the target.
function d3_rebind(target, source, method) {
  return function() {
    var value = method.apply(source, arguments);
    return value === source ? target : value;
  };
}
function d3_vendorSymbol(object, name) {
  if (name in object) return name;
  name = name.charAt(0).toUpperCase() + name.slice(1);
  for (var i = 0, n = d3_vendorPrefixes.length; i < n; ++i) {
    var prefixName = d3_vendorPrefixes[i] + name;
    if (prefixName in object) return prefixName;
  }
}

var d3_vendorPrefixes = ["webkit", "ms", "moz", "Moz", "o", "O"];
function d3_noop() {}

d3.dispatch = function() {
  var dispatch = new d3_dispatch,
      i = -1,
      n = arguments.length;
  while (++i < n) dispatch[arguments[i]] = d3_dispatch_event(dispatch);
  return dispatch;
};

function d3_dispatch() {}

d3_dispatch.prototype.on = function(type, listener) {
  var i = type.indexOf("."),
      name = "";

  // Extract optional namespace, e.g., "click.foo"
  if (i >= 0) {
    name = type.slice(i + 1);
    type = type.slice(0, i);
  }

  if (type) return arguments.length < 2
      ? this[type].on(name)
      : this[type].on(name, listener);

  if (arguments.length === 2) {
    if (listener == null) for (type in this) {
      if (this.hasOwnProperty(type)) this[type].on(name, null);
    }
    return this;
  }
};

function d3_dispatch_event(dispatch) {
  var listeners = [],
      listenerByName = new d3_Map;

  function event() {
    var z = listeners, // defensive reference
        i = -1,
        n = z.length,
        l;
    while (++i < n) if (l = z[i].on) l.apply(this, arguments);
    return dispatch;
  }

  event.on = function(name, listener) {
    var l = listenerByName.get(name),
        i;

    // return the current listener, if any
    if (arguments.length < 2) return l && l.on;

    // remove the old listener, if any (with copy-on-write)
    if (l) {
      l.on = null;
      listeners = listeners.slice(0, i = listeners.indexOf(l)).concat(listeners.slice(i + 1));
      listenerByName.remove(name);
    }

    // add the new listener, if any
    if (listener) listeners.push(listenerByName.set(name, {on: listener}));

    return dispatch;
  };

  return event;
}

d3.event = null;

function d3_eventPreventDefault() {
  d3.event.preventDefault();
}

function d3_eventSource() {
  var e = d3.event, s;
  while (s = e.sourceEvent) e = s;
  return e;
}

// Like d3.dispatch, but for custom events abstracting native UI events. These
// events have a target component (such as a brush), a target element (such as
// the svg:g element containing the brush) and the standard arguments `d` (the
// target element's data) and `i` (the selection index of the target element).
function d3_eventDispatch(target) {
  var dispatch = new d3_dispatch,
      i = 0,
      n = arguments.length;

  while (++i < n) dispatch[arguments[i]] = d3_dispatch_event(dispatch);

  // Creates a dispatch context for the specified `thiz` (typically, the target
  // DOM element that received the source event) and `argumentz` (typically, the
  // data `d` and index `i` of the target element). The returned function can be
  // used to dispatch an event to any registered listeners; the function takes a
  // single argument as input, being the event to dispatch. The event must have
  // a "type" attribute which corresponds to a type registered in the
  // constructor. This context will automatically populate the "sourceEvent" and
  // "target" attributes of the event, as well as setting the `d3.event` global
  // for the duration of the notification.
  dispatch.of = function(thiz, argumentz) {
    return function(e1) {
      try {
        var e0 =
        e1.sourceEvent = d3.event;
        e1.target = target;
        d3.event = e1;
        dispatch[e1.type].apply(thiz, argumentz);
      } finally {
        d3.event = e0;
      }
    };
  };

  return dispatch;
}
d3.requote = function(s) {
  return s.replace(d3_requote_re, "\\$&");
};

var d3_requote_re = /[\\\^\$\*\+\?\|\[\]\(\)\.\{\}]/g;
var d3_subclass = {}.__proto__?

// Until ECMAScript supports array subclassing, prototype injection works well.
function(object, prototype) {
  object.__proto__ = prototype;
}:

// And if your browser doesn't support __proto__, we'll use direct extension.
function(object, prototype) {
  for (var property in prototype) object[property] = prototype[property];
};

function d3_selection(groups) {
  d3_subclass(groups, d3_selectionPrototype);
  return groups;
}

var d3_select = function(s, n) { return n.querySelector(s); },
    d3_selectAll = function(s, n) { return n.querySelectorAll(s); },
    d3_selectMatcher = d3_documentElement.matches || d3_documentElement[d3_vendorSymbol(d3_documentElement, "matchesSelector")],
    d3_selectMatches = function(n, s) { return d3_selectMatcher.call(n, s); };

// Prefer Sizzle, if available.
if (typeof Sizzle === "function") {
  d3_select = function(s, n) { return Sizzle(s, n)[0] || null; };
  d3_selectAll = Sizzle;
  d3_selectMatches = Sizzle.matchesSelector;
}

d3.selection = function() {
  return d3_selectionRoot;
};

var d3_selectionPrototype = d3.selection.prototype = [];


d3_selectionPrototype.select = function(selector) {
  var subgroups = [],
      subgroup,
      subnode,
      group,
      node;

  selector = d3_selection_selector(selector);

  for (var j = -1, m = this.length; ++j < m;) {
    subgroups.push(subgroup = []);
    subgroup.parentNode = (group = this[j]).parentNode;
    for (var i = -1, n = group.length; ++i < n;) {
      if (node = group[i]) {
        subgroup.push(subnode = selector.call(node, node.__data__, i, j));
        if (subnode && "__data__" in node) subnode.__data__ = node.__data__;
      } else {
        subgroup.push(null);
      }
    }
  }

  return d3_selection(subgroups);
};

function d3_selection_selector(selector) {
  return typeof selector === "function" ? selector : function() {
    return d3_select(selector, this);
  };
}

d3_selectionPrototype.selectAll = function(selector) {
  var subgroups = [],
      subgroup,
      node;

  selector = d3_selection_selectorAll(selector);

  for (var j = -1, m = this.length; ++j < m;) {
    for (var group = this[j], i = -1, n = group.length; ++i < n;) {
      if (node = group[i]) {
        subgroups.push(subgroup = d3_array(selector.call(node, node.__data__, i, j)));
        subgroup.parentNode = node;
      }
    }
  }

  return d3_selection(subgroups);
};

function d3_selection_selectorAll(selector) {
  return typeof selector === "function" ? selector : function() {
    return d3_selectAll(selector, this);
  };
}
var d3_nsPrefix = {
  svg: "http://www.w3.org/2000/svg",
  xhtml: "http://www.w3.org/1999/xhtml",
  xlink: "http://www.w3.org/1999/xlink",
  xml: "http://www.w3.org/XML/1998/namespace",
  xmlns: "http://www.w3.org/2000/xmlns/"
};

d3.ns = {
  prefix: d3_nsPrefix,
  qualify: function(name) {
    var i = name.indexOf(":"),
        prefix = name;
    if (i >= 0) {
      prefix = name.slice(0, i);
      name = name.slice(i + 1);
    }
    return d3_nsPrefix.hasOwnProperty(prefix)
        ? {space: d3_nsPrefix[prefix], local: name}
        : name;
  }
};

d3_selectionPrototype.attr = function(name, value) {
  if (arguments.length < 2) {

    // For attr(string), return the attribute value for the first node.
    if (typeof name === "string") {
      var node = this.node();
      name = d3.ns.qualify(name);
      return name.local
          ? node.getAttributeNS(name.space, name.local)
          : node.getAttribute(name);
    }

    // For attr(object), the object specifies the names and values of the
    // attributes to set or remove. The values may be functions that are
    // evaluated for each element.
    for (value in name) this.each(d3_selection_attr(value, name[value]));
    return this;
  }

  return this.each(d3_selection_attr(name, value));
};

function d3_selection_attr(name, value) {
  name = d3.ns.qualify(name);

  // For attr(string, null), remove the attribute with the specified name.
  function attrNull() {
    this.removeAttribute(name);
  }
  function attrNullNS() {
    this.removeAttributeNS(name.space, name.local);
  }

  // For attr(string, string), set the attribute with the specified name.
  function attrConstant() {
    this.setAttribute(name, value);
  }
  function attrConstantNS() {
    this.setAttributeNS(name.space, name.local, value);
  }

  // For attr(string, function), evaluate the function for each element, and set
  // or remove the attribute as appropriate.
  function attrFunction() {
    var x = value.apply(this, arguments);
    if (x == null) this.removeAttribute(name);
    else this.setAttribute(name, x);
  }
  function attrFunctionNS() {
    var x = value.apply(this, arguments);
    if (x == null) this.removeAttributeNS(name.space, name.local);
    else this.setAttributeNS(name.space, name.local, x);
  }

  return value == null
      ? (name.local ? attrNullNS : attrNull) : (typeof value === "function"
      ? (name.local ? attrFunctionNS : attrFunction)
      : (name.local ? attrConstantNS : attrConstant));
}
function d3_collapse(s) {
  return s.trim().replace(/\s+/g, " ");
}

d3_selectionPrototype.classed = function(name, value) {
  if (arguments.length < 2) {

    // For classed(string), return true only if the first node has the specified
    // class or classes. Note that even if the browser supports DOMTokenList, it
    // probably doesn't support it on SVG elements (which can be animated).
    if (typeof name === "string") {
      var node = this.node(),
          n = (name = d3_selection_classes(name)).length,
          i = -1;
      if (value = node.classList) {
        while (++i < n) if (!value.contains(name[i])) return false;
      } else {
        value = node.getAttribute("class");
        while (++i < n) if (!d3_selection_classedRe(name[i]).test(value)) return false;
      }
      return true;
    }

    // For classed(object), the object specifies the names of classes to add or
    // remove. The values may be functions that are evaluated for each element.
    for (value in name) this.each(d3_selection_classed(value, name[value]));
    return this;
  }

  // Otherwise, both a name and a value are specified, and are handled as below.
  return this.each(d3_selection_classed(name, value));
};

function d3_selection_classedRe(name) {
  return new RegExp("(?:^|\\s+)" + d3.requote(name) + "(?:\\s+|$)", "g");
}

function d3_selection_classes(name) {
  return (name + "").trim().split(/^|\s+/);
}

// Multiple class names are allowed (e.g., "foo bar").
function d3_selection_classed(name, value) {
  name = d3_selection_classes(name).map(d3_selection_classedName);
  var n = name.length;

  function classedConstant() {
    var i = -1;
    while (++i < n) name[i](this, value);
  }

  // When the value is a function, the function is still evaluated only once per
  // element even if there are multiple class names.
  function classedFunction() {
    var i = -1, x = value.apply(this, arguments);
    while (++i < n) name[i](this, x);
  }

  return typeof value === "function"
      ? classedFunction
      : classedConstant;
}

function d3_selection_classedName(name) {
  var re = d3_selection_classedRe(name);
  return function(node, value) {
    if (c = node.classList) return value ? c.add(name) : c.remove(name);
    var c = node.getAttribute("class") || "";
    if (value) {
      re.lastIndex = 0;
      if (!re.test(c)) node.setAttribute("class", d3_collapse(c + " " + name));
    } else {
      node.setAttribute("class", d3_collapse(c.replace(re, " ")));
    }
  };
}

d3_selectionPrototype.style = function(name, value, priority) {
  var n = arguments.length;
  if (n < 3) {

    // For style(object) or style(object, string), the object specifies the
    // names and values of the attributes to set or remove. The values may be
    // functions that are evaluated for each element. The optional string
    // specifies the priority.
    if (typeof name !== "string") {
      if (n < 2) value = "";
      for (priority in name) this.each(d3_selection_style(priority, name[priority], value));
      return this;
    }

    // For style(string), return the computed style value for the first node.
    if (n < 2) return d3_window.getComputedStyle(this.node(), null).getPropertyValue(name);

    // For style(string, string) or style(string, function), use the default
    // priority. The priority is ignored for style(string, null).
    priority = "";
  }

  // Otherwise, a name, value and priority are specified, and handled as below.
  return this.each(d3_selection_style(name, value, priority));
};

function d3_selection_style(name, value, priority) {

  // For style(name, null) or style(name, null, priority), remove the style
  // property with the specified name. The priority is ignored.
  function styleNull() {
    this.style.removeProperty(name);
  }

  // For style(name, string) or style(name, string, priority), set the style
  // property with the specified name, using the specified priority.
  function styleConstant() {
    this.style.setProperty(name, value, priority);
  }

  // For style(name, function) or style(name, function, priority), evaluate the
  // function for each element, and set or remove the style property as
  // appropriate. When setting, use the specified priority.
  function styleFunction() {
    var x = value.apply(this, arguments);
    if (x == null) this.style.removeProperty(name);
    else this.style.setProperty(name, x, priority);
  }

  return value == null
      ? styleNull : (typeof value === "function"
      ? styleFunction : styleConstant);
}

d3_selectionPrototype.property = function(name, value) {
  if (arguments.length < 2) {

    // For property(string), return the property value for the first node.
    if (typeof name === "string") return this.node()[name];

    // For property(object), the object specifies the names and values of the
    // properties to set or remove. The values may be functions that are
    // evaluated for each element.
    for (value in name) this.each(d3_selection_property(value, name[value]));
    return this;
  }

  // Otherwise, both a name and a value are specified, and are handled as below.
  return this.each(d3_selection_property(name, value));
};

function d3_selection_property(name, value) {

  // For property(name, null), remove the property with the specified name.
  function propertyNull() {
    delete this[name];
  }

  // For property(name, string), set the property with the specified name.
  function propertyConstant() {
    this[name] = value;
  }

  // For property(name, function), evaluate the function for each element, and
  // set or remove the property as appropriate.
  function propertyFunction() {
    var x = value.apply(this, arguments);
    if (x == null) delete this[name];
    else this[name] = x;
  }

  return value == null
      ? propertyNull : (typeof value === "function"
      ? propertyFunction : propertyConstant);
}

d3_selectionPrototype.text = function(value) {
  return arguments.length
      ? this.each(typeof value === "function"
      ? function() { var v = value.apply(this, arguments); this.textContent = v == null ? "" : v; } : value == null
      ? function() { this.textContent = ""; }
      : function() { this.textContent = value; })
      : this.node().textContent;
};

d3_selectionPrototype.html = function(value) {
  return arguments.length
      ? this.each(typeof value === "function"
      ? function() { var v = value.apply(this, arguments); this.innerHTML = v == null ? "" : v; } : value == null
      ? function() { this.innerHTML = ""; }
      : function() { this.innerHTML = value; })
      : this.node().innerHTML;
};

d3_selectionPrototype.append = function(name) {
  name = d3_selection_creator(name);
  return this.select(function() {
    return this.appendChild(name.apply(this, arguments));
  });
};

function d3_selection_creator(name) {
  return typeof name === "function" ? name
      : (name = d3.ns.qualify(name)).local ? function() { return this.ownerDocument.createElementNS(name.space, name.local); }
      : function() { return this.ownerDocument.createElementNS(this.namespaceURI, name); };
}

d3_selectionPrototype.insert = function(name, before) {
  name = d3_selection_creator(name);
  before = d3_selection_selector(before);
  return this.select(function() {
    return this.insertBefore(name.apply(this, arguments), before.apply(this, arguments) || null);
  });
};

// TODO remove(selector)?
// TODO remove(node)?
// TODO remove(function)?
d3_selectionPrototype.remove = function() {
  return this.each(function() {
    var parent = this.parentNode;
    if (parent) parent.removeChild(this);
  });
};

d3_selectionPrototype.data = function(value, key) {
  var i = -1,
      n = this.length,
      group,
      node;

  // If no value is specified, return the first value.
  if (!arguments.length) {
    value = new Array(n = (group = this[0]).length);
    while (++i < n) {
      if (node = group[i]) {
        value[i] = node.__data__;
      }
    }
    return value;
  }

  function bind(group, groupData) {
    var i,
        n = group.length,
        m = groupData.length,
        n0 = Math.min(n, m),
        updateNodes = new Array(m),
        enterNodes = new Array(m),
        exitNodes = new Array(n),
        node,
        nodeData;

    if (key) {
      var nodeByKeyValue = new d3_Map,
          dataByKeyValue = new d3_Map,
          keyValues = [],
          keyValue;

      for (i = -1; ++i < n;) {
        keyValue = key.call(node = group[i], node.__data__, i);
        if (nodeByKeyValue.has(keyValue)) {
          exitNodes[i] = node; // duplicate selection key
        } else {
          nodeByKeyValue.set(keyValue, node);
        }
        keyValues.push(keyValue);
      }

      for (i = -1; ++i < m;) {
        keyValue = key.call(groupData, nodeData = groupData[i], i);
        if (node = nodeByKeyValue.get(keyValue)) {
          updateNodes[i] = node;
          node.__data__ = nodeData;
        } else if (!dataByKeyValue.has(keyValue)) { // no duplicate data key
          enterNodes[i] = d3_selection_dataNode(nodeData);
        }
        dataByKeyValue.set(keyValue, nodeData);
        nodeByKeyValue.remove(keyValue);
      }

      for (i = -1; ++i < n;) {
        if (nodeByKeyValue.has(keyValues[i])) {
          exitNodes[i] = group[i];
        }
      }
    } else {
      for (i = -1; ++i < n0;) {
        node = group[i];
        nodeData = groupData[i];
        if (node) {
          node.__data__ = nodeData;
          updateNodes[i] = node;
        } else {
          enterNodes[i] = d3_selection_dataNode(nodeData);
        }
      }
      for (; i < m; ++i) {
        enterNodes[i] = d3_selection_dataNode(groupData[i]);
      }
      for (; i < n; ++i) {
        exitNodes[i] = group[i];
      }
    }

    enterNodes.update
        = updateNodes;

    enterNodes.parentNode
        = updateNodes.parentNode
        = exitNodes.parentNode
        = group.parentNode;

    enter.push(enterNodes);
    update.push(updateNodes);
    exit.push(exitNodes);
  }

  var enter = d3_selection_enter([]),
      update = d3_selection([]),
      exit = d3_selection([]);

  if (typeof value === "function") {
    while (++i < n) {
      bind(group = this[i], value.call(group, group.parentNode.__data__, i));
    }
  } else {
    while (++i < n) {
      bind(group = this[i], value);
    }
  }

  update.enter = function() { return enter; };
  update.exit = function() { return exit; };
  return update;
};

function d3_selection_dataNode(data) {
  return {__data__: data};
}

d3_selectionPrototype.datum = function(value) {
  return arguments.length
      ? this.property("__data__", value)
      : this.property("__data__");
};

d3_selectionPrototype.filter = function(filter) {
  var subgroups = [],
      subgroup,
      group,
      node;

  if (typeof filter !== "function") filter = d3_selection_filter(filter);

  for (var j = 0, m = this.length; j < m; j++) {
    subgroups.push(subgroup = []);
    subgroup.parentNode = (group = this[j]).parentNode;
    for (var i = 0, n = group.length; i < n; i++) {
      if ((node = group[i]) && filter.call(node, node.__data__, i, j)) {
        subgroup.push(node);
      }
    }
  }

  return d3_selection(subgroups);
};

function d3_selection_filter(selector) {
  return function() {
    return d3_selectMatches(this, selector);
  };
}

d3_selectionPrototype.order = function() {
  for (var j = -1, m = this.length; ++j < m;) {
    for (var group = this[j], i = group.length - 1, next = group[i], node; --i >= 0;) {
      if (node = group[i]) {
        if (next && next !== node.nextSibling) next.parentNode.insertBefore(node, next);
        next = node;
      }
    }
  }
  return this;
};

d3_selectionPrototype.sort = function(comparator) {
  comparator = d3_selection_sortComparator.apply(this, arguments);
  for (var j = -1, m = this.length; ++j < m;) this[j].sort(comparator);
  return this.order();
};

function d3_selection_sortComparator(comparator) {
  if (!arguments.length) comparator = d3_ascending;
  return function(a, b) {
    return a && b ? comparator(a.__data__, b.__data__) : !a - !b;
  };
}

d3_selectionPrototype.each = function(callback) {
  return d3_selection_each(this, function(node, i, j) {
    callback.call(node, node.__data__, i, j);
  });
};

function d3_selection_each(groups, callback) {
  for (var j = 0, m = groups.length; j < m; j++) {
    for (var group = groups[j], i = 0, n = group.length, node; i < n; i++) {
      if (node = group[i]) callback(node, i, j);
    }
  }
  return groups;
}

d3_selectionPrototype.call = function(callback) {
  var args = d3_array(arguments);
  callback.apply(args[0] = this, args);
  return this;
};

d3_selectionPrototype.empty = function() {
  return !this.node();
};

d3_selectionPrototype.node = function() {
  for (var j = 0, m = this.length; j < m; j++) {
    for (var group = this[j], i = 0, n = group.length; i < n; i++) {
      var node = group[i];
      if (node) return node;
    }
  }
  return null;
};

d3_selectionPrototype.size = function() {
  var n = 0;
  d3_selection_each(this, function() { ++n; });
  return n;
};

function d3_selection_enter(selection) {
  d3_subclass(selection, d3_selection_enterPrototype);
  return selection;
}

var d3_selection_enterPrototype = [];

d3.selection.enter = d3_selection_enter;
d3.selection.enter.prototype = d3_selection_enterPrototype;

d3_selection_enterPrototype.append = d3_selectionPrototype.append;
d3_selection_enterPrototype.empty = d3_selectionPrototype.empty;
d3_selection_enterPrototype.node = d3_selectionPrototype.node;
d3_selection_enterPrototype.call = d3_selectionPrototype.call;
d3_selection_enterPrototype.size = d3_selectionPrototype.size;


d3_selection_enterPrototype.select = function(selector) {
  var subgroups = [],
      subgroup,
      subnode,
      upgroup,
      group,
      node;

  for (var j = -1, m = this.length; ++j < m;) {
    upgroup = (group = this[j]).update;
    subgroups.push(subgroup = []);
    subgroup.parentNode = group.parentNode;
    for (var i = -1, n = group.length; ++i < n;) {
      if (node = group[i]) {
        subgroup.push(upgroup[i] = subnode = selector.call(group.parentNode, node.__data__, i, j));
        subnode.__data__ = node.__data__;
      } else {
        subgroup.push(null);
      }
    }
  }

  return d3_selection(subgroups);
};

d3_selection_enterPrototype.insert = function(name, before) {
  if (arguments.length < 2) before = d3_selection_enterInsertBefore(this);
  return d3_selectionPrototype.insert.call(this, name, before);
};

function d3_selection_enterInsertBefore(enter) {
  var i0, j0;
  return function(d, i, j) {
    var group = enter[j].update,
        n = group.length,
        node;
    if (j != j0) j0 = j, i0 = 0;
    if (i >= i0) i0 = i + 1;
    while (!(node = group[i0]) && ++i0 < n);
    return node;
  };
}

// import "../transition/transition";

d3_selectionPrototype.transition = function() {
  var id = d3_transitionInheritId || ++d3_transitionId,
      subgroups = [],
      subgroup,
      node,
      transition = d3_transitionInherit || {time: Date.now(), ease: d3_ease_cubicInOut, delay: 0, duration: 250};

  for (var j = -1, m = this.length; ++j < m;) {
    subgroups.push(subgroup = []);
    for (var group = this[j], i = -1, n = group.length; ++i < n;) {
      if (node = group[i]) d3_transitionNode(node, i, id, transition);
      subgroup.push(node);
    }
  }

  return d3_transition(subgroups, id);
};
// import "../transition/transition";

d3_selectionPrototype.interrupt = function() {
  return this.each(d3_selection_interrupt);
};

function d3_selection_interrupt() {
  var lock = this.__transition__;
  if (lock) ++lock.active;
}

// TODO fast singleton implementation?
d3.select = function(node) {
  var group = [typeof node === "string" ? d3_select(node, d3_document) : node];
  group.parentNode = d3_documentElement;
  return d3_selection([group]);
};

d3.selectAll = function(nodes) {
  var group = d3_array(typeof nodes === "string" ? d3_selectAll(nodes, d3_document) : nodes);
  group.parentNode = d3_documentElement;
  return d3_selection([group]);
};

var d3_selectionRoot = d3.select(d3_documentElement);

d3_selectionPrototype.on = function(type, listener, capture) {
  var n = arguments.length;
  if (n < 3) {

    // For on(object) or on(object, boolean), the object specifies the event
    // types and listeners to add or remove. The optional boolean specifies
    // whether the listener captures events.
    if (typeof type !== "string") {
      if (n < 2) listener = false;
      for (capture in type) this.each(d3_selection_on(capture, type[capture], listener));
      return this;
    }

    // For on(string), return the listener for the first node.
    if (n < 2) return (n = this.node()["__on" + type]) && n._;

    // For on(string, function), use the default capture.
    capture = false;
  }

  // Otherwise, a type, listener and capture are specified, and handled as below.
  return this.each(d3_selection_on(type, listener, capture));
};

function d3_selection_on(type, listener, capture) {
  var name = "__on" + type,
      i = type.indexOf("."),
      wrap = d3_selection_onListener;

  if (i > 0) type = type.slice(0, i);
  var filter = d3_selection_onFilters.get(type);
  if (filter) type = filter, wrap = d3_selection_onFilter;

  function onRemove() {
    var l = this[name];
    if (l) {
      this.removeEventListener(type, l, l.$);
      delete this[name];
    }
  }

  function onAdd() {
    var l = wrap(listener, d3_array(arguments));
    onRemove.call(this);
    this.addEventListener(type, this[name] = l, l.$ = capture);
    l._ = listener;
  }

  function removeAll() {
    var re = new RegExp("^__on([^.]+)" + d3.requote(type) + "$"),
        match;
    for (var name in this) {
      if (match = name.match(re)) {
        var l = this[name];
        this.removeEventListener(match[1], l, l.$);
        delete this[name];
      }
    }
  }

  return i
      ? listener ? onAdd : onRemove
      : listener ? d3_noop : removeAll;
}

var d3_selection_onFilters = d3.map({
  mouseenter: "mouseover",
  mouseleave: "mouseout"
});

d3_selection_onFilters.forEach(function(k) {
  if ("on" + k in d3_document) d3_selection_onFilters.remove(k);
});

function d3_selection_onListener(listener, argumentz) {
  return function(e) {
    var o = d3.event; // Events can be reentrant (e.g., focus).
    d3.event = e;
    argumentz[0] = this.__data__;
    try {
      listener.apply(this, argumentz);
    } finally {
      d3.event = o;
    }
  };
}

function d3_selection_onFilter(listener, argumentz) {
  var l = d3_selection_onListener(listener, argumentz);
  return function(e) {
    var target = this, related = e.relatedTarget;
    if (!related || (related !== target && !(related.compareDocumentPosition(target) & 8))) {
      l.call(target, e);
    }
  };
}

var d3_event_dragSelect = "onselectstart" in d3_document ? null : d3_vendorSymbol(d3_documentElement.style, "userSelect"),
    d3_event_dragId = 0;

function d3_event_dragSuppress() {
  var name = ".dragsuppress-" + ++d3_event_dragId,
      click = "click" + name,
      w = d3.select(d3_window)
          .on("touchmove" + name, d3_eventPreventDefault)
          .on("dragstart" + name, d3_eventPreventDefault)
          .on("selectstart" + name, d3_eventPreventDefault);
  if (d3_event_dragSelect) {
    var style = d3_documentElement.style,
        select = style[d3_event_dragSelect];
    style[d3_event_dragSelect] = "none";
  }
  return function(suppressClick) {
    w.on(name, null);
    if (d3_event_dragSelect) style[d3_event_dragSelect] = select;
    if (suppressClick) { // suppress the next click, but only if it’s immediate
      function off() { w.on(click, null); }
      w.on(click, function() { d3_eventPreventDefault(); off(); }, true);
      setTimeout(off, 0);
    }
  };
}

d3.mouse = function(container) {
  return d3_mousePoint(container, d3_eventSource());
};

// https://bugs.webkit.org/show_bug.cgi?id=44083
var d3_mouse_bug44083 = /WebKit/.test(d3_window.navigator.userAgent) ? -1 : 0;

function d3_mousePoint(container, e) {
  if (e.changedTouches) e = e.changedTouches[0];
  var svg = container.ownerSVGElement || container;
  if (svg.createSVGPoint) {
    var point = svg.createSVGPoint();
    if (d3_mouse_bug44083 < 0 && (d3_window.scrollX || d3_window.scrollY)) {
      svg = d3.select("body").append("svg").style({
        position: "absolute",
        top: 0,
        left: 0,
        margin: 0,
        padding: 0,
        border: "none"
      }, "important");
      var ctm = svg[0][0].getScreenCTM();
      d3_mouse_bug44083 = !(ctm.f || ctm.e);
      svg.remove();
    }
    if (d3_mouse_bug44083) point.x = e.pageX, point.y = e.pageY;
    else point.x = e.clientX, point.y = e.clientY;
    point = point.matrixTransform(container.getScreenCTM().inverse());
    return [point.x, point.y];
  }
  var rect = container.getBoundingClientRect();
  return [e.clientX - rect.left - container.clientLeft, e.clientY - rect.top - container.clientTop];
};

d3.touch = function(container, touches, identifier) {
  if (arguments.length < 3) identifier = touches, touches = d3_eventSource().changedTouches;
  if (touches) for (var i = 0, n = touches.length, touch; i < n; ++i) {
    if ((touch = touches[i]).identifier === identifier) {
      return d3_mousePoint(container, touch);
    }
  }
};

d3.behavior.drag = function() {
  var event = d3_eventDispatch(drag, "drag", "dragstart", "dragend"),
      origin = null,
      mousedown = dragstart(d3_noop, d3.mouse, d3_behavior_dragMouseSubject, "mousemove", "mouseup"),
      touchstart = dragstart(d3_behavior_dragTouchId, d3.touch, d3_behavior_dragTouchSubject, "touchmove", "touchend");

  function drag() {
    this.on("mousedown.drag", mousedown)
        .on("touchstart.drag", touchstart);
  }

  function dragstart(id, position, subject, move, end) {
    return function() {
      var that = this,
          target = d3.event.target,
          parent = that.parentNode,
          dispatch = event.of(that, arguments),
          dragged = 0,
          dragId = id(),
          dragName = ".drag" + (dragId == null ? "" : "-" + dragId),
          dragOffset,
          dragSubject = d3.select(subject()).on(move + dragName, moved).on(end + dragName, ended),
          dragRestore = d3_event_dragSuppress(),
          position0 = position(parent, dragId);

      if (origin) {
        dragOffset = origin.apply(that, arguments);
        dragOffset = [dragOffset.x - position0[0], dragOffset.y - position0[1]];
      } else {
        dragOffset = [0, 0];
      }

      dispatch({type: "dragstart"});

      function moved() {
        var position1 = position(parent, dragId), dx, dy;
        if (!position1) return; // this touch didn’t move

        dx = position1[0] - position0[0];
        dy = position1[1] - position0[1];
        dragged |= dx | dy;
        position0 = position1;

        dispatch({
          type: "drag",
          x: position1[0] + dragOffset[0],
          y: position1[1] + dragOffset[1],
          dx: dx,
          dy: dy
        });
      }

      function ended() {
        if (!position(parent, dragId)) return; // this touch didn’t end
        dragSubject.on(move + dragName, null).on(end + dragName, null);
        dragRestore(dragged && d3.event.target === target);
        dispatch({type: "dragend"});
      }
    };
  }

  drag.origin = function(x) {
    if (!arguments.length) return origin;
    origin = x;
    return drag;
  };

  return d3.rebind(drag, event, "on");
};

// While it is possible to receive a touchstart event with more than one changed
// touch, the event is only shared by touches on the same target; for new
// touches targetting different elements, multiple touchstart events are
// received even when the touches start simultaneously. Since multiple touches
// cannot move the same target to different locations concurrently without
// tearing the fabric of spacetime, we allow the first touch to win.
function d3_behavior_dragTouchId() {
  return d3.event.changedTouches[0].identifier;
}

function d3_behavior_dragTouchSubject() {
  return d3.event.target;
}

function d3_behavior_dragMouseSubject() {
  return d3_window;
}

d3.touches = function(container, touches) {
  if (arguments.length < 2) touches = d3_eventSource().touches;
  return touches ? d3_array(touches).map(function(touch) {
    var point = d3_mousePoint(container, touch);
    point.identifier = touch.identifier;
    return point;
  }) : [];
};
var π = Math.PI,
    τ = 2 * π,
    halfπ = π / 2,
    ε = 1e-6,
    ε2 = ε * ε,
    d3_radians = π / 180,
    d3_degrees = 180 / π;

function d3_sgn(x) {
  return x > 0 ? 1 : x < 0 ? -1 : 0;
}

// Returns the 2D cross product of AB and AC vectors, i.e., the z-component of
// the 3D cross product in a quadrant I Cartesian coordinate system (+x is
// right, +y is up). Returns a positive value if ABC is counter-clockwise,
// negative if clockwise, and zero if the points are collinear.
function d3_cross2d(a, b, c) {
  return (b[0] - a[0]) * (c[1] - a[1]) - (b[1] - a[1]) * (c[0] - a[0]);
}

function d3_acos(x) {
  return x > 1 ? 0 : x < -1 ? π : Math.acos(x);
}

function d3_asin(x) {
  return x > 1 ? halfπ : x < -1 ? -halfπ : Math.asin(x);
}

function d3_sinh(x) {
  return ((x = Math.exp(x)) - 1 / x) / 2;
}

function d3_cosh(x) {
  return ((x = Math.exp(x)) + 1 / x) / 2;
}

function d3_tanh(x) {
  return ((x = Math.exp(2 * x)) - 1) / (x + 1);
}

function d3_haversin(x) {
  return (x = Math.sin(x / 2)) * x;
}

var ρ = Math.SQRT2,
    ρ2 = 2,
    ρ4 = 4;

// p0 = [ux0, uy0, w0]
// p1 = [ux1, uy1, w1]
d3.interpolateZoom = function(p0, p1) {
  var ux0 = p0[0], uy0 = p0[1], w0 = p0[2],
      ux1 = p1[0], uy1 = p1[1], w1 = p1[2];

  var dx = ux1 - ux0,
      dy = uy1 - uy0,
      d2 = dx * dx + dy * dy,
      d1 = Math.sqrt(d2),
      b0 = (w1 * w1 - w0 * w0 + ρ4 * d2) / (2 * w0 * ρ2 * d1),
      b1 = (w1 * w1 - w0 * w0 - ρ4 * d2) / (2 * w1 * ρ2 * d1),
      r0 = Math.log(Math.sqrt(b0 * b0 + 1) - b0),
      r1 = Math.log(Math.sqrt(b1 * b1 + 1) - b1),
      dr = r1 - r0,
      S = (dr || Math.log(w1 / w0)) / ρ;

  function interpolate(t) {
    var s = t * S;
    if (dr) {
      // General case.
      var coshr0 = d3_cosh(r0),
          u = w0 / (ρ2 * d1) * (coshr0 * d3_tanh(ρ * s + r0) - d3_sinh(r0));
      return [
        ux0 + u * dx,
        uy0 + u * dy,
        w0 * coshr0 / d3_cosh(ρ * s + r0)
      ];
    }
    // Special case for u0 ~= u1.
    return [
      ux0 + t * dx,
      uy0 + t * dy,
      w0 * Math.exp(ρ * s)
    ];
  }

  interpolate.duration = S * 1000;

  return interpolate;
};

d3.behavior.zoom = function() {
  var view = {x: 0, y: 0, k: 1},
      translate0, // translate when we started zooming (to avoid drift)
      center0, // implicit desired position of translate0 after zooming
      center, // explicit desired position of translate0 after zooming
      size = [960, 500], // viewport size; required for zoom interpolation
      scaleExtent = d3_behavior_zoomInfinity,
      mousedown = "mousedown.zoom",
      mousemove = "mousemove.zoom",
      mouseup = "mouseup.zoom",
      mousewheelTimer,
      touchstart = "touchstart.zoom",
      touchtime, // time of last touchstart (to detect double-tap)
      event = d3_eventDispatch(zoom, "zoomstart", "zoom", "zoomend"),
      x0,
      x1,
      y0,
      y1;

  function zoom(g) {
    g   .on(mousedown, mousedowned)
        .on(d3_behavior_zoomWheel + ".zoom", mousewheeled)
        .on("dblclick.zoom", dblclicked)
        .on(touchstart, touchstarted);
  }

  zoom.event = function(g) {
    g.each(function() {
      var dispatch = event.of(this, arguments),
          view1 = view;
      if (d3_transitionInheritId) {
        d3.select(this).transition()
            .each("start.zoom", function() {
              view = this.__chart__ || {x: 0, y: 0, k: 1}; // pre-transition state
              zoomstarted(dispatch);
            })
            .tween("zoom:zoom", function() {
              var dx = size[0],
                  dy = size[1],
                  cx = dx / 2,
                  cy = dy / 2,
                  i = d3.interpolateZoom(
                    [(cx - view.x) / view.k, (cy - view.y) / view.k, dx / view.k],
                    [(cx - view1.x) / view1.k, (cy - view1.y) / view1.k, dx / view1.k]
                  );
              return function(t) {
                var l = i(t), k = dx / l[2];
                this.__chart__ = view = {x: cx - l[0] * k, y: cy - l[1] * k, k: k};
                zoomed(dispatch);
              };
            })
            .each("end.zoom", function() {
              zoomended(dispatch);
            });
      } else {
        this.__chart__ = view;
        zoomstarted(dispatch);
        zoomed(dispatch);
        zoomended(dispatch);
      }
    });
  }

  zoom.translate = function(_) {
    if (!arguments.length) return [view.x, view.y];
    view = {x: +_[0], y: +_[1], k: view.k}; // copy-on-write
    rescale();
    return zoom;
  };

  zoom.scale = function(_) {
    if (!arguments.length) return view.k;
    view = {x: view.x, y: view.y, k: +_}; // copy-on-write
    rescale();
    return zoom;
  };

  zoom.scaleExtent = function(_) {
    if (!arguments.length) return scaleExtent;
    scaleExtent = _ == null ? d3_behavior_zoomInfinity : [+_[0], +_[1]];
    return zoom;
  };

  zoom.center = function(_) {
    if (!arguments.length) return center;
    center = _ && [+_[0], +_[1]];
    return zoom;
  };

  zoom.size = function(_) {
    if (!arguments.length) return size;
    size = _ && [+_[0], +_[1]];
    return zoom;
  };

  zoom.x = function(z) {
    if (!arguments.length) return x1;
    x1 = z;
    x0 = z.copy();
    view = {x: 0, y: 0, k: 1}; // copy-on-write
    return zoom;
  };

  zoom.y = function(z) {
    if (!arguments.length) return y1;
    y1 = z;
    y0 = z.copy();
    view = {x: 0, y: 0, k: 1}; // copy-on-write
    return zoom;
  };

  function location(p) {
    return [(p[0] - view.x) / view.k, (p[1] - view.y) / view.k];
  }

  function point(l) {
    return [l[0] * view.k + view.x, l[1] * view.k + view.y];
  }

  function scaleTo(s) {
    view.k = Math.max(scaleExtent[0], Math.min(scaleExtent[1], s));
  }

  function translateTo(p, l) {
    l = point(l);
    view.x += p[0] - l[0];
    view.y += p[1] - l[1];
  }

  function rescale() {
    if (x1) x1.domain(x0.range().map(function(x) { return (x - view.x) / view.k; }).map(x0.invert));
    if (y1) y1.domain(y0.range().map(function(y) { return (y - view.y) / view.k; }).map(y0.invert));
  }

  function zoomstarted(dispatch) {
    dispatch({type: "zoomstart"});
  }

  function zoomed(dispatch) {
    rescale();
    dispatch({type: "zoom", scale: view.k, translate: [view.x, view.y]});
  }

  function zoomended(dispatch) {
    dispatch({type: "zoomend"});
  }

  function mousedowned() {
    var that = this,
        target = d3.event.target,
        dispatch = event.of(that, arguments),
        dragged = 0,
        subject = d3.select(d3_window).on(mousemove, moved).on(mouseup, ended),
        location0 = location(d3.mouse(that)),
        dragRestore = d3_event_dragSuppress();

    d3_selection_interrupt.call(that);
    zoomstarted(dispatch);

    function moved() {
      dragged = 1;
      translateTo(d3.mouse(that), location0);
      zoomed(dispatch);
    }

    function ended() {
      subject.on(mousemove, null).on(mouseup, null);
      dragRestore(dragged && d3.event.target === target);
      zoomended(dispatch);
    }
  }

  // These closures persist for as long as at least one touch is active.
  function touchstarted() {
    var that = this,
        dispatch = event.of(that, arguments),
        locations0 = {}, // touchstart locations
        distance0 = 0, // distance² between initial touches
        scale0, // scale when we started touching
        zoomName = ".zoom-" + d3.event.changedTouches[0].identifier,
        touchmove = "touchmove" + zoomName,
        touchend = "touchend" + zoomName,
        targets = [],
        subject = d3.select(that),
        dragRestore = d3_event_dragSuppress();

    d3_selection_interrupt.call(that);
    started();
    zoomstarted(dispatch);

    // Workaround for Chrome issue 412723: the touchstart listener must be set
    // after the touchmove listener.
    subject.on(mousedown, null).on(touchstart, started); // prevent duplicate events

    // Updates locations of any touches in locations0.
    function relocate() {
      var touches = d3.touches(that);
      scale0 = view.k;
      touches.forEach(function(t) {
        if (t.identifier in locations0) locations0[t.identifier] = location(t);
      });
      return touches;
    }

    // Temporarily override touchstart while gesture is active.
    function started() {

      // Listen for touchmove and touchend on the target of touchstart.
      var target = d3.event.target;
      d3.select(target).on(touchmove, moved).on(touchend, ended);
      targets.push(target);

      // Only track touches started on the same subject element.
      var changed = d3.event.changedTouches;
      for (var i = 0, n = changed.length; i < n; ++i) {
        locations0[changed[i].identifier] = null;
      }

      var touches = relocate(),
          now = Date.now();

      if (touches.length === 1) {
        if (now - touchtime < 500) { // dbltap
          var p = touches[0], l = locations0[p.identifier];
          scaleTo(view.k * 2);
          translateTo(p, l);
          d3_eventPreventDefault();
          zoomed(dispatch);
        }
        touchtime = now;
      } else if (touches.length > 1) {
        var p = touches[0], q = touches[1],
            dx = p[0] - q[0], dy = p[1] - q[1];
        distance0 = dx * dx + dy * dy;
      }
    }

    function moved() {
      var touches = d3.touches(that),
          p0, l0,
          p1, l1;
      for (var i = 0, n = touches.length; i < n; ++i, l1 = null) {
        p1 = touches[i];
        if (l1 = locations0[p1.identifier]) {
          if (l0) break;
          p0 = p1, l0 = l1;
        }
      }

      if (l1) {
        var distance1 = (distance1 = p1[0] - p0[0]) * distance1 + (distance1 = p1[1] - p0[1]) * distance1,
            scale1 = distance0 && Math.sqrt(distance1 / distance0);
        p0 = [(p0[0] + p1[0]) / 2, (p0[1] + p1[1]) / 2];
        l0 = [(l0[0] + l1[0]) / 2, (l0[1] + l1[1]) / 2];
        scaleTo(scale1 * scale0);
      }

      touchtime = null;
      translateTo(p0, l0);
      zoomed(dispatch);
    }

    function ended() {
      // If there are any globally-active touches remaining, remove the ended
      // touches from locations0.
      if (d3.event.touches.length) {
        var changed = d3.event.changedTouches;
        for (var i = 0, n = changed.length; i < n; ++i) {
          delete locations0[changed[i].identifier];
        }
        // If locations0 is not empty, then relocate and continue listening for
        // touchmove and touchend.
        for (var identifier in locations0) {
          return void relocate(); // locations may have detached due to rotation
        }
      }
      // Otherwise, remove touchmove and touchend listeners.
      d3.selectAll(targets).on(zoomName, null);
      subject.on(mousedown, mousedowned).on(touchstart, touchstarted);
      dragRestore();
      zoomended(dispatch);
    }
  }

  function mousewheeled() {
    var dispatch = event.of(this, arguments);
    if (mousewheelTimer) clearTimeout(mousewheelTimer);
    else translate0 = location(center0 = center || d3.mouse(this)), d3_selection_interrupt.call(this), zoomstarted(dispatch);
    mousewheelTimer = setTimeout(function() { mousewheelTimer = null; zoomended(dispatch); }, 50);
    d3_eventPreventDefault();
    scaleTo(Math.pow(2, d3_behavior_zoomDelta() * .002) * view.k);
    translateTo(center0, translate0);
    zoomed(dispatch);
  }

  function dblclicked() {
    var dispatch = event.of(this, arguments),
        p = d3.mouse(this),
        l = location(p),
        k = Math.log(view.k) / Math.LN2;
    zoomstarted(dispatch);
    scaleTo(Math.pow(2, d3.event.shiftKey ? Math.ceil(k) - 1 : Math.floor(k) + 1));
    translateTo(p, l);
    zoomed(dispatch);
    zoomended(dispatch);
  }

  return d3.rebind(zoom, event, "on");
};

var d3_behavior_zoomInfinity = [0, Infinity]; // default scale extent

// https://developer.mozilla.org/en-US/docs/Mozilla_event_reference/wheel
var d3_behavior_zoomDelta, d3_behavior_zoomWheel
    = "onwheel" in d3_document ? (d3_behavior_zoomDelta = function() { return -d3.event.deltaY * (d3.event.deltaMode ? 120 : 1); }, "wheel")
    : "onmousewheel" in d3_document ? (d3_behavior_zoomDelta = function() { return d3.event.wheelDelta; }, "mousewheel")
    : (d3_behavior_zoomDelta = function() { return -d3.event.detail; }, "MozMousePixelScroll");
d3.color = d3_color;

function d3_color() {}

d3_color.prototype.toString = function() {
  return this.rgb() + "";
};

d3.hsl = d3_hsl;

function d3_hsl(h, s, l) {
  return this instanceof d3_hsl ? void (this.h = +h, this.s = +s, this.l = +l)
      : arguments.length < 2 ? (h instanceof d3_hsl ? new d3_hsl(h.h, h.s, h.l)
      : d3_rgb_parse("" + h, d3_rgb_hsl, d3_hsl))
      : new d3_hsl(h, s, l);
}

var d3_hslPrototype = d3_hsl.prototype = new d3_color;

d3_hslPrototype.brighter = function(k) {
  k = Math.pow(0.7, arguments.length ? k : 1);
  return new d3_hsl(this.h, this.s, this.l / k);
};

d3_hslPrototype.darker = function(k) {
  k = Math.pow(0.7, arguments.length ? k : 1);
  return new d3_hsl(this.h, this.s, k * this.l);
};

d3_hslPrototype.rgb = function() {
  return d3_hsl_rgb(this.h, this.s, this.l);
};

function d3_hsl_rgb(h, s, l) {
  var m1,
      m2;

  /* Some simple corrections for h, s and l. */
  h = isNaN(h) ? 0 : (h %= 360) < 0 ? h + 360 : h;
  s = isNaN(s) ? 0 : s < 0 ? 0 : s > 1 ? 1 : s;
  l = l < 0 ? 0 : l > 1 ? 1 : l;

  /* From FvD 13.37, CSS Color Module Level 3 */
  m2 = l <= .5 ? l * (1 + s) : l + s - l * s;
  m1 = 2 * l - m2;

  function v(h) {
    if (h > 360) h -= 360;
    else if (h < 0) h += 360;
    if (h < 60) return m1 + (m2 - m1) * h / 60;
    if (h < 180) return m2;
    if (h < 240) return m1 + (m2 - m1) * (240 - h) / 60;
    return m1;
  }

  function vv(h) {
    return Math.round(v(h) * 255);
  }

  return new d3_rgb(vv(h + 120), vv(h), vv(h - 120));
}

d3.hcl = d3_hcl;

function d3_hcl(h, c, l) {
  return this instanceof d3_hcl ? void (this.h = +h, this.c = +c, this.l = +l)
      : arguments.length < 2 ? (h instanceof d3_hcl ? new d3_hcl(h.h, h.c, h.l)
      : (h instanceof d3_lab ? d3_lab_hcl(h.l, h.a, h.b)
      : d3_lab_hcl((h = d3_rgb_lab((h = d3.rgb(h)).r, h.g, h.b)).l, h.a, h.b)))
      : new d3_hcl(h, c, l);
}

var d3_hclPrototype = d3_hcl.prototype = new d3_color;

d3_hclPrototype.brighter = function(k) {
  return new d3_hcl(this.h, this.c, Math.min(100, this.l + d3_lab_K * (arguments.length ? k : 1)));
};

d3_hclPrototype.darker = function(k) {
  return new d3_hcl(this.h, this.c, Math.max(0, this.l - d3_lab_K * (arguments.length ? k : 1)));
};

d3_hclPrototype.rgb = function() {
  return d3_hcl_lab(this.h, this.c, this.l).rgb();
};

function d3_hcl_lab(h, c, l) {
  if (isNaN(h)) h = 0;
  if (isNaN(c)) c = 0;
  return new d3_lab(l, Math.cos(h *= d3_radians) * c, Math.sin(h) * c);
}

d3.lab = d3_lab;

function d3_lab(l, a, b) {
  return this instanceof d3_lab ? void (this.l = +l, this.a = +a, this.b = +b)
      : arguments.length < 2 ? (l instanceof d3_lab ? new d3_lab(l.l, l.a, l.b)
      : (l instanceof d3_hcl ? d3_hcl_lab(l.l, l.c, l.h)
      : d3_rgb_lab((l = d3_rgb(l)).r, l.g, l.b)))
      : new d3_lab(l, a, b);
}

// Corresponds roughly to RGB brighter/darker
var d3_lab_K = 18;

// D65 standard referent
var d3_lab_X = 0.950470,
    d3_lab_Y = 1,
    d3_lab_Z = 1.088830;

var d3_labPrototype = d3_lab.prototype = new d3_color;

d3_labPrototype.brighter = function(k) {
  return new d3_lab(Math.min(100, this.l + d3_lab_K * (arguments.length ? k : 1)), this.a, this.b);
};

d3_labPrototype.darker = function(k) {
  return new d3_lab(Math.max(0, this.l - d3_lab_K * (arguments.length ? k : 1)), this.a, this.b);
};

d3_labPrototype.rgb = function() {
  return d3_lab_rgb(this.l, this.a, this.b);
};

function d3_lab_rgb(l, a, b) {
  var y = (l + 16) / 116,
      x = y + a / 500,
      z = y - b / 200;
  x = d3_lab_xyz(x) * d3_lab_X;
  y = d3_lab_xyz(y) * d3_lab_Y;
  z = d3_lab_xyz(z) * d3_lab_Z;
  return new d3_rgb(
    d3_xyz_rgb( 3.2404542 * x - 1.5371385 * y - 0.4985314 * z),
    d3_xyz_rgb(-0.9692660 * x + 1.8760108 * y + 0.0415560 * z),
    d3_xyz_rgb( 0.0556434 * x - 0.2040259 * y + 1.0572252 * z)
  );
}

function d3_lab_hcl(l, a, b) {
  return l > 0
      ? new d3_hcl(Math.atan2(b, a) * d3_degrees, Math.sqrt(a * a + b * b), l)
      : new d3_hcl(NaN, NaN, l);
}

function d3_lab_xyz(x) {
  return x > 0.206893034 ? x * x * x : (x - 4 / 29) / 7.787037;
}
function d3_xyz_lab(x) {
  return x > 0.008856 ? Math.pow(x, 1 / 3) : 7.787037 * x + 4 / 29;
}

function d3_xyz_rgb(r) {
  return Math.round(255 * (r <= 0.00304 ? 12.92 * r : 1.055 * Math.pow(r, 1 / 2.4) - 0.055));
}

d3.rgb = d3_rgb;

function d3_rgb(r, g, b) {
  return this instanceof d3_rgb ? void (this.r = ~~r, this.g = ~~g, this.b = ~~b)
      : arguments.length < 2 ? (r instanceof d3_rgb ? new d3_rgb(r.r, r.g, r.b)
      : d3_rgb_parse("" + r, d3_rgb, d3_hsl_rgb))
      : new d3_rgb(r, g, b);
}

function d3_rgbNumber(value) {
  return new d3_rgb(value >> 16, value >> 8 & 0xff, value & 0xff);
}

function d3_rgbString(value) {
  return d3_rgbNumber(value) + "";
}

var d3_rgbPrototype = d3_rgb.prototype = new d3_color;

d3_rgbPrototype.brighter = function(k) {
  k = Math.pow(0.7, arguments.length ? k : 1);
  var r = this.r,
      g = this.g,
      b = this.b,
      i = 30;
  if (!r && !g && !b) return new d3_rgb(i, i, i);
  if (r && r < i) r = i;
  if (g && g < i) g = i;
  if (b && b < i) b = i;
  return new d3_rgb(Math.min(255, r / k), Math.min(255, g / k), Math.min(255, b / k));
};

d3_rgbPrototype.darker = function(k) {
  k = Math.pow(0.7, arguments.length ? k : 1);
  return new d3_rgb(k * this.r, k * this.g, k * this.b);
};

d3_rgbPrototype.hsl = function() {
  return d3_rgb_hsl(this.r, this.g, this.b);
};

d3_rgbPrototype.toString = function() {
  return "#" + d3_rgb_hex(this.r) + d3_rgb_hex(this.g) + d3_rgb_hex(this.b);
};

function d3_rgb_hex(v) {
  return v < 0x10
      ? "0" + Math.max(0, v).toString(16)
      : Math.min(255, v).toString(16);
}

function d3_rgb_parse(format, rgb, hsl) {
  var r = 0, // red channel; int in [0, 255]
      g = 0, // green channel; int in [0, 255]
      b = 0, // blue channel; int in [0, 255]
      m1, // CSS color specification match
      m2, // CSS color specification type (e.g., rgb)
      color;

  /* Handle hsl, rgb. */
  m1 = /([a-z]+)\((.*)\)/i.exec(format);
  if (m1) {
    m2 = m1[2].split(",");
    switch (m1[1]) {
      case "hsl": {
        return hsl(
          parseFloat(m2[0]), // degrees
          parseFloat(m2[1]) / 100, // percentage
          parseFloat(m2[2]) / 100 // percentage
        );
      }
      case "rgb": {
        return rgb(
          d3_rgb_parseNumber(m2[0]),
          d3_rgb_parseNumber(m2[1]),
          d3_rgb_parseNumber(m2[2])
        );
      }
    }
  }

  /* Named colors. */
  if (color = d3_rgb_names.get(format)) return rgb(color.r, color.g, color.b);

  /* Hexadecimal colors: #rgb and #rrggbb. */
  if (format != null && format.charAt(0) === "#" && !isNaN(color = parseInt(format.slice(1), 16))) {
    if (format.length === 4) {
      r = (color & 0xf00) >> 4; r = (r >> 4) | r;
      g = (color & 0xf0); g = (g >> 4) | g;
      b = (color & 0xf); b = (b << 4) | b;
    } else if (format.length === 7) {
      r = (color & 0xff0000) >> 16;
      g = (color & 0xff00) >> 8;
      b = (color & 0xff);
    }
  }

  return rgb(r, g, b);
}

function d3_rgb_hsl(r, g, b) {
  var min = Math.min(r /= 255, g /= 255, b /= 255),
      max = Math.max(r, g, b),
      d = max - min,
      h,
      s,
      l = (max + min) / 2;
  if (d) {
    s = l < .5 ? d / (max + min) : d / (2 - max - min);
    if (r == max) h = (g - b) / d + (g < b ? 6 : 0);
    else if (g == max) h = (b - r) / d + 2;
    else h = (r - g) / d + 4;
    h *= 60;
  } else {
    h = NaN;
    s = l > 0 && l < 1 ? 0 : h;
  }
  return new d3_hsl(h, s, l);
}

function d3_rgb_lab(r, g, b) {
  r = d3_rgb_xyz(r);
  g = d3_rgb_xyz(g);
  b = d3_rgb_xyz(b);
  var x = d3_xyz_lab((0.4124564 * r + 0.3575761 * g + 0.1804375 * b) / d3_lab_X),
      y = d3_xyz_lab((0.2126729 * r + 0.7151522 * g + 0.0721750 * b) / d3_lab_Y),
      z = d3_xyz_lab((0.0193339 * r + 0.1191920 * g + 0.9503041 * b) / d3_lab_Z);
  return d3_lab(116 * y - 16, 500 * (x - y), 200 * (y - z));
}

function d3_rgb_xyz(r) {
  return (r /= 255) <= 0.04045 ? r / 12.92 : Math.pow((r + 0.055) / 1.055, 2.4);
}

function d3_rgb_parseNumber(c) { // either integer or percentage
  var f = parseFloat(c);
  return c.charAt(c.length - 1) === "%" ? Math.round(f * 2.55) : f;
}

var d3_rgb_names = d3.map({
  aliceblue: 0xf0f8ff,
  antiquewhite: 0xfaebd7,
  aqua: 0x00ffff,
  aquamarine: 0x7fffd4,
  azure: 0xf0ffff,
  beige: 0xf5f5dc,
  bisque: 0xffe4c4,
  black: 0x000000,
  blanchedalmond: 0xffebcd,
  blue: 0x0000ff,
  blueviolet: 0x8a2be2,
  brown: 0xa52a2a,
  burlywood: 0xdeb887,
  cadetblue: 0x5f9ea0,
  chartreuse: 0x7fff00,
  chocolate: 0xd2691e,
  coral: 0xff7f50,
  cornflowerblue: 0x6495ed,
  cornsilk: 0xfff8dc,
  crimson: 0xdc143c,
  cyan: 0x00ffff,
  darkblue: 0x00008b,
  darkcyan: 0x008b8b,
  darkgoldenrod: 0xb8860b,
  darkgray: 0xa9a9a9,
  darkgreen: 0x006400,
  darkgrey: 0xa9a9a9,
  darkkhaki: 0xbdb76b,
  darkmagenta: 0x8b008b,
  darkolivegreen: 0x556b2f,
  darkorange: 0xff8c00,
  darkorchid: 0x9932cc,
  darkred: 0x8b0000,
  darksalmon: 0xe9967a,
  darkseagreen: 0x8fbc8f,
  darkslateblue: 0x483d8b,
  darkslategray: 0x2f4f4f,
  darkslategrey: 0x2f4f4f,
  darkturquoise: 0x00ced1,
  darkviolet: 0x9400d3,
  deeppink: 0xff1493,
  deepskyblue: 0x00bfff,
  dimgray: 0x696969,
  dimgrey: 0x696969,
  dodgerblue: 0x1e90ff,
  firebrick: 0xb22222,
  floralwhite: 0xfffaf0,
  forestgreen: 0x228b22,
  fuchsia: 0xff00ff,
  gainsboro: 0xdcdcdc,
  ghostwhite: 0xf8f8ff,
  gold: 0xffd700,
  goldenrod: 0xdaa520,
  gray: 0x808080,
  green: 0x008000,
  greenyellow: 0xadff2f,
  grey: 0x808080,
  honeydew: 0xf0fff0,
  hotpink: 0xff69b4,
  indianred: 0xcd5c5c,
  indigo: 0x4b0082,
  ivory: 0xfffff0,
  khaki: 0xf0e68c,
  lavender: 0xe6e6fa,
  lavenderblush: 0xfff0f5,
  lawngreen: 0x7cfc00,
  lemonchiffon: 0xfffacd,
  lightblue: 0xadd8e6,
  lightcoral: 0xf08080,
  lightcyan: 0xe0ffff,
  lightgoldenrodyellow: 0xfafad2,
  lightgray: 0xd3d3d3,
  lightgreen: 0x90ee90,
  lightgrey: 0xd3d3d3,
  lightpink: 0xffb6c1,
  lightsalmon: 0xffa07a,
  lightseagreen: 0x20b2aa,
  lightskyblue: 0x87cefa,
  lightslategray: 0x778899,
  lightslategrey: 0x778899,
  lightsteelblue: 0xb0c4de,
  lightyellow: 0xffffe0,
  lime: 0x00ff00,
  limegreen: 0x32cd32,
  linen: 0xfaf0e6,
  magenta: 0xff00ff,
  maroon: 0x800000,
  mediumaquamarine: 0x66cdaa,
  mediumblue: 0x0000cd,
  mediumorchid: 0xba55d3,
  mediumpurple: 0x9370db,
  mediumseagreen: 0x3cb371,
  mediumslateblue: 0x7b68ee,
  mediumspringgreen: 0x00fa9a,
  mediumturquoise: 0x48d1cc,
  mediumvioletred: 0xc71585,
  midnightblue: 0x191970,
  mintcream: 0xf5fffa,
  mistyrose: 0xffe4e1,
  moccasin: 0xffe4b5,
  navajowhite: 0xffdead,
  navy: 0x000080,
  oldlace: 0xfdf5e6,
  olive: 0x808000,
  olivedrab: 0x6b8e23,
  orange: 0xffa500,
  orangered: 0xff4500,
  orchid: 0xda70d6,
  palegoldenrod: 0xeee8aa,
  palegreen: 0x98fb98,
  paleturquoise: 0xafeeee,
  palevioletred: 0xdb7093,
  papayawhip: 0xffefd5,
  peachpuff: 0xffdab9,
  peru: 0xcd853f,
  pink: 0xffc0cb,
  plum: 0xdda0dd,
  powderblue: 0xb0e0e6,
  purple: 0x800080,
  red: 0xff0000,
  rosybrown: 0xbc8f8f,
  royalblue: 0x4169e1,
  saddlebrown: 0x8b4513,
  salmon: 0xfa8072,
  sandybrown: 0xf4a460,
  seagreen: 0x2e8b57,
  seashell: 0xfff5ee,
  sienna: 0xa0522d,
  silver: 0xc0c0c0,
  skyblue: 0x87ceeb,
  slateblue: 0x6a5acd,
  slategray: 0x708090,
  slategrey: 0x708090,
  snow: 0xfffafa,
  springgreen: 0x00ff7f,
  steelblue: 0x4682b4,
  tan: 0xd2b48c,
  teal: 0x008080,
  thistle: 0xd8bfd8,
  tomato: 0xff6347,
  turquoise: 0x40e0d0,
  violet: 0xee82ee,
  wheat: 0xf5deb3,
  white: 0xffffff,
  whitesmoke: 0xf5f5f5,
  yellow: 0xffff00,
  yellowgreen: 0x9acd32
});

d3_rgb_names.forEach(function(key, value) {
  d3_rgb_names.set(key, d3_rgbNumber(value));
});
function d3_functor(v) {
  return typeof v === "function" ? v : function() { return v; };
}

d3.functor = d3_functor;
function d3_identity(d) {
  return d;
}

d3.xhr = d3_xhrType(d3_identity);

function d3_xhrType(response) {
  return function(url, mimeType, callback) {
    if (arguments.length === 2 && typeof mimeType === "function") callback = mimeType, mimeType = null;
    return d3_xhr(url, mimeType, response, callback);
  };
}

function d3_xhr(url, mimeType, response, callback) {
  var xhr = {},
      dispatch = d3.dispatch("beforesend", "progress", "load", "error"),
      headers = {},
      request = new XMLHttpRequest,
      responseType = null;

  // If IE does not support CORS, use XDomainRequest.
  if (d3_window.XDomainRequest
      && !("withCredentials" in request)
      && /^(http(s)?:)?\/\//.test(url)) request = new XDomainRequest;

  "onload" in request
      ? request.onload = request.onerror = respond
      : request.onreadystatechange = function() { request.readyState > 3 && respond(); };

  function respond() {
    var status = request.status, result;
    if (!status && d3_xhrHasResponse(request) || status >= 200 && status < 300 || status === 304) {
      try {
        result = response.call(xhr, request);
      } catch (e) {
        dispatch.error.call(xhr, e);
        return;
      }
      dispatch.load.call(xhr, result);
    } else {
      dispatch.error.call(xhr, request);
    }
  }

  request.onprogress = function(event) {
    var o = d3.event;
    d3.event = event;
    try { dispatch.progress.call(xhr, request); }
    finally { d3.event = o; }
  };

  xhr.header = function(name, value) {
    name = (name + "").toLowerCase();
    if (arguments.length < 2) return headers[name];
    if (value == null) delete headers[name];
    else headers[name] = value + "";
    return xhr;
  };

  // If mimeType is non-null and no Accept header is set, a default is used.
  xhr.mimeType = function(value) {
    if (!arguments.length) return mimeType;
    mimeType = value == null ? null : value + "";
    return xhr;
  };

  // Specifies what type the response value should take;
  // for instance, arraybuffer, blob, document, or text.
  xhr.responseType = function(value) {
    if (!arguments.length) return responseType;
    responseType = value;
    return xhr;
  };

  // Specify how to convert the response content to a specific type;
  // changes the callback value on "load" events.
  xhr.response = function(value) {
    response = value;
    return xhr;
  };

  // Convenience methods.
  ["get", "post"].forEach(function(method) {
    xhr[method] = function() {
      return xhr.send.apply(xhr, [method].concat(d3_array(arguments)));
    };
  });

  // If callback is non-null, it will be used for error and load events.
  xhr.send = function(method, data, callback) {
    if (arguments.length === 2 && typeof data === "function") callback = data, data = null;
    request.open(method, url, true);
    if (mimeType != null && !("accept" in headers)) headers["accept"] = mimeType + ",*/*";
    if (request.setRequestHeader) for (var name in headers) request.setRequestHeader(name, headers[name]);
    if (mimeType != null && request.overrideMimeType) request.overrideMimeType(mimeType);
    if (responseType != null) request.responseType = responseType;
    if (callback != null) xhr.on("error", callback).on("load", function(request) { callback(null, request); });
    dispatch.beforesend.call(xhr, request);
    request.send(data == null ? null : data);
    return xhr;
  };

  xhr.abort = function() {
    request.abort();
    return xhr;
  };

  d3.rebind(xhr, dispatch, "on");

  return callback == null ? xhr : xhr.get(d3_xhr_fixCallback(callback));
};

function d3_xhr_fixCallback(callback) {
  return callback.length === 1
      ? function(error, request) { callback(error == null ? request : null); }
      : callback;
}

function d3_xhrHasResponse(request) {
  var type = request.responseType;
  return type && type !== "text"
      ? request.response // null on error
      : request.responseText; // "" on error
}

d3.dsv = function(delimiter, mimeType) {
  var reFormat = new RegExp("[\"" + delimiter + "\n]"),
      delimiterCode = delimiter.charCodeAt(0);

  function dsv(url, row, callback) {
    if (arguments.length < 3) callback = row, row = null;
    var xhr = d3_xhr(url, mimeType, row == null ? response : typedResponse(row), callback);

    xhr.row = function(_) {
      return arguments.length
          ? xhr.response((row = _) == null ? response : typedResponse(_))
          : row;
    };

    return xhr;
  }

  function response(request) {
    return dsv.parse(request.responseText);
  }

  function typedResponse(f) {
    return function(request) {
      return dsv.parse(request.responseText, f);
    };
  }

  dsv.parse = function(text, f) {
    var o;
    return dsv.parseRows(text, function(row, i) {
      if (o) return o(row, i - 1);
      var a = new Function("d", "return {" + row.map(function(name, i) {
        return JSON.stringify(name) + ": d[" + i + "]";
      }).join(",") + "}");
      o = f ? function(row, i) { return f(a(row), i); } : a;
    });
  };

  dsv.parseRows = function(text, f) {
    var EOL = {}, // sentinel value for end-of-line
        EOF = {}, // sentinel value for end-of-file
        rows = [], // output rows
        N = text.length,
        I = 0, // current character index
        n = 0, // the current line number
        t, // the current token
        eol; // is the current token followed by EOL?

    function token() {
      if (I >= N) return EOF; // special case: end of file
      if (eol) return eol = false, EOL; // special case: end of line

      // special case: quotes
      var j = I;
      if (text.charCodeAt(j) === 34) {
        var i = j;
        while (i++ < N) {
          if (text.charCodeAt(i) === 34) {
            if (text.charCodeAt(i + 1) !== 34) break;
            ++i;
          }
        }
        I = i + 2;
        var c = text.charCodeAt(i + 1);
        if (c === 13) {
          eol = true;
          if (text.charCodeAt(i + 2) === 10) ++I;
        } else if (c === 10) {
          eol = true;
        }
        return text.slice(j + 1, i).replace(/""/g, "\"");
      }

      // common case: find next delimiter or newline
      while (I < N) {
        var c = text.charCodeAt(I++), k = 1;
        if (c === 10) eol = true; // \n
        else if (c === 13) { eol = true; if (text.charCodeAt(I) === 10) ++I, ++k; } // \r|\r\n
        else if (c !== delimiterCode) continue;
        return text.slice(j, I - k);
      }

      // special case: last token before EOF
      return text.slice(j);
    }

    while ((t = token()) !== EOF) {
      var a = [];
      while (t !== EOL && t !== EOF) {
        a.push(t);
        t = token();
      }
      if (f && !(a = f(a, n++))) continue;
      rows.push(a);
    }

    return rows;
  };

  dsv.format = function(rows) {
    if (Array.isArray(rows[0])) return dsv.formatRows(rows); // deprecated; use formatRows
    var fieldSet = new d3_Set, fields = [];

    // Compute unique fields in order of discovery.
    rows.forEach(function(row) {
      for (var field in row) {
        if (!fieldSet.has(field)) {
          fields.push(fieldSet.add(field));
        }
      }
    });

    return [fields.map(formatValue).join(delimiter)].concat(rows.map(function(row) {
      return fields.map(function(field) {
        return formatValue(row[field]);
      }).join(delimiter);
    })).join("\n");
  };

  dsv.formatRows = function(rows) {
    return rows.map(formatRow).join("\n");
  };

  function formatRow(row) {
    return row.map(formatValue).join(delimiter);
  }

  function formatValue(text) {
    return reFormat.test(text) ? "\"" + text.replace(/\"/g, "\"\"") + "\"" : text;
  }

  return dsv;
};

d3.csv = d3.dsv(",", "text/csv");

d3.tsv = d3.dsv("\t", "text/tab-separated-values");

var d3_timer_queueHead,
    d3_timer_queueTail,
    d3_timer_interval, // is an interval (or frame) active?
    d3_timer_timeout, // is a timeout active?
    d3_timer_active, // active timer object
    d3_timer_frame = d3_window[d3_vendorSymbol(d3_window, "requestAnimationFrame")] || function(callback) { setTimeout(callback, 17); };

// The timer will continue to fire until callback returns true.
d3.timer = function(callback, delay, then) {
  var n = arguments.length;
  if (n < 2) delay = 0;
  if (n < 3) then = Date.now();

  // Add the callback to the tail of the queue.
  var time = then + delay, timer = {c: callback, t: time, f: false, n: null};
  if (d3_timer_queueTail) d3_timer_queueTail.n = timer;
  else d3_timer_queueHead = timer;
  d3_timer_queueTail = timer;

  // Start animatin'!
  if (!d3_timer_interval) {
    d3_timer_timeout = clearTimeout(d3_timer_timeout);
    d3_timer_interval = 1;
    d3_timer_frame(d3_timer_step);
  }
};

function d3_timer_step() {
  var now = d3_timer_mark(),
      delay = d3_timer_sweep() - now;
  if (delay > 24) {
    if (isFinite(delay)) {
      clearTimeout(d3_timer_timeout);
      d3_timer_timeout = setTimeout(d3_timer_step, delay);
    }
    d3_timer_interval = 0;
  } else {
    d3_timer_interval = 1;
    d3_timer_frame(d3_timer_step);
  }
}

d3.timer.flush = function() {
  d3_timer_mark();
  d3_timer_sweep();
};

function d3_timer_mark() {
  var now = Date.now();
  d3_timer_active = d3_timer_queueHead;
  while (d3_timer_active) {
    if (now >= d3_timer_active.t) d3_timer_active.f = d3_timer_active.c(now - d3_timer_active.t);
    d3_timer_active = d3_timer_active.n;
  }
  return now;
}

// Flush after callbacks to avoid concurrent queue modification.
// Returns the time of the earliest active timer, post-sweep.
function d3_timer_sweep() {
  var t0,
      t1 = d3_timer_queueHead,
      time = Infinity;
  while (t1) {
    if (t1.f) {
      t1 = t0 ? t0.n = t1.n : d3_timer_queueHead = t1.n;
    } else {
      if (t1.t < time) time = t1.t;
      t1 = (t0 = t1).n;
    }
  }
  d3_timer_queueTail = t0;
  return time;
}
function d3_format_precision(x, p) {
  return p - (x ? Math.ceil(Math.log(x) / Math.LN10) : 1);
}
d3.round = function(x, n) {
  return n
      ? Math.round(x * (n = Math.pow(10, n))) / n
      : Math.round(x);
};

var d3_formatPrefixes = ["y","z","a","f","p","n","µ","m","","k","M","G","T","P","E","Z","Y"].map(d3_formatPrefix);

d3.formatPrefix = function(value, precision) {
  var i = 0;
  if (value) {
    if (value < 0) value *= -1;
    if (precision) value = d3.round(value, d3_format_precision(value, precision));
    i = 1 + Math.floor(1e-12 + Math.log(value) / Math.LN10);
    i = Math.max(-24, Math.min(24, Math.floor((i - 1) / 3) * 3));
  }
  return d3_formatPrefixes[8 + i / 3];
};

function d3_formatPrefix(d, i) {
  var k = Math.pow(10, abs(8 - i) * 3);
  return {
    scale: i > 8 ? function(d) { return d / k; } : function(d) { return d * k; },
    symbol: d
  };
}

function d3_locale_numberFormat(locale) {
  var locale_decimal = locale.decimal,
      locale_thousands = locale.thousands,
      locale_grouping = locale.grouping,
      locale_currency = locale.currency,
      formatGroup = locale_grouping ? function(value) {
        var i = value.length,
            t = [],
            j = 0,
            g = locale_grouping[0];
        while (g > 0 && i > 0) {
          t.push(value.substring(i -= g, i + g));
          g = locale_grouping[j = (j + 1) % locale_grouping.length];
        }
        return t.reverse().join(locale_thousands);
      } : d3_identity;

  return function(specifier) {
    var match = d3_format_re.exec(specifier),
        fill = match[1] || " ",
        align = match[2] || ">",
        sign = match[3] || "",
        symbol = match[4] || "",
        zfill = match[5],
        width = +match[6],
        comma = match[7],
        precision = match[8],
        type = match[9],
        scale = 1,
        prefix = "",
        suffix = "",
        integer = false;

    if (precision) precision = +precision.substring(1);

    if (zfill || fill === "0" && align === "=") {
      zfill = fill = "0";
      align = "=";
      if (comma) width -= Math.floor((width - 1) / 4);
    }

    switch (type) {
      case "n": comma = true; type = "g"; break;
      case "%": scale = 100; suffix = "%"; type = "f"; break;
      case "p": scale = 100; suffix = "%"; type = "r"; break;
      case "b":
      case "o":
      case "x":
      case "X": if (symbol === "#") prefix = "0" + type.toLowerCase();
      case "c":
      case "d": integer = true; precision = 0; break;
      case "s": scale = -1; type = "r"; break;
    }

    if (symbol === "$") prefix = locale_currency[0], suffix = locale_currency[1];

    // If no precision is specified for r, fallback to general notation.
    if (type == "r" && !precision) type = "g";

    // Ensure that the requested precision is in the supported range.
    if (precision != null) {
      if (type == "g") precision = Math.max(1, Math.min(21, precision));
      else if (type == "e" || type == "f") precision = Math.max(0, Math.min(20, precision));
    }

    type = d3_format_types.get(type) || d3_format_typeDefault;

    var zcomma = zfill && comma;

    return function(value) {
      var fullSuffix = suffix;

      // Return the empty string for floats formatted as ints.
      if (integer && (value % 1)) return "";

      // Convert negative to positive, and record the sign prefix.
      var negative = value < 0 || value === 0 && 1 / value < 0 ? (value = -value, "-") : sign;

      // Apply the scale, computing it from the value's exponent for si format.
      // Preserve the existing suffix, if any, such as the currency symbol.
      if (scale < 0) {
        var unit = d3.formatPrefix(value, precision);
        value = unit.scale(value);
        fullSuffix = unit.symbol + suffix;
      } else {
        value *= scale;
      }

      // Convert to the desired precision.
      value = type(value, precision);

      // Break the value into the integer part (before) and decimal part (after).
      var i = value.lastIndexOf("."),
          before = i < 0 ? value : value.substring(0, i),
          after = i < 0 ? "" : locale_decimal + value.substring(i + 1);

       // If the fill character is not "0", grouping is applied before padding.
      if (!zfill && comma) before = formatGroup(before);

      var length = prefix.length + before.length + after.length + (zcomma ? 0 : negative.length),
          padding = length < width ? new Array(length = width - length + 1).join(fill) : "";

      // If the fill character is "0", grouping is applied after padding.
      if (zcomma) before = formatGroup(padding + before);

      // Apply prefix.
      negative += prefix;

      // Rejoin integer and decimal parts.
      value = before + after;

      return (align === "<" ? negative + value + padding
            : align === ">" ? padding + negative + value
            : align === "^" ? padding.substring(0, length >>= 1) + negative + value + padding.substring(length)
            : negative + (zcomma ? value : padding + value)) + fullSuffix;
    };
  };
}

// [[fill]align][sign][symbol][0][width][,][.precision][type]
var d3_format_re = /(?:([^{])?([<>=^]))?([+\- ])?([$#])?(0)?(\d+)?(,)?(\.-?\d+)?([a-z%])?/i;

var d3_format_types = d3.map({
  b: function(x) { return x.toString(2); },
  c: function(x) { return String.fromCharCode(x); },
  o: function(x) { return x.toString(8); },
  x: function(x) { return x.toString(16); },
  X: function(x) { return x.toString(16).toUpperCase(); },
  g: function(x, p) { return x.toPrecision(p); },
  e: function(x, p) { return x.toExponential(p); },
  f: function(x, p) { return x.toFixed(p); },
  r: function(x, p) { return (x = d3.round(x, d3_format_precision(x, p))).toFixed(Math.max(0, Math.min(20, d3_format_precision(x * (1 + 1e-15), p)))); }
});

function d3_format_typeDefault(x) {
  return x + "";
}
var d3_time = d3.time = {},
    d3_date = Date;

function d3_date_utc() {
  this._ = new Date(arguments.length > 1
      ? Date.UTC.apply(this, arguments)
      : arguments[0]);
}

d3_date_utc.prototype = {
  getDate: function() { return this._.getUTCDate(); },
  getDay: function() { return this._.getUTCDay(); },
  getFullYear: function() { return this._.getUTCFullYear(); },
  getHours: function() { return this._.getUTCHours(); },
  getMilliseconds: function() { return this._.getUTCMilliseconds(); },
  getMinutes: function() { return this._.getUTCMinutes(); },
  getMonth: function() { return this._.getUTCMonth(); },
  getSeconds: function() { return this._.getUTCSeconds(); },
  getTime: function() { return this._.getTime(); },
  getTimezoneOffset: function() { return 0; },
  valueOf: function() { return this._.valueOf(); },
  setDate: function() { d3_time_prototype.setUTCDate.apply(this._, arguments); },
  setDay: function() { d3_time_prototype.setUTCDay.apply(this._, arguments); },
  setFullYear: function() { d3_time_prototype.setUTCFullYear.apply(this._, arguments); },
  setHours: function() { d3_time_prototype.setUTCHours.apply(this._, arguments); },
  setMilliseconds: function() { d3_time_prototype.setUTCMilliseconds.apply(this._, arguments); },
  setMinutes: function() { d3_time_prototype.setUTCMinutes.apply(this._, arguments); },
  setMonth: function() { d3_time_prototype.setUTCMonth.apply(this._, arguments); },
  setSeconds: function() { d3_time_prototype.setUTCSeconds.apply(this._, arguments); },
  setTime: function() { d3_time_prototype.setTime.apply(this._, arguments); }
};

var d3_time_prototype = Date.prototype;

function d3_time_interval(local, step, number) {

  function round(date) {
    var d0 = local(date), d1 = offset(d0, 1);
    return date - d0 < d1 - date ? d0 : d1;
  }

  function ceil(date) {
    step(date = local(new d3_date(date - 1)), 1);
    return date;
  }

  function offset(date, k) {
    step(date = new d3_date(+date), k);
    return date;
  }

  function range(t0, t1, dt) {
    var time = ceil(t0), times = [];
    if (dt > 1) {
      while (time < t1) {
        if (!(number(time) % dt)) times.push(new Date(+time));
        step(time, 1);
      }
    } else {
      while (time < t1) times.push(new Date(+time)), step(time, 1);
    }
    return times;
  }

  function range_utc(t0, t1, dt) {
    try {
      d3_date = d3_date_utc;
      var utc = new d3_date_utc();
      utc._ = t0;
      return range(utc, t1, dt);
    } finally {
      d3_date = Date;
    }
  }

  local.floor = local;
  local.round = round;
  local.ceil = ceil;
  local.offset = offset;
  local.range = range;

  var utc = local.utc = d3_time_interval_utc(local);
  utc.floor = utc;
  utc.round = d3_time_interval_utc(round);
  utc.ceil = d3_time_interval_utc(ceil);
  utc.offset = d3_time_interval_utc(offset);
  utc.range = range_utc;

  return local;
}

function d3_time_interval_utc(method) {
  return function(date, k) {
    try {
      d3_date = d3_date_utc;
      var utc = new d3_date_utc();
      utc._ = date;
      return method(utc, k)._;
    } finally {
      d3_date = Date;
    }
  };
}

d3_time.year = d3_time_interval(function(date) {
  date = d3_time.day(date);
  date.setMonth(0, 1);
  return date;
}, function(date, offset) {
  date.setFullYear(date.getFullYear() + offset);
}, function(date) {
  return date.getFullYear();
});

d3_time.years = d3_time.year.range;
d3_time.years.utc = d3_time.year.utc.range;

d3_time.day = d3_time_interval(function(date) {
  var day = new d3_date(2000, 0);
  day.setFullYear(date.getFullYear(), date.getMonth(), date.getDate());
  return day;
}, function(date, offset) {
  date.setDate(date.getDate() + offset);
}, function(date) {
  return date.getDate() - 1;
});

d3_time.days = d3_time.day.range;
d3_time.days.utc = d3_time.day.utc.range;

d3_time.dayOfYear = function(date) {
  var year = d3_time.year(date);
  return Math.floor((date - year - (date.getTimezoneOffset() - year.getTimezoneOffset()) * 6e4) / 864e5);
};

["sunday", "monday", "tuesday", "wednesday", "thursday", "friday", "saturday"].forEach(function(day, i) {
  i = 7 - i;

  var interval = d3_time[day] = d3_time_interval(function(date) {
    (date = d3_time.day(date)).setDate(date.getDate() - (date.getDay() + i) % 7);
    return date;
  }, function(date, offset) {
    date.setDate(date.getDate() + Math.floor(offset) * 7);
  }, function(date) {
    var day = d3_time.year(date).getDay();
    return Math.floor((d3_time.dayOfYear(date) + (day + i) % 7) / 7) - (day !== i);
  });

  d3_time[day + "s"] = interval.range;
  d3_time[day + "s"].utc = interval.utc.range;

  d3_time[day + "OfYear"] = function(date) {
    var day = d3_time.year(date).getDay();
    return Math.floor((d3_time.dayOfYear(date) + (day + i) % 7) / 7);
  };
});

d3_time.week = d3_time.sunday;
d3_time.weeks = d3_time.sunday.range;
d3_time.weeks.utc = d3_time.sunday.utc.range;
d3_time.weekOfYear = d3_time.sundayOfYear;

function d3_locale_timeFormat(locale) {
  var locale_dateTime = locale.dateTime,
      locale_date = locale.date,
      locale_time = locale.time,
      locale_periods = locale.periods,
      locale_days = locale.days,
      locale_shortDays = locale.shortDays,
      locale_months = locale.months,
      locale_shortMonths = locale.shortMonths;

  function d3_time_format(template) {
    var n = template.length;

    function format(date) {
      var string = [],
          i = -1,
          j = 0,
          c,
          p,
          f;
      while (++i < n) {
        if (template.charCodeAt(i) === 37) {
          string.push(template.slice(j, i));
          if ((p = d3_time_formatPads[c = template.charAt(++i)]) != null) c = template.charAt(++i);
          if (f = d3_time_formats[c]) c = f(date, p == null ? (c === "e" ? " " : "0") : p);
          string.push(c);
          j = i + 1;
        }
      }
      string.push(template.slice(j, i));
      return string.join("");
    }

    format.parse = function(string) {
      var d = {y: 1900, m: 0, d: 1, H: 0, M: 0, S: 0, L: 0, Z: null},
          i = d3_time_parse(d, template, string, 0);
      if (i != string.length) return null;

      // The am-pm flag is 0 for AM, and 1 for PM.
      if ("p" in d) d.H = d.H % 12 + d.p * 12;

      // If a time zone is specified, it is always relative to UTC;
      // we need to use d3_date_utc if we aren’t already.
      var localZ = d.Z != null && d3_date !== d3_date_utc,
          date = new (localZ ? d3_date_utc : d3_date);

      // Set year, month, date.
      if ("j" in d) date.setFullYear(d.y, 0, d.j);
      else if ("w" in d && ("W" in d || "U" in d)) {
        date.setFullYear(d.y, 0, 1);
        date.setFullYear(d.y, 0, "W" in d
            ? (d.w + 6) % 7 + d.W * 7 - (date.getDay() + 5) % 7
            :  d.w          + d.U * 7 - (date.getDay() + 6) % 7);
      } else date.setFullYear(d.y, d.m, d.d);

      // Set hours, minutes, seconds and milliseconds.
      date.setHours(d.H + (d.Z / 100 | 0), d.M + d.Z % 100, d.S, d.L);

      return localZ ? date._ : date;
    };

    format.toString = function() {
      return template;
    };

    return format;
  }

  function d3_time_parse(date, template, string, j) {
    var c,
        p,
        t,
        i = 0,
        n = template.length,
        m = string.length;
    while (i < n) {
      if (j >= m) return -1;
      c = template.charCodeAt(i++);
      if (c === 37) {
        t = template.charAt(i++);
        p = d3_time_parsers[t in d3_time_formatPads ? template.charAt(i++) : t];
        if (!p || ((j = p(date, string, j)) < 0)) return -1;
      } else if (c != string.charCodeAt(j++)) {
        return -1;
      }
    }
    return j;
  }

  d3_time_format.utc = function(template) {
    var local = d3_time_format(template);

    function format(date) {
      try {
        d3_date = d3_date_utc;
        var utc = new d3_date();
        utc._ = date;
        return local(utc);
      } finally {
        d3_date = Date;
      }
    }

    format.parse = function(string) {
      try {
        d3_date = d3_date_utc;
        var date = local.parse(string);
        return date && date._;
      } finally {
        d3_date = Date;
      }
    };

    format.toString = local.toString;

    return format;
  };

  d3_time_format.multi =
  d3_time_format.utc.multi = d3_time_formatMulti;

  var d3_time_periodLookup = d3.map(),
      d3_time_dayRe = d3_time_formatRe(locale_days),
      d3_time_dayLookup = d3_time_formatLookup(locale_days),
      d3_time_dayAbbrevRe = d3_time_formatRe(locale_shortDays),
      d3_time_dayAbbrevLookup = d3_time_formatLookup(locale_shortDays),
      d3_time_monthRe = d3_time_formatRe(locale_months),
      d3_time_monthLookup = d3_time_formatLookup(locale_months),
      d3_time_monthAbbrevRe = d3_time_formatRe(locale_shortMonths),
      d3_time_monthAbbrevLookup = d3_time_formatLookup(locale_shortMonths);

  locale_periods.forEach(function(p, i) {
    d3_time_periodLookup.set(p.toLowerCase(), i);
  });

  var d3_time_formats = {
    a: function(d) { return locale_shortDays[d.getDay()]; },
    A: function(d) { return locale_days[d.getDay()]; },
    b: function(d) { return locale_shortMonths[d.getMonth()]; },
    B: function(d) { return locale_months[d.getMonth()]; },
    c: d3_time_format(locale_dateTime),
    d: function(d, p) { return d3_time_formatPad(d.getDate(), p, 2); },
    e: function(d, p) { return d3_time_formatPad(d.getDate(), p, 2); },
    H: function(d, p) { return d3_time_formatPad(d.getHours(), p, 2); },
    I: function(d, p) { return d3_time_formatPad(d.getHours() % 12 || 12, p, 2); },
    j: function(d, p) { return d3_time_formatPad(1 + d3_time.dayOfYear(d), p, 3); },
    L: function(d, p) { return d3_time_formatPad(d.getMilliseconds(), p, 3); },
    m: function(d, p) { return d3_time_formatPad(d.getMonth() + 1, p, 2); },
    M: function(d, p) { return d3_time_formatPad(d.getMinutes(), p, 2); },
    p: function(d) { return locale_periods[+(d.getHours() >= 12)]; },
    S: function(d, p) { return d3_time_formatPad(d.getSeconds(), p, 2); },
    U: function(d, p) { return d3_time_formatPad(d3_time.sundayOfYear(d), p, 2); },
    w: function(d) { return d.getDay(); },
    W: function(d, p) { return d3_time_formatPad(d3_time.mondayOfYear(d), p, 2); },
    x: d3_time_format(locale_date),
    X: d3_time_format(locale_time),
    y: function(d, p) { return d3_time_formatPad(d.getFullYear() % 100, p, 2); },
    Y: function(d, p) { return d3_time_formatPad(d.getFullYear() % 10000, p, 4); },
    Z: d3_time_zone,
    "%": function() { return "%"; }
  };

  var d3_time_parsers = {
    a: d3_time_parseWeekdayAbbrev,
    A: d3_time_parseWeekday,
    b: d3_time_parseMonthAbbrev,
    B: d3_time_parseMonth,
    c: d3_time_parseLocaleFull,
    d: d3_time_parseDay,
    e: d3_time_parseDay,
    H: d3_time_parseHour24,
    I: d3_time_parseHour24,
    j: d3_time_parseDayOfYear,
    L: d3_time_parseMilliseconds,
    m: d3_time_parseMonthNumber,
    M: d3_time_parseMinutes,
    p: d3_time_parseAmPm,
    S: d3_time_parseSeconds,
    U: d3_time_parseWeekNumberSunday,
    w: d3_time_parseWeekdayNumber,
    W: d3_time_parseWeekNumberMonday,
    x: d3_time_parseLocaleDate,
    X: d3_time_parseLocaleTime,
    y: d3_time_parseYear,
    Y: d3_time_parseFullYear,
    Z: d3_time_parseZone,
    "%": d3_time_parseLiteralPercent
  };

  function d3_time_parseWeekdayAbbrev(date, string, i) {
    d3_time_dayAbbrevRe.lastIndex = 0;
    var n = d3_time_dayAbbrevRe.exec(string.slice(i));
    return n ? (date.w = d3_time_dayAbbrevLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
  }

  function d3_time_parseWeekday(date, string, i) {
    d3_time_dayRe.lastIndex = 0;
    var n = d3_time_dayRe.exec(string.slice(i));
    return n ? (date.w = d3_time_dayLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
  }

  function d3_time_parseMonthAbbrev(date, string, i) {
    d3_time_monthAbbrevRe.lastIndex = 0;
    var n = d3_time_monthAbbrevRe.exec(string.slice(i));
    return n ? (date.m = d3_time_monthAbbrevLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
  }

  function d3_time_parseMonth(date, string, i) {
    d3_time_monthRe.lastIndex = 0;
    var n = d3_time_monthRe.exec(string.slice(i));
    return n ? (date.m = d3_time_monthLookup.get(n[0].toLowerCase()), i + n[0].length) : -1;
  }

  function d3_time_parseLocaleFull(date, string, i) {
    return d3_time_parse(date, d3_time_formats.c.toString(), string, i);
  }

  function d3_time_parseLocaleDate(date, string, i) {
    return d3_time_parse(date, d3_time_formats.x.toString(), string, i);
  }

  function d3_time_parseLocaleTime(date, string, i) {
    return d3_time_parse(date, d3_time_formats.X.toString(), string, i);
  }

  function d3_time_parseAmPm(date, string, i) {
    var n = d3_time_periodLookup.get(string.slice(i, i += 2).toLowerCase());
    return n == null ? -1 : (date.p = n, i);
  }

  return d3_time_format;
}

var d3_time_formatPads = {"-": "", "_": " ", "0": "0"},
    d3_time_numberRe = /^\s*\d+/, // note: ignores next directive
    d3_time_percentRe = /^%/;

function d3_time_formatPad(value, fill, width) {
  var sign = value < 0 ? "-" : "",
      string = (sign ? -value : value) + "",
      length = string.length;
  return sign + (length < width ? new Array(width - length + 1).join(fill) + string : string);
}

function d3_time_formatRe(names) {
  return new RegExp("^(?:" + names.map(d3.requote).join("|") + ")", "i");
}

function d3_time_formatLookup(names) {
  var map = new d3_Map, i = -1, n = names.length;
  while (++i < n) map.set(names[i].toLowerCase(), i);
  return map;
}

function d3_time_parseWeekdayNumber(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 1));
  return n ? (date.w = +n[0], i + n[0].length) : -1;
}

function d3_time_parseWeekNumberSunday(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i));
  return n ? (date.U = +n[0], i + n[0].length) : -1;
}

function d3_time_parseWeekNumberMonday(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i));
  return n ? (date.W = +n[0], i + n[0].length) : -1;
}

function d3_time_parseFullYear(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 4));
  return n ? (date.y = +n[0], i + n[0].length) : -1;
}

function d3_time_parseYear(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 2));
  return n ? (date.y = d3_time_expandYear(+n[0]), i + n[0].length) : -1;
}

function d3_time_parseZone(date, string, i) {
  return /^[+-]\d{4}$/.test(string = string.slice(i, i + 5))
      ? (date.Z = -string, i + 5) // sign differs from getTimezoneOffset!
      : -1;
}

function d3_time_expandYear(d) {
  return d + (d > 68 ? 1900 : 2000);
}

function d3_time_parseMonthNumber(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 2));
  return n ? (date.m = n[0] - 1, i + n[0].length) : -1;
}

function d3_time_parseDay(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 2));
  return n ? (date.d = +n[0], i + n[0].length) : -1;
}

function d3_time_parseDayOfYear(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 3));
  return n ? (date.j = +n[0], i + n[0].length) : -1;
}

// Note: we don't validate that the hour is in the range [0,23] or [1,12].
function d3_time_parseHour24(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 2));
  return n ? (date.H = +n[0], i + n[0].length) : -1;
}

function d3_time_parseMinutes(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 2));
  return n ? (date.M = +n[0], i + n[0].length) : -1;
}

function d3_time_parseSeconds(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 2));
  return n ? (date.S = +n[0], i + n[0].length) : -1;
}

function d3_time_parseMilliseconds(date, string, i) {
  d3_time_numberRe.lastIndex = 0;
  var n = d3_time_numberRe.exec(string.slice(i, i + 3));
  return n ? (date.L = +n[0], i + n[0].length) : -1;
}

// TODO table of time zone offset names?
function d3_time_zone(d) {
  var z = d.getTimezoneOffset(),
      zs = z > 0 ? "-" : "+",
      zh = abs(z) / 60 | 0,
      zm = abs(z) % 60;
  return zs + d3_time_formatPad(zh, "0", 2) + d3_time_formatPad(zm, "0", 2);
}

function d3_time_parseLiteralPercent(date, string, i) {
  d3_time_percentRe.lastIndex = 0;
  var n = d3_time_percentRe.exec(string.slice(i, i + 1));
  return n ? i + n[0].length : -1;
}

function d3_time_formatMulti(formats) {
  var n = formats.length, i = -1;
  while (++i < n) formats[i][0] = this(formats[i][0]);
  return function(date) {
    var i = 0, f = formats[i];
    while (!f[1](date)) f = formats[++i];
    return f[0](date);
  };
}

d3.locale = function(locale) {
  return {
    numberFormat: d3_locale_numberFormat(locale),
    timeFormat: d3_locale_timeFormat(locale)
  };
};

var d3_locale_enUS = d3.locale({
  decimal: ".",
  thousands: ",",
  grouping: [3],
  currency: ["$", ""],
  dateTime: "%a %b %e %X %Y",
  date: "%m/%d/%Y",
  time: "%H:%M:%S",
  periods: ["AM", "PM"],
  days: ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"],
  shortDays: ["Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat"],
  months: ["January", "February", "March", "April", "May", "June", "July", "August", "September", "October", "November", "December"],
  shortMonths: ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
});

d3.format = d3_locale_enUS.numberFormat;
d3.geo = {};
// Adds floating point numbers with twice the normal precision.
// Reference: J. R. Shewchuk, Adaptive Precision Floating-Point Arithmetic and
// Fast Robust Geometric Predicates, Discrete & Computational Geometry 18(3)
// 305–363 (1997).
// Code adapted from GeographicLib by Charles F. F. Karney,
// http://geographiclib.sourceforge.net/
// See lib/geographiclib/LICENSE for details.

function d3_adder() {}

d3_adder.prototype = {
  s: 0, // rounded value
  t: 0, // exact error
  add: function(y) {
    d3_adderSum(y, this.t, d3_adderTemp);
    d3_adderSum(d3_adderTemp.s, this.s, this);
    if (this.s) this.t += d3_adderTemp.t;
    else this.s = d3_adderTemp.t;
  },
  reset: function() {
    this.s = this.t = 0;
  },
  valueOf: function() {
    return this.s;
  }
};

var d3_adderTemp = new d3_adder;

function d3_adderSum(a, b, o) {
  var x = o.s = a + b, // a + b
      bv = x - a, av = x - bv; // b_virtual & a_virtual
  o.t = (a - av) + (b - bv); // a_roundoff + b_roundoff
}

d3.geo.stream = function(object, listener) {
  if (object && d3_geo_streamObjectType.hasOwnProperty(object.type)) {
    d3_geo_streamObjectType[object.type](object, listener);
  } else {
    d3_geo_streamGeometry(object, listener);
  }
};

function d3_geo_streamGeometry(geometry, listener) {
  if (geometry && d3_geo_streamGeometryType.hasOwnProperty(geometry.type)) {
    d3_geo_streamGeometryType[geometry.type](geometry, listener);
  }
}

var d3_geo_streamObjectType = {
  Feature: function(feature, listener) {
    d3_geo_streamGeometry(feature.geometry, listener);
  },
  FeatureCollection: function(object, listener) {
    var features = object.features, i = -1, n = features.length;
    while (++i < n) d3_geo_streamGeometry(features[i].geometry, listener);
  }
};

var d3_geo_streamGeometryType = {
  Sphere: function(object, listener) {
    listener.sphere();
  },
  Point: function(object, listener) {
    object = object.coordinates;
    listener.point(object[0], object[1], object[2]);
  },
  MultiPoint: function(object, listener) {
    var coordinates = object.coordinates, i = -1, n = coordinates.length;
    while (++i < n) object = coordinates[i], listener.point(object[0], object[1], object[2]);
  },
  LineString: function(object, listener) {
    d3_geo_streamLine(object.coordinates, listener, 0);
  },
  MultiLineString: function(object, listener) {
    var coordinates = object.coordinates, i = -1, n = coordinates.length;
    while (++i < n) d3_geo_streamLine(coordinates[i], listener, 0);
  },
  Polygon: function(object, listener) {
    d3_geo_streamPolygon(object.coordinates, listener);
  },
  MultiPolygon: function(object, listener) {
    var coordinates = object.coordinates, i = -1, n = coordinates.length;
    while (++i < n) d3_geo_streamPolygon(coordinates[i], listener);
  },
  GeometryCollection: function(object, listener) {
    var geometries = object.geometries, i = -1, n = geometries.length;
    while (++i < n) d3_geo_streamGeometry(geometries[i], listener);
  }
};

function d3_geo_streamLine(coordinates, listener, closed) {
  var i = -1, n = coordinates.length - closed, coordinate;
  listener.lineStart();
  while (++i < n) coordinate = coordinates[i], listener.point(coordinate[0], coordinate[1], coordinate[2]);
  listener.lineEnd();
}

function d3_geo_streamPolygon(coordinates, listener) {
  var i = -1, n = coordinates.length;
  listener.polygonStart();
  while (++i < n) d3_geo_streamLine(coordinates[i], listener, 1);
  listener.polygonEnd();
}

d3.geo.area = function(object) {
  d3_geo_areaSum = 0;
  d3.geo.stream(object, d3_geo_area);
  return d3_geo_areaSum;
};

var d3_geo_areaSum,
    d3_geo_areaRingSum = new d3_adder;

var d3_geo_area = {
  sphere: function() { d3_geo_areaSum += 4 * π; },
  point: d3_noop,
  lineStart: d3_noop,
  lineEnd: d3_noop,

  // Only count area for polygon rings.
  polygonStart: function() {
    d3_geo_areaRingSum.reset();
    d3_geo_area.lineStart = d3_geo_areaRingStart;
  },
  polygonEnd: function() {
    var area = 2 * d3_geo_areaRingSum;
    d3_geo_areaSum += area < 0 ? 4 * π + area : area;
    d3_geo_area.lineStart = d3_geo_area.lineEnd = d3_geo_area.point = d3_noop;
  }
};

function d3_geo_areaRingStart() {
  var λ00, φ00, λ0, cosφ0, sinφ0; // start point and previous point

  // For the first point, …
  d3_geo_area.point = function(λ, φ) {
    d3_geo_area.point = nextPoint;
    λ0 = (λ00 = λ) * d3_radians, cosφ0 = Math.cos(φ = (φ00 = φ) * d3_radians / 2 + π / 4), sinφ0 = Math.sin(φ);
  };

  // For subsequent points, …
  function nextPoint(λ, φ) {
    λ *= d3_radians;
    φ = φ * d3_radians / 2 + π / 4; // half the angular distance from south pole

    // Spherical excess E for a spherical triangle with vertices: south pole,
    // previous point, current point.  Uses a formula derived from Cagnoli’s
    // theorem.  See Todhunter, Spherical Trig. (1871), Sec. 103, Eq. (2).
    var dλ = λ - λ0,
        sdλ = dλ >= 0 ? 1 : -1,
        adλ = sdλ * dλ,
        cosφ = Math.cos(φ),
        sinφ = Math.sin(φ),
        k = sinφ0 * sinφ,
        u = cosφ0 * cosφ + k * Math.cos(adλ),
        v = k * sdλ * Math.sin(adλ);
    d3_geo_areaRingSum.add(Math.atan2(v, u));

    // Advance the previous points.
    λ0 = λ, cosφ0 = cosφ, sinφ0 = sinφ;
  }

  // For the last point, return to the start.
  d3_geo_area.lineEnd = function() {
    nextPoint(λ00, φ00);
  };
}
// TODO
// cross and scale return new vectors,
// whereas add and normalize operate in-place

function d3_geo_cartesian(spherical) {
  var λ = spherical[0],
      φ = spherical[1],
      cosφ = Math.cos(φ);
  return [
    cosφ * Math.cos(λ),
    cosφ * Math.sin(λ),
    Math.sin(φ)
  ];
}

function d3_geo_cartesianDot(a, b) {
  return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}

function d3_geo_cartesianCross(a, b) {
  return [
    a[1] * b[2] - a[2] * b[1],
    a[2] * b[0] - a[0] * b[2],
    a[0] * b[1] - a[1] * b[0]
  ];
}

function d3_geo_cartesianAdd(a, b) {
  a[0] += b[0];
  a[1] += b[1];
  a[2] += b[2];
}

function d3_geo_cartesianScale(vector, k) {
  return [
    vector[0] * k,
    vector[1] * k,
    vector[2] * k
  ];
}

function d3_geo_cartesianNormalize(d) {
  var l = Math.sqrt(d[0] * d[0] + d[1] * d[1] + d[2] * d[2]);
  d[0] /= l;
  d[1] /= l;
  d[2] /= l;
}

function d3_geo_spherical(cartesian) {
  return [
    Math.atan2(cartesian[1], cartesian[0]),
    d3_asin(cartesian[2])
  ];
}

function d3_geo_sphericalEqual(a, b) {
  return abs(a[0] - b[0]) < ε && abs(a[1] - b[1]) < ε;
}

d3.geo.bounds = (function() {
  var λ0, φ0, λ1, φ1, // bounds
      λ_, // previous λ-coordinate
      λ__, φ__, // first point
      p0, // previous 3D point
      dλSum,
      ranges,
      range;

  var bound = {
    point: point,
    lineStart: lineStart,
    lineEnd: lineEnd,

    polygonStart: function() {
      bound.point = ringPoint;
      bound.lineStart = ringStart;
      bound.lineEnd = ringEnd;
      dλSum = 0;
      d3_geo_area.polygonStart();
    },
    polygonEnd: function() {
      d3_geo_area.polygonEnd();
      bound.point = point;
      bound.lineStart = lineStart;
      bound.lineEnd = lineEnd;
      if (d3_geo_areaRingSum < 0) λ0 = -(λ1 = 180), φ0 = -(φ1 = 90);
      else if (dλSum > ε) φ1 = 90;
      else if (dλSum < -ε) φ0 = -90;
      range[0] = λ0, range[1] = λ1;
    }
  };

  function point(λ, φ) {
    ranges.push(range = [λ0 = λ, λ1 = λ]);
    if (φ < φ0) φ0 = φ;
    if (φ > φ1) φ1 = φ;
  }

  function linePoint(λ, φ) {
    var p = d3_geo_cartesian([λ * d3_radians, φ * d3_radians]);
    if (p0) {
      var normal = d3_geo_cartesianCross(p0, p),
          equatorial = [normal[1], -normal[0], 0],
          inflection = d3_geo_cartesianCross(equatorial, normal);
      d3_geo_cartesianNormalize(inflection);
      inflection = d3_geo_spherical(inflection);
      var dλ = λ - λ_,
          s = dλ > 0 ? 1 : -1,
          λi = inflection[0] * d3_degrees * s,
          antimeridian = abs(dλ) > 180;
      if (antimeridian ^ (s * λ_ < λi && λi < s * λ)) {
        var φi = inflection[1] * d3_degrees;
        if (φi > φ1) φ1 = φi;
      } else if (λi = (λi + 360) % 360 - 180, antimeridian ^ (s * λ_ < λi && λi < s * λ)) {
        var φi = -inflection[1] * d3_degrees;
        if (φi < φ0) φ0 = φi;
      } else {
        if (φ < φ0) φ0 = φ;
        if (φ > φ1) φ1 = φ;
      }
      if (antimeridian) {
        if (λ < λ_) {
          if (angle(λ0, λ) > angle(λ0, λ1)) λ1 = λ;
        } else {
          if (angle(λ, λ1) > angle(λ0, λ1)) λ0 = λ;
        }
      } else {
        if (λ1 >= λ0) {
          if (λ < λ0) λ0 = λ;
          if (λ > λ1) λ1 = λ;
        } else {
          if (λ > λ_) {
            if (angle(λ0, λ) > angle(λ0, λ1)) λ1 = λ;
          } else {
            if (angle(λ, λ1) > angle(λ0, λ1)) λ0 = λ;
          }
        }
      }
    } else {
      point(λ, φ);
    }
    p0 = p, λ_ = λ;
  }

  function lineStart() { bound.point = linePoint; }
  function lineEnd() {
    range[0] = λ0, range[1] = λ1;
    bound.point = point;
    p0 = null;
  }

  function ringPoint(λ, φ) {
    if (p0) {
      var dλ = λ - λ_;
      dλSum += abs(dλ) > 180 ? dλ + (dλ > 0 ? 360 : -360) : dλ;
    } else λ__ = λ, φ__ = φ;
    d3_geo_area.point(λ, φ);
    linePoint(λ, φ);
  }

  function ringStart() {
    d3_geo_area.lineStart();
  }

  function ringEnd() {
    ringPoint(λ__, φ__);
    d3_geo_area.lineEnd();
    if (abs(dλSum) > ε) λ0 = -(λ1 = 180);
    range[0] = λ0, range[1] = λ1;
    p0 = null;
  }

  // Finds the left-right distance between two longitudes.
  // This is almost the same as (λ1 - λ0 + 360°) % 360°, except that we want
  // the distance between ±180° to be 360°.
  function angle(λ0, λ1) { return (λ1 -= λ0) < 0 ? λ1 + 360 : λ1; }

  function compareRanges(a, b) { return a[0] - b[0]; }

  function withinRange(x, range) {
    return range[0] <= range[1] ? range[0] <= x && x <= range[1] : x < range[0] || range[1] < x;
  }

  return function(feature) {
    φ1 = λ1 = -(λ0 = φ0 = Infinity);
    ranges = [];

    d3.geo.stream(feature, bound);

    var n = ranges.length;
    if (n) {
      // First, sort ranges by their minimum longitudes.
      ranges.sort(compareRanges);

      // Then, merge any ranges that overlap.
      for (var i = 1, a = ranges[0], b, merged = [a]; i < n; ++i) {
        b = ranges[i];
        if (withinRange(b[0], a) || withinRange(b[1], a)) {
          if (angle(a[0], b[1]) > angle(a[0], a[1])) a[1] = b[1];
          if (angle(b[0], a[1]) > angle(a[0], a[1])) a[0] = b[0];
        } else {
          merged.push(a = b);
        }
      }

      // Finally, find the largest gap between the merged ranges.
      // The final bounding box will be the inverse of this gap.
      var best = -Infinity, dλ;
      for (var n = merged.length - 1, i = 0, a = merged[n], b; i <= n; a = b, ++i) {
        b = merged[i];
        if ((dλ = angle(a[1], b[0])) > best) best = dλ, λ0 = b[0], λ1 = a[1];
      }
    }
    ranges = range = null;

    return λ0 === Infinity || φ0 === Infinity
        ? [[NaN, NaN], [NaN, NaN]]
        : [[λ0, φ0], [λ1, φ1]];
  };
})();

d3.geo.centroid = function(object) {
  d3_geo_centroidW0 = d3_geo_centroidW1 =
  d3_geo_centroidX0 = d3_geo_centroidY0 = d3_geo_centroidZ0 =
  d3_geo_centroidX1 = d3_geo_centroidY1 = d3_geo_centroidZ1 =
  d3_geo_centroidX2 = d3_geo_centroidY2 = d3_geo_centroidZ2 = 0;
  d3.geo.stream(object, d3_geo_centroid);

  var x = d3_geo_centroidX2,
      y = d3_geo_centroidY2,
      z = d3_geo_centroidZ2,
      m = x * x + y * y + z * z;

  // If the area-weighted centroid is undefined, fall back to length-weighted centroid.
  if (m < ε2) {
    x = d3_geo_centroidX1, y = d3_geo_centroidY1, z = d3_geo_centroidZ1;
    // If the feature has zero length, fall back to arithmetic mean of point vectors.
    if (d3_geo_centroidW1 < ε) x = d3_geo_centroidX0, y = d3_geo_centroidY0, z = d3_geo_centroidZ0;
    m = x * x + y * y + z * z;
    // If the feature still has an undefined centroid, then return.
    if (m < ε2) return [NaN, NaN];
  }

  return [Math.atan2(y, x) * d3_degrees, d3_asin(z / Math.sqrt(m)) * d3_degrees];
};

var d3_geo_centroidW0,
    d3_geo_centroidW1,
    d3_geo_centroidX0,
    d3_geo_centroidY0,
    d3_geo_centroidZ0,
    d3_geo_centroidX1,
    d3_geo_centroidY1,
    d3_geo_centroidZ1,
    d3_geo_centroidX2,
    d3_geo_centroidY2,
    d3_geo_centroidZ2;

var d3_geo_centroid = {
  sphere: d3_noop,
  point: d3_geo_centroidPoint,
  lineStart: d3_geo_centroidLineStart,
  lineEnd: d3_geo_centroidLineEnd,
  polygonStart: function() {
    d3_geo_centroid.lineStart = d3_geo_centroidRingStart;
  },
  polygonEnd: function() {
    d3_geo_centroid.lineStart = d3_geo_centroidLineStart;
  }
};

// Arithmetic mean of Cartesian vectors.
function d3_geo_centroidPoint(λ, φ) {
  λ *= d3_radians;
  var cosφ = Math.cos(φ *= d3_radians);
  d3_geo_centroidPointXYZ(cosφ * Math.cos(λ), cosφ * Math.sin(λ), Math.sin(φ));
}

function d3_geo_centroidPointXYZ(x, y, z) {
  ++d3_geo_centroidW0;
  d3_geo_centroidX0 += (x - d3_geo_centroidX0) / d3_geo_centroidW0;
  d3_geo_centroidY0 += (y - d3_geo_centroidY0) / d3_geo_centroidW0;
  d3_geo_centroidZ0 += (z - d3_geo_centroidZ0) / d3_geo_centroidW0;
}

function d3_geo_centroidLineStart() {
  var x0, y0, z0; // previous point

  d3_geo_centroid.point = function(λ, φ) {
    λ *= d3_radians;
    var cosφ = Math.cos(φ *= d3_radians);
    x0 = cosφ * Math.cos(λ);
    y0 = cosφ * Math.sin(λ);
    z0 = Math.sin(φ);
    d3_geo_centroid.point = nextPoint;
    d3_geo_centroidPointXYZ(x0, y0, z0);
  };

  function nextPoint(λ, φ) {
    λ *= d3_radians;
    var cosφ = Math.cos(φ *= d3_radians),
        x = cosφ * Math.cos(λ),
        y = cosφ * Math.sin(λ),
        z = Math.sin(φ),
        w = Math.atan2(
          Math.sqrt((w = y0 * z - z0 * y) * w + (w = z0 * x - x0 * z) * w + (w = x0 * y - y0 * x) * w),
          x0 * x + y0 * y + z0 * z);
    d3_geo_centroidW1 += w;
    d3_geo_centroidX1 += w * (x0 + (x0 = x));
    d3_geo_centroidY1 += w * (y0 + (y0 = y));
    d3_geo_centroidZ1 += w * (z0 + (z0 = z));
    d3_geo_centroidPointXYZ(x0, y0, z0);
  }
}

function d3_geo_centroidLineEnd() {
  d3_geo_centroid.point = d3_geo_centroidPoint;
}

// See J. E. Brock, The Inertia Tensor for a Spherical Triangle,
// J. Applied Mechanics 42, 239 (1975).
function d3_geo_centroidRingStart() {
  var λ00, φ00, // first point
      x0, y0, z0; // previous point

  d3_geo_centroid.point = function(λ, φ) {
    λ00 = λ, φ00 = φ;
    d3_geo_centroid.point = nextPoint;
    λ *= d3_radians;
    var cosφ = Math.cos(φ *= d3_radians);
    x0 = cosφ * Math.cos(λ);
    y0 = cosφ * Math.sin(λ);
    z0 = Math.sin(φ);
    d3_geo_centroidPointXYZ(x0, y0, z0);
  };

  d3_geo_centroid.lineEnd = function() {
    nextPoint(λ00, φ00);
    d3_geo_centroid.lineEnd = d3_geo_centroidLineEnd;
    d3_geo_centroid.point = d3_geo_centroidPoint;
  };

  function nextPoint(λ, φ) {
    λ *= d3_radians;
    var cosφ = Math.cos(φ *= d3_radians),
        x = cosφ * Math.cos(λ),
        y = cosφ * Math.sin(λ),
        z = Math.sin(φ),
        cx = y0 * z - z0 * y,
        cy = z0 * x - x0 * z,
        cz = x0 * y - y0 * x,
        m = Math.sqrt(cx * cx + cy * cy + cz * cz),
        u = x0 * x + y0 * y + z0 * z,
        v = m && -d3_acos(u) / m, // area weight
        w = Math.atan2(m, u); // line weight
    d3_geo_centroidX2 += v * cx;
    d3_geo_centroidY2 += v * cy;
    d3_geo_centroidZ2 += v * cz;
    d3_geo_centroidW1 += w;
    d3_geo_centroidX1 += w * (x0 + (x0 = x));
    d3_geo_centroidY1 += w * (y0 + (y0 = y));
    d3_geo_centroidZ1 += w * (z0 + (z0 = z));
    d3_geo_centroidPointXYZ(x0, y0, z0);
  }
}
function d3_true() {
  return true;
}

// General spherical polygon clipping algorithm: takes a polygon, cuts it into
// visible line segments and rejoins the segments by interpolating along the
// clip edge.
function d3_geo_clipPolygon(segments, compare, clipStartInside, interpolate, listener) {
  var subject = [],
      clip = [];

  segments.forEach(function(segment) {
    if ((n = segment.length - 1) <= 0) return;
    var n, p0 = segment[0], p1 = segment[n];

    // If the first and last points of a segment are coincident, then treat as
    // a closed ring.
    // TODO if all rings are closed, then the winding order of the exterior
    // ring should be checked.
    if (d3_geo_sphericalEqual(p0, p1)) {
      listener.lineStart();
      for (var i = 0; i < n; ++i) listener.point((p0 = segment[i])[0], p0[1]);
      listener.lineEnd();
      return;
    }

    var a = new d3_geo_clipPolygonIntersection(p0, segment, null, true),
        b = new d3_geo_clipPolygonIntersection(p0, null, a, false);
    a.o = b;
    subject.push(a);
    clip.push(b);
    a = new d3_geo_clipPolygonIntersection(p1, segment, null, false);
    b = new d3_geo_clipPolygonIntersection(p1, null, a, true);
    a.o = b;
    subject.push(a);
    clip.push(b);
  });
  clip.sort(compare);
  d3_geo_clipPolygonLinkCircular(subject);
  d3_geo_clipPolygonLinkCircular(clip);
  if (!subject.length) return;

  for (var i = 0, entry = clipStartInside, n = clip.length; i < n; ++i) {
    clip[i].e = entry = !entry;
  }

  var start = subject[0],
      points,
      point;
  while (1) {
    // Find first unvisited intersection.
    var current = start,
        isSubject = true;
    while (current.v) if ((current = current.n) === start) return;
    points = current.z;
    listener.lineStart();
    do {
      current.v = current.o.v = true;
      if (current.e) {
        if (isSubject) {
          for (var i = 0, n = points.length; i < n; ++i) listener.point((point = points[i])[0], point[1]);
        } else {
          interpolate(current.x, current.n.x, 1, listener);
        }
        current = current.n;
      } else {
        if (isSubject) {
          points = current.p.z;
          for (var i = points.length - 1; i >= 0; --i) listener.point((point = points[i])[0], point[1]);
        } else {
          interpolate(current.x, current.p.x, -1, listener);
        }
        current = current.p;
      }
      current = current.o;
      points = current.z;
      isSubject = !isSubject;
    } while (!current.v);
    listener.lineEnd();
  }
}

function d3_geo_clipPolygonLinkCircular(array) {
  if (!(n = array.length)) return;
  var n,
      i = 0,
      a = array[0],
      b;
  while (++i < n) {
    a.n = b = array[i];
    b.p = a;
    a = b;
  }
  a.n = b = array[0];
  b.p = a;
}

function d3_geo_clipPolygonIntersection(point, points, other, entry) {
  this.x = point;
  this.z = points;
  this.o = other; // another intersection
  this.e = entry; // is an entry?
  this.v = false; // visited
  this.n = this.p = null; // next & previous
}

function d3_geo_clip(pointVisible, clipLine, interpolate, clipStart) {
  return function(rotate, listener) {
    var line = clipLine(listener),
        rotatedClipStart = rotate.invert(clipStart[0], clipStart[1]);

    var clip = {
      point: point,
      lineStart: lineStart,
      lineEnd: lineEnd,
      polygonStart: function() {
        clip.point = pointRing;
        clip.lineStart = ringStart;
        clip.lineEnd = ringEnd;
        segments = [];
        polygon = [];
      },
      polygonEnd: function() {
        clip.point = point;
        clip.lineStart = lineStart;
        clip.lineEnd = lineEnd;

        segments = d3.merge(segments);
        var clipStartInside = d3_geo_pointInPolygon(rotatedClipStart, polygon);
        if (segments.length) {
          if (!polygonStarted) listener.polygonStart(), polygonStarted = true;
          d3_geo_clipPolygon(segments, d3_geo_clipSort, clipStartInside, interpolate, listener);
        } else if (clipStartInside) {
          if (!polygonStarted) listener.polygonStart(), polygonStarted = true;
          listener.lineStart();
          interpolate(null, null, 1, listener);
          listener.lineEnd();
        }
        if (polygonStarted) listener.polygonEnd(), polygonStarted = false;
        segments = polygon = null;
      },
      sphere: function() {
        listener.polygonStart();
        listener.lineStart();
        interpolate(null, null, 1, listener);
        listener.lineEnd();
        listener.polygonEnd();
      }
    };

    function point(λ, φ) {
      var point = rotate(λ, φ);
      if (pointVisible(λ = point[0], φ = point[1])) listener.point(λ, φ);
    }
    function pointLine(λ, φ) {
      var point = rotate(λ, φ);
      line.point(point[0], point[1]);
    }
    function lineStart() { clip.point = pointLine; line.lineStart(); }
    function lineEnd() { clip.point = point; line.lineEnd(); }

    var segments;

    var buffer = d3_geo_clipBufferListener(),
        ringListener = clipLine(buffer),
        polygonStarted = false,
        polygon,
        ring;

    function pointRing(λ, φ) {
      ring.push([λ, φ]);
      var point = rotate(λ, φ);
      ringListener.point(point[0], point[1]);
    }

    function ringStart() {
      ringListener.lineStart();
      ring = [];
    }

    function ringEnd() {
      pointRing(ring[0][0], ring[0][1]);
      ringListener.lineEnd();

      var clean = ringListener.clean(),
          ringSegments = buffer.buffer(),
          segment,
          n = ringSegments.length;

      ring.pop();
      polygon.push(ring);
      ring = null;

      if (!n) return;

      // No intersections.
      if (clean & 1) {
        segment = ringSegments[0];
        var n = segment.length - 1,
            i = -1,
            point;
        if (n > 0) {
          if (!polygonStarted) listener.polygonStart(), polygonStarted = true;
          listener.lineStart();
          while (++i < n) listener.point((point = segment[i])[0], point[1]);
          listener.lineEnd();
        }
        return;
      }

      // Rejoin connected segments.
      // TODO reuse bufferListener.rejoin()?
      if (n > 1 && clean & 2) ringSegments.push(ringSegments.pop().concat(ringSegments.shift()));

      segments.push(ringSegments.filter(d3_geo_clipSegmentLength1));
    }

    return clip;
  };
}

function d3_geo_clipSegmentLength1(segment) {
  return segment.length > 1;
}

function d3_geo_clipBufferListener() {
  var lines = [],
      line;
  return {
    lineStart: function() { lines.push(line = []); },
    point: function(λ, φ) { line.push([λ, φ]); },
    lineEnd: d3_noop,
    buffer: function() {
      var buffer = lines;
      lines = [];
      line = null;
      return buffer;
    },
    rejoin: function() {
      if (lines.length > 1) lines.push(lines.pop().concat(lines.shift()));
    }
  };
}

// Intersection points are sorted along the clip edge. For both antimeridian
// cutting and circle clipping, the same comparison is used.
function d3_geo_clipSort(a, b) {
  return ((a = a.x)[0] < 0 ? a[1] - halfπ - ε : halfπ - a[1])
       - ((b = b.x)[0] < 0 ? b[1] - halfπ - ε : halfπ - b[1]);
}

var d3_geo_clipAntimeridian = d3_geo_clip(
    d3_true,
    d3_geo_clipAntimeridianLine,
    d3_geo_clipAntimeridianInterpolate,
    [-π, -π / 2]);

// Takes a line and cuts into visible segments. Return values:
//   0: there were intersections or the line was empty.
//   1: no intersections.
//   2: there were intersections, and the first and last segments should be
//      rejoined.
function d3_geo_clipAntimeridianLine(listener) {
  var λ0 = NaN,
      φ0 = NaN,
      sλ0 = NaN,
      clean; // no intersections

  return {
    lineStart: function() {
      listener.lineStart();
      clean = 1;
    },
    point: function(λ1, φ1) {
      var sλ1 = λ1 > 0 ? π : -π,
          dλ = abs(λ1 - λ0);
      if (abs(dλ - π) < ε) { // line crosses a pole
        listener.point(λ0, φ0 = (φ0 + φ1) / 2 > 0 ? halfπ : -halfπ);
        listener.point(sλ0, φ0);
        listener.lineEnd();
        listener.lineStart();
        listener.point(sλ1, φ0);
        listener.point(λ1, φ0);
        clean = 0;
      } else if (sλ0 !== sλ1 && dλ >= π) { // line crosses antimeridian
        // handle degeneracies
        if (abs(λ0 - sλ0) < ε) λ0 -= sλ0 * ε;
        if (abs(λ1 - sλ1) < ε) λ1 -= sλ1 * ε;
        φ0 = d3_geo_clipAntimeridianIntersect(λ0, φ0, λ1, φ1);
        listener.point(sλ0, φ0);
        listener.lineEnd();
        listener.lineStart();
        listener.point(sλ1, φ0);
        clean = 0;
      }
      listener.point(λ0 = λ1, φ0 = φ1);
      sλ0 = sλ1;
    },
    lineEnd: function() {
      listener.lineEnd();
      λ0 = φ0 = NaN;
    },
    // if there are intersections, we always rejoin the first and last segments.
    clean: function() { return 2 - clean; }
  };
}

function d3_geo_clipAntimeridianIntersect(λ0, φ0, λ1, φ1) {
  var cosφ0,
      cosφ1,
      sinλ0_λ1 = Math.sin(λ0 - λ1);
  return abs(sinλ0_λ1) > ε
      ? Math.atan((Math.sin(φ0) * (cosφ1 = Math.cos(φ1)) * Math.sin(λ1)
                 - Math.sin(φ1) * (cosφ0 = Math.cos(φ0)) * Math.sin(λ0))
                 / (cosφ0 * cosφ1 * sinλ0_λ1))
      : (φ0 + φ1) / 2;
}

function d3_geo_clipAntimeridianInterpolate(from, to, direction, listener) {
  var φ;
  if (from == null) {
    φ = direction * halfπ;
    listener.point(-π,  φ);
    listener.point( 0,  φ);
    listener.point( π,  φ);
    listener.point( π,  0);
    listener.point( π, -φ);
    listener.point( 0, -φ);
    listener.point(-π, -φ);
    listener.point(-π,  0);
    listener.point(-π,  φ);
  } else if (abs(from[0] - to[0]) > ε) {
    var s = from[0] < to[0] ? π : -π;
    φ = direction * s / 2;
    listener.point(-s, φ);
    listener.point( 0, φ);
    listener.point( s, φ);
  } else {
    listener.point(to[0], to[1]);
  }
}

function d3_geo_pointInPolygon(point, polygon) {
  var meridian = point[0],
      parallel = point[1],
      meridianNormal = [Math.sin(meridian), -Math.cos(meridian), 0],
      polarAngle = 0,
      winding = 0;
  d3_geo_areaRingSum.reset();

  for (var i = 0, n = polygon.length; i < n; ++i) {
    var ring = polygon[i],
        m = ring.length;
    if (!m) continue;
    var point0 = ring[0],
        λ0 = point0[0],
        φ0 = point0[1] / 2 + π / 4,
        sinφ0 = Math.sin(φ0),
        cosφ0 = Math.cos(φ0),
        j = 1;

    while (true) {
      if (j === m) j = 0;
      point = ring[j];
      var λ = point[0],
          φ = point[1] / 2 + π / 4,
          sinφ = Math.sin(φ),
          cosφ = Math.cos(φ),
          dλ = λ - λ0,
          sdλ = dλ >= 0 ? 1 : -1,
          adλ = sdλ * dλ,
          antimeridian = adλ > π,
          k = sinφ0 * sinφ;
      d3_geo_areaRingSum.add(Math.atan2(k * sdλ * Math.sin(adλ), cosφ0 * cosφ + k * Math.cos(adλ)));

      polarAngle += antimeridian ? dλ + sdλ * τ : dλ;

      // Are the longitudes either side of the point's meridian, and are the
      // latitudes smaller than the parallel?
      if (antimeridian ^ λ0 >= meridian ^ λ >= meridian) {
        var arc = d3_geo_cartesianCross(d3_geo_cartesian(point0), d3_geo_cartesian(point));
        d3_geo_cartesianNormalize(arc);
        var intersection = d3_geo_cartesianCross(meridianNormal, arc);
        d3_geo_cartesianNormalize(intersection);
        var φarc = (antimeridian ^ dλ >= 0 ? -1 : 1) * d3_asin(intersection[2]);
        if (parallel > φarc || parallel === φarc && (arc[0] || arc[1])) {
          winding += antimeridian ^ dλ >= 0 ? 1 : -1;
        }
      }
      if (!j++) break;
      λ0 = λ, sinφ0 = sinφ, cosφ0 = cosφ, point0 = point;
    }
  }

  // First, determine whether the South pole is inside or outside:
  //
  // It is inside if:
  // * the polygon winds around it in a clockwise direction.
  // * the polygon does not (cumulatively) wind around it, but has a negative
  //   (counter-clockwise) area.
  //
  // Second, count the (signed) number of times a segment crosses a meridian
  // from the point to the South pole.  If it is zero, then the point is the
  // same side as the South pole.

  return (polarAngle < -ε || polarAngle < ε && d3_geo_areaRingSum < 0) ^ (winding & 1);
}

// Clip features against a small circle centered at [0°, 0°].
function d3_geo_clipCircle(radius) {
  var cr = Math.cos(radius),
      smallRadius = cr > 0,
      notHemisphere = abs(cr) > ε, // TODO optimise for this common case
      interpolate = d3_geo_circleInterpolate(radius, 6 * d3_radians);

  return d3_geo_clip(visible, clipLine, interpolate, smallRadius ? [0, -radius] : [-π, radius - π]);

  function visible(λ, φ) {
    return Math.cos(λ) * Math.cos(φ) > cr;
  }

  // Takes a line and cuts into visible segments. Return values used for
  // polygon clipping:
  //   0: there were intersections or the line was empty.
  //   1: no intersections.
  //   2: there were intersections, and the first and last segments should be
  //      rejoined.
  function clipLine(listener) {
    var point0, // previous point
        c0, // code for previous point
        v0, // visibility of previous point
        v00, // visibility of first point
        clean; // no intersections
    return {
      lineStart: function() {
        v00 = v0 = false;
        clean = 1;
      },
      point: function(λ, φ) {
        var point1 = [λ, φ],
            point2,
            v = visible(λ, φ),
            c = smallRadius
              ? v ? 0 : code(λ, φ)
              : v ? code(λ + (λ < 0 ? π : -π), φ) : 0;
        if (!point0 && (v00 = v0 = v)) listener.lineStart();
        // Handle degeneracies.
        // TODO ignore if not clipping polygons.
        if (v !== v0) {
          point2 = intersect(point0, point1);
          if (d3_geo_sphericalEqual(point0, point2) || d3_geo_sphericalEqual(point1, point2)) {
            point1[0] += ε;
            point1[1] += ε;
            v = visible(point1[0], point1[1]);
          }
        }
        if (v !== v0) {
          clean = 0;
          if (v) {
            // outside going in
            listener.lineStart();
            point2 = intersect(point1, point0);
            listener.point(point2[0], point2[1]);
          } else {
            // inside going out
            point2 = intersect(point0, point1);
            listener.point(point2[0], point2[1]);
            listener.lineEnd();
          }
          point0 = point2;
        } else if (notHemisphere && point0 && smallRadius ^ v) {
          var t;
          // If the codes for two points are different, or are both zero,
          // and there this segment intersects with the small circle.
          if (!(c & c0) && (t = intersect(point1, point0, true))) {
            clean = 0;
            if (smallRadius) {
              listener.lineStart();
              listener.point(t[0][0], t[0][1]);
              listener.point(t[1][0], t[1][1]);
              listener.lineEnd();
            } else {
              listener.point(t[1][0], t[1][1]);
              listener.lineEnd();
              listener.lineStart();
              listener.point(t[0][0], t[0][1]);
            }
          }
        }
        if (v && (!point0 || !d3_geo_sphericalEqual(point0, point1))) {
          listener.point(point1[0], point1[1]);
        }
        point0 = point1, v0 = v, c0 = c;
      },
      lineEnd: function() {
        if (v0) listener.lineEnd();
        point0 = null;
      },
      // Rejoin first and last segments if there were intersections and the first
      // and last points were visible.
      clean: function() { return clean | ((v00 && v0) << 1); }
    };
  }

  // Intersects the great circle between a and b with the clip circle.
  function intersect(a, b, two) {
    var pa = d3_geo_cartesian(a),
        pb = d3_geo_cartesian(b);

    // We have two planes, n1.p = d1 and n2.p = d2.
    // Find intersection line p(t) = c1 n1 + c2 n2 + t (n1 ⨯ n2).
    var n1 = [1, 0, 0], // normal
        n2 = d3_geo_cartesianCross(pa, pb),
        n2n2 = d3_geo_cartesianDot(n2, n2),
        n1n2 = n2[0], // d3_geo_cartesianDot(n1, n2),
        determinant = n2n2 - n1n2 * n1n2;

    // Two polar points.
    if (!determinant) return !two && a;

    var c1 =  cr * n2n2 / determinant,
        c2 = -cr * n1n2 / determinant,
        n1xn2 = d3_geo_cartesianCross(n1, n2),
        A = d3_geo_cartesianScale(n1, c1),
        B = d3_geo_cartesianScale(n2, c2);
    d3_geo_cartesianAdd(A, B);

    // Solve |p(t)|^2 = 1.
    var u = n1xn2,
        w = d3_geo_cartesianDot(A, u),
        uu = d3_geo_cartesianDot(u, u),
        t2 = w * w - uu * (d3_geo_cartesianDot(A, A) - 1);

    if (t2 < 0) return;

    var t = Math.sqrt(t2),
        q = d3_geo_cartesianScale(u, (-w - t) / uu);
    d3_geo_cartesianAdd(q, A);
    q = d3_geo_spherical(q);
    if (!two) return q;

    // Two intersection points.
    var λ0 = a[0],
        λ1 = b[0],
        φ0 = a[1],
        φ1 = b[1],
        z;
    if (λ1 < λ0) z = λ0, λ0 = λ1, λ1 = z;
    var δλ = λ1 - λ0,
        polar = abs(δλ - π) < ε,
        meridian = polar || δλ < ε;

    if (!polar && φ1 < φ0) z = φ0, φ0 = φ1, φ1 = z;

    // Check that the first point is between a and b.
    if (meridian
        ? polar
          ? φ0 + φ1 > 0 ^ q[1] < (abs(q[0] - λ0) < ε ? φ0 : φ1)
          : φ0 <= q[1] && q[1] <= φ1
        : δλ > π ^ (λ0 <= q[0] && q[0] <= λ1)) {
      var q1 = d3_geo_cartesianScale(u, (-w + t) / uu);
      d3_geo_cartesianAdd(q1, A);
      return [q, d3_geo_spherical(q1)];
    }
  }

  // Generates a 4-bit vector representing the location of a point relative to
  // the small circle's bounding box.
  function code(λ, φ) {
    var r = smallRadius ? radius : π - radius,
        code = 0;
    if (λ < -r) code |= 1; // left
    else if (λ > r) code |= 2; // right
    if (φ < -r) code |= 4; // below
    else if (φ > r) code |= 8; // above
    return code;
  }
}

// Liang–Barsky line clipping.
function d3_geom_clipLine(x0, y0, x1, y1) {
  return function(line) {
    var a = line.a,
        b = line.b,
        ax = a.x,
        ay = a.y,
        bx = b.x,
        by = b.y,
        t0 = 0,
        t1 = 1,
        dx = bx - ax,
        dy = by - ay,
        r;

    r = x0 - ax;
    if (!dx && r > 0) return;
    r /= dx;
    if (dx < 0) {
      if (r < t0) return;
      if (r < t1) t1 = r;
    } else if (dx > 0) {
      if (r > t1) return;
      if (r > t0) t0 = r;
    }

    r = x1 - ax;
    if (!dx && r < 0) return;
    r /= dx;
    if (dx < 0) {
      if (r > t1) return;
      if (r > t0) t0 = r;
    } else if (dx > 0) {
      if (r < t0) return;
      if (r < t1) t1 = r;
    }

    r = y0 - ay;
    if (!dy && r > 0) return;
    r /= dy;
    if (dy < 0) {
      if (r < t0) return;
      if (r < t1) t1 = r;
    } else if (dy > 0) {
      if (r > t1) return;
      if (r > t0) t0 = r;
    }

    r = y1 - ay;
    if (!dy && r < 0) return;
    r /= dy;
    if (dy < 0) {
      if (r > t1) return;
      if (r > t0) t0 = r;
    } else if (dy > 0) {
      if (r < t0) return;
      if (r < t1) t1 = r;
    }

    if (t0 > 0) line.a = {x: ax + t0 * dx, y: ay + t0 * dy};
    if (t1 < 1) line.b = {x: ax + t1 * dx, y: ay + t1 * dy};
    return line;
  };
}

var d3_geo_clipExtentMAX = 1e9;

d3.geo.clipExtent = function() {
  var x0, y0, x1, y1,
      stream,
      clip,
      clipExtent = {
        stream: function(output) {
          if (stream) stream.valid = false;
          stream = clip(output);
          stream.valid = true; // allow caching by d3.geo.path
          return stream;
        },
        extent: function(_) {
          if (!arguments.length) return [[x0, y0], [x1, y1]];
          clip = d3_geo_clipExtent(x0 = +_[0][0], y0 = +_[0][1], x1 = +_[1][0], y1 = +_[1][1]);
          if (stream) stream.valid = false, stream = null;
          return clipExtent;
        }
      };
  return clipExtent.extent([[0, 0], [960, 500]]);
};

function d3_geo_clipExtent(x0, y0, x1, y1) {
  return function(listener) {
    var listener_ = listener,
        bufferListener = d3_geo_clipBufferListener(),
        clipLine = d3_geom_clipLine(x0, y0, x1, y1),
        segments,
        polygon,
        ring;

    var clip = {
      point: point,
      lineStart: lineStart,
      lineEnd: lineEnd,
      polygonStart: function() {
        listener = bufferListener;
        segments = [];
        polygon = [];
        clean = true;
      },
      polygonEnd: function() {
        listener = listener_;
        segments = d3.merge(segments);
        var clipStartInside = insidePolygon([x0, y1]),
            inside = clean && clipStartInside,
            visible = segments.length;
        if (inside || visible) {
          listener.polygonStart();
          if (inside) {
            listener.lineStart();
            interpolate(null, null, 1, listener);
            listener.lineEnd();
          }
          if (visible) {
            d3_geo_clipPolygon(segments, compare, clipStartInside, interpolate, listener);
          }
          listener.polygonEnd();
        }
        segments = polygon = ring = null;
      }
    };

    function insidePolygon(p) {
      var wn = 0, // the winding number counter
          n = polygon.length,
          y = p[1];

      for (var i = 0; i < n; ++i) {
        for (var j = 1, v = polygon[i], m = v.length, a = v[0], b; j < m; ++j) {
          b = v[j];
          if (a[1] <= y) {
            if (b[1] >  y && d3_cross2d(a, b, p) > 0) ++wn;
          } else {
            if (b[1] <= y && d3_cross2d(a, b, p) < 0) --wn;
          }
          a = b;
        }
      }
      return wn !== 0;
    }

    function interpolate(from, to, direction, listener) {
      var a = 0, a1 = 0;
      if (from == null ||
          (a = corner(from, direction)) !== (a1 = corner(to, direction)) ||
          comparePoints(from, to) < 0 ^ direction > 0) {
        do {
          listener.point(a === 0 || a === 3 ? x0 : x1, a > 1 ? y1 : y0);
        } while ((a = (a + direction + 4) % 4) !== a1);
      } else {
        listener.point(to[0], to[1]);
      }
    }

    function pointVisible(x, y) {
      return x0 <= x && x <= x1 && y0 <= y && y <= y1;
    }

    function point(x, y) {
      if (pointVisible(x, y)) listener.point(x, y);
    }

    var x__, y__, v__, // first point
        x_, y_, v_, // previous point
        first,
        clean;

    function lineStart() {
      clip.point = linePoint;
      if (polygon) polygon.push(ring = []);
      first = true;
      v_ = false;
      x_ = y_ = NaN;
    }

    function lineEnd() {
      // TODO rather than special-case polygons, simply handle them separately.
      // Ideally, coincident intersection points should be jittered to avoid
      // clipping issues.
      if (segments) {
        linePoint(x__, y__);
        if (v__ && v_) bufferListener.rejoin();
        segments.push(bufferListener.buffer());
      }
      clip.point = point;
      if (v_) listener.lineEnd();
    }

    function linePoint(x, y) {
      x = Math.max(-d3_geo_clipExtentMAX, Math.min(d3_geo_clipExtentMAX, x));
      y = Math.max(-d3_geo_clipExtentMAX, Math.min(d3_geo_clipExtentMAX, y));
      var v = pointVisible(x, y);
      if (polygon) ring.push([x, y]);
      if (first) {
        x__ = x, y__ = y, v__ = v;
        first = false;
        if (v) {
          listener.lineStart();
          listener.point(x, y);
        }
      } else {
        if (v && v_) listener.point(x, y);
        else {
          var l = {a: {x: x_, y: y_}, b: {x: x, y: y}};
          if (clipLine(l)) {
            if (!v_) {
              listener.lineStart();
              listener.point(l.a.x, l.a.y);
            }
            listener.point(l.b.x, l.b.y);
            if (!v) listener.lineEnd();
            clean = false;
          } else if (v) {
            listener.lineStart();
            listener.point(x, y);
            clean = false;
          }
        }
      }
      x_ = x, y_ = y, v_ = v;
    }

    return clip;
  };

  function corner(p, direction) {
    return abs(p[0] - x0) < ε ? direction > 0 ? 0 : 3
        : abs(p[0] - x1) < ε ? direction > 0 ? 2 : 1
        : abs(p[1] - y0) < ε ? direction > 0 ? 1 : 0
        : direction > 0 ? 3 : 2; // abs(p[1] - y1) < ε
  }

  function compare(a, b) {
    return comparePoints(a.x, b.x);
  }

  function comparePoints(a, b) {
    var ca = corner(a, 1),
        cb = corner(b, 1);
    return ca !== cb ? ca - cb
        : ca === 0 ? b[1] - a[1]
        : ca === 1 ? a[0] - b[0]
        : ca === 2 ? a[1] - b[1]
        : b[0] - a[0];
  }
}
function d3_geo_compose(a, b) {

  function compose(x, y) {
    return x = a(x, y), b(x[0], x[1]);
  }

  if (a.invert && b.invert) compose.invert = function(x, y) {
    return x = b.invert(x, y), x && a.invert(x[0], x[1]);
  };

  return compose;
}

function d3_geo_conic(projectAt) {
  var φ0 = 0,
      φ1 = π / 3,
      m = d3_geo_projectionMutator(projectAt),
      p = m(φ0, φ1);

  p.parallels = function(_) {
    if (!arguments.length) return [φ0 / π * 180, φ1 / π * 180];
    return m(φ0 = _[0] * π / 180, φ1 = _[1] * π / 180);
  };

  return p;
}

function d3_geo_conicEqualArea(φ0, φ1) {
  var sinφ0 = Math.sin(φ0),
      n = (sinφ0 + Math.sin(φ1)) / 2,
      C = 1 + sinφ0 * (2 * n - sinφ0),
      ρ0 = Math.sqrt(C) / n;

  function forward(λ, φ) {
    var ρ = Math.sqrt(C - 2 * n * Math.sin(φ)) / n;
    return [
      ρ * Math.sin(λ *= n),
      ρ0 - ρ * Math.cos(λ)
    ];
  }

  forward.invert = function(x, y) {
    var ρ0_y = ρ0 - y;
    return [
      Math.atan2(x, ρ0_y) / n,
      d3_asin((C - (x * x + ρ0_y * ρ0_y) * n * n) / (2 * n))
    ];
  };

  return forward;
}

(d3.geo.conicEqualArea = function() {
  return d3_geo_conic(d3_geo_conicEqualArea);
}).raw = d3_geo_conicEqualArea;

// ESRI:102003
d3.geo.albers = function() {
  return d3.geo.conicEqualArea()
      .rotate([96, 0])
      .center([-.6, 38.7])
      .parallels([29.5, 45.5])
      .scale(1070);
};

// A composite projection for the United States, configured by default for
// 960×500. Also works quite well at 960×600 with scale 1285. The set of
// standard parallels for each region comes from USGS, which is published here:
// http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html#albers
d3.geo.albersUsa = function() {
  var lower48 = d3.geo.albers();

  // EPSG:3338
  var alaska = d3.geo.conicEqualArea()
      .rotate([154, 0])
      .center([-2, 58.5])
      .parallels([55, 65]);

  // ESRI:102007
  var hawaii = d3.geo.conicEqualArea()
      .rotate([157, 0])
      .center([-3, 19.9])
      .parallels([8, 18]);

  var point,
      pointStream = {point: function(x, y) { point = [x, y]; }},
      lower48Point,
      alaskaPoint,
      hawaiiPoint;

  function albersUsa(coordinates) {
    var x = coordinates[0], y = coordinates[1];
    point = null;
    (lower48Point(x, y), point)
        || (alaskaPoint(x, y), point)
        || hawaiiPoint(x, y);
    return point;
  }

  albersUsa.invert = function(coordinates) {
    var k = lower48.scale(),
        t = lower48.translate(),
        x = (coordinates[0] - t[0]) / k,
        y = (coordinates[1] - t[1]) / k;
    return (y >= .120 && y < .234 && x >= -.425 && x < -.214 ? alaska
        : y >= .166 && y < .234 && x >= -.214 && x < -.115 ? hawaii
        : lower48).invert(coordinates);
  };

  // A naïve multi-projection stream.
  // The projections must have mutually exclusive clip regions on the sphere,
  // as this will avoid emitting interleaving lines and polygons.
  albersUsa.stream = function(stream) {
    var lower48Stream = lower48.stream(stream),
        alaskaStream = alaska.stream(stream),
        hawaiiStream = hawaii.stream(stream);
    return {
      point: function(x, y) {
        lower48Stream.point(x, y);
        alaskaStream.point(x, y);
        hawaiiStream.point(x, y);
      },
      sphere: function() {
        lower48Stream.sphere();
        alaskaStream.sphere();
        hawaiiStream.sphere();
      },
      lineStart: function() {
        lower48Stream.lineStart();
        alaskaStream.lineStart();
        hawaiiStream.lineStart();
      },
      lineEnd: function() {
        lower48Stream.lineEnd();
        alaskaStream.lineEnd();
        hawaiiStream.lineEnd();
      },
      polygonStart: function() {
        lower48Stream.polygonStart();
        alaskaStream.polygonStart();
        hawaiiStream.polygonStart();
      },
      polygonEnd: function() {
        lower48Stream.polygonEnd();
        alaskaStream.polygonEnd();
        hawaiiStream.polygonEnd();
      }
    };
  };

  albersUsa.precision = function(_) {
    if (!arguments.length) return lower48.precision();
    lower48.precision(_);
    alaska.precision(_);
    hawaii.precision(_);
    return albersUsa;
  };

  albersUsa.scale = function(_) {
    if (!arguments.length) return lower48.scale();
    lower48.scale(_);
    alaska.scale(_ * .35);
    hawaii.scale(_);
    return albersUsa.translate(lower48.translate());
  };

  albersUsa.translate = function(_) {
    if (!arguments.length) return lower48.translate();
    var k = lower48.scale(), x = +_[0], y = +_[1];

    lower48Point = lower48
        .translate(_)
        .clipExtent([[x - .455 * k, y - .238 * k], [x + .455 * k, y + .238 * k]])
        .stream(pointStream).point;

    alaskaPoint = alaska
        .translate([x - .307 * k, y + .201 * k])
        .clipExtent([[x - .425 * k + ε, y + .120 * k + ε], [x - .214 * k - ε, y + .234 * k - ε]])
        .stream(pointStream).point;

    hawaiiPoint = hawaii
        .translate([x - .205 * k, y + .212 * k])
        .clipExtent([[x - .214 * k + ε, y + .166 * k + ε], [x - .115 * k - ε, y + .234 * k - ε]])
        .stream(pointStream).point;

    return albersUsa;
  };

  return albersUsa.scale(1070);
};

// TODO Unify this code with d3.geom.polygon area?

var d3_geo_pathAreaSum, d3_geo_pathAreaPolygon, d3_geo_pathArea = {
  point: d3_noop,
  lineStart: d3_noop,
  lineEnd: d3_noop,

  // Only count area for polygon rings.
  polygonStart: function() {
    d3_geo_pathAreaPolygon = 0;
    d3_geo_pathArea.lineStart = d3_geo_pathAreaRingStart;
  },
  polygonEnd: function() {
    d3_geo_pathArea.lineStart = d3_geo_pathArea.lineEnd = d3_geo_pathArea.point = d3_noop;
    d3_geo_pathAreaSum += abs(d3_geo_pathAreaPolygon / 2);
  }
};

function d3_geo_pathAreaRingStart() {
  var x00, y00, x0, y0;

  // For the first point, …
  d3_geo_pathArea.point = function(x, y) {
    d3_geo_pathArea.point = nextPoint;
    x00 = x0 = x, y00 = y0 = y;
  };

  // For subsequent points, …
  function nextPoint(x, y) {
    d3_geo_pathAreaPolygon += y0 * x - x0 * y;
    x0 = x, y0 = y;
  }

  // For the last point, return to the start.
  d3_geo_pathArea.lineEnd = function() {
    nextPoint(x00, y00);
  };
}

var d3_geo_pathBoundsX0,
    d3_geo_pathBoundsY0,
    d3_geo_pathBoundsX1,
    d3_geo_pathBoundsY1;

var d3_geo_pathBounds = {
  point: d3_geo_pathBoundsPoint,
  lineStart: d3_noop,
  lineEnd: d3_noop,
  polygonStart: d3_noop,
  polygonEnd: d3_noop
};

function d3_geo_pathBoundsPoint(x, y) {
  if (x < d3_geo_pathBoundsX0) d3_geo_pathBoundsX0 = x;
  if (x > d3_geo_pathBoundsX1) d3_geo_pathBoundsX1 = x;
  if (y < d3_geo_pathBoundsY0) d3_geo_pathBoundsY0 = y;
  if (y > d3_geo_pathBoundsY1) d3_geo_pathBoundsY1 = y;
}
function d3_geo_pathBuffer() {
  var pointCircle = d3_geo_pathBufferCircle(4.5),
      buffer = [];

  var stream = {
    point: point,

    // While inside a line, override point to moveTo then lineTo.
    lineStart: function() { stream.point = pointLineStart; },
    lineEnd: lineEnd,

    // While inside a polygon, override lineEnd to closePath.
    polygonStart: function() { stream.lineEnd = lineEndPolygon; },
    polygonEnd: function() { stream.lineEnd = lineEnd; stream.point = point; },

    pointRadius: function(_) {
      pointCircle = d3_geo_pathBufferCircle(_);
      return stream;
    },

    result: function() {
      if (buffer.length) {
        var result = buffer.join("");
        buffer = [];
        return result;
      }
    }
  };

  function point(x, y) {
    buffer.push("M", x, ",", y, pointCircle);
  }

  function pointLineStart(x, y) {
    buffer.push("M", x, ",", y);
    stream.point = pointLine;
  }

  function pointLine(x, y) {
    buffer.push("L", x, ",", y);
  }

  function lineEnd() {
    stream.point = point;
  }

  function lineEndPolygon() {
    buffer.push("Z");
  }

  return stream;
}

function d3_geo_pathBufferCircle(radius) {
  return "m0," + radius
      + "a" + radius + "," + radius + " 0 1,1 0," + -2 * radius
      + "a" + radius + "," + radius + " 0 1,1 0," + 2 * radius
      + "z";
}

// TODO Unify this code with d3.geom.polygon centroid?
// TODO Enforce positive area for exterior, negative area for interior?

var d3_geo_pathCentroid = {
  point: d3_geo_pathCentroidPoint,

  // For lines, weight by length.
  lineStart: d3_geo_pathCentroidLineStart,
  lineEnd: d3_geo_pathCentroidLineEnd,

  // For polygons, weight by area.
  polygonStart: function() {
    d3_geo_pathCentroid.lineStart = d3_geo_pathCentroidRingStart;
  },
  polygonEnd: function() {
    d3_geo_pathCentroid.point = d3_geo_pathCentroidPoint;
    d3_geo_pathCentroid.lineStart = d3_geo_pathCentroidLineStart;
    d3_geo_pathCentroid.lineEnd = d3_geo_pathCentroidLineEnd;
  }
};

function d3_geo_pathCentroidPoint(x, y) {
  d3_geo_centroidX0 += x;
  d3_geo_centroidY0 += y;
  ++d3_geo_centroidZ0;
}

function d3_geo_pathCentroidLineStart() {
  var x0, y0;

  d3_geo_pathCentroid.point = function(x, y) {
    d3_geo_pathCentroid.point = nextPoint;
    d3_geo_pathCentroidPoint(x0 = x, y0 = y);
  };

  function nextPoint(x, y) {
    var dx = x - x0, dy = y - y0, z = Math.sqrt(dx * dx + dy * dy);
    d3_geo_centroidX1 += z * (x0 + x) / 2;
    d3_geo_centroidY1 += z * (y0 + y) / 2;
    d3_geo_centroidZ1 += z;
    d3_geo_pathCentroidPoint(x0 = x, y0 = y);
  }
}

function d3_geo_pathCentroidLineEnd() {
  d3_geo_pathCentroid.point = d3_geo_pathCentroidPoint;
}

function d3_geo_pathCentroidRingStart() {
  var x00, y00, x0, y0;

  // For the first point, …
  d3_geo_pathCentroid.point = function(x, y) {
    d3_geo_pathCentroid.point = nextPoint;
    d3_geo_pathCentroidPoint(x00 = x0 = x, y00 = y0 = y);
  };

  // For subsequent points, …
  function nextPoint(x, y) {
    var dx = x - x0, dy = y - y0, z = Math.sqrt(dx * dx + dy * dy);
    d3_geo_centroidX1 += z * (x0 + x) / 2;
    d3_geo_centroidY1 += z * (y0 + y) / 2;
    d3_geo_centroidZ1 += z;

    z = y0 * x - x0 * y;
    d3_geo_centroidX2 += z * (x0 + x);
    d3_geo_centroidY2 += z * (y0 + y);
    d3_geo_centroidZ2 += z * 3;
    d3_geo_pathCentroidPoint(x0 = x, y0 = y);
  }

  // For the last point, return to the start.
  d3_geo_pathCentroid.lineEnd = function() {
    nextPoint(x00, y00);
  };
}

function d3_geo_pathContext(context) {
  var pointRadius = 4.5;

  var stream = {
    point: point,

    // While inside a line, override point to moveTo then lineTo.
    lineStart: function() { stream.point = pointLineStart; },
    lineEnd: lineEnd,

    // While inside a polygon, override lineEnd to closePath.
    polygonStart: function() { stream.lineEnd = lineEndPolygon; },
    polygonEnd: function() { stream.lineEnd = lineEnd; stream.point = point; },

    pointRadius: function(_) {
      pointRadius = _;
      return stream;
    },

    result: d3_noop
  };

  function point(x, y) {
    context.moveTo(x, y);
    context.arc(x, y, pointRadius, 0, τ);
  }

  function pointLineStart(x, y) {
    context.moveTo(x, y);
    stream.point = pointLine;
  }

  function pointLine(x, y) {
    context.lineTo(x, y);
  }

  function lineEnd() {
    stream.point = point;
  }

  function lineEndPolygon() {
    context.closePath();
  }

  return stream;
}

function d3_geo_resample(project) {
  var δ2 = .5, // precision, px²
      cosMinDistance = Math.cos(30 * d3_radians), // cos(minimum angular distance)
      maxDepth = 16;

  function resample(stream) {
    return (maxDepth ? resampleRecursive : resampleNone)(stream);
  }

  function resampleNone(stream) {
    return d3_geo_transformPoint(stream, function(x, y) {
      x = project(x, y);
      stream.point(x[0], x[1]);
    });
  }

  function resampleRecursive(stream) {
    var λ00, φ00, x00, y00, a00, b00, c00, // first point
        λ0, x0, y0, a0, b0, c0; // previous point

    var resample = {
      point: point,
      lineStart: lineStart,
      lineEnd: lineEnd,
      polygonStart: function() { stream.polygonStart(); resample.lineStart = ringStart; },
      polygonEnd: function() { stream.polygonEnd(); resample.lineStart = lineStart; }
    };

    function point(x, y) {
      x = project(x, y);
      stream.point(x[0], x[1]);
    }

    function lineStart() {
      x0 = NaN;
      resample.point = linePoint;
      stream.lineStart();
    }

    function linePoint(λ, φ) {
      var c = d3_geo_cartesian([λ, φ]), p = project(λ, φ);
      resampleLineTo(x0, y0, λ0, a0, b0, c0, x0 = p[0], y0 = p[1], λ0 = λ, a0 = c[0], b0 = c[1], c0 = c[2], maxDepth, stream);
      stream.point(x0, y0);
    }

    function lineEnd() {
      resample.point = point;
      stream.lineEnd();
    }

    function ringStart() {
      lineStart();
      resample.point = ringPoint;
      resample.lineEnd = ringEnd;
    }

    function ringPoint(λ, φ) {
      linePoint(λ00 = λ, φ00 = φ), x00 = x0, y00 = y0, a00 = a0, b00 = b0, c00 = c0;
      resample.point = linePoint;
    }

    function ringEnd() {
      resampleLineTo(x0, y0, λ0, a0, b0, c0, x00, y00, λ00, a00, b00, c00, maxDepth, stream);
      resample.lineEnd = lineEnd;
      lineEnd();
    }

    return resample;
  }

  function resampleLineTo(x0, y0, λ0, a0, b0, c0, x1, y1, λ1, a1, b1, c1, depth, stream) {
    var dx = x1 - x0,
        dy = y1 - y0,
        d2 = dx * dx + dy * dy;
    if (d2 > 4 * δ2 && depth--) {
      var a = a0 + a1,
          b = b0 + b1,
          c = c0 + c1,
          m = Math.sqrt(a * a + b * b + c * c),
          φ2 = Math.asin(c /= m),
          λ2 = abs(abs(c) - 1) < ε || abs(λ0 - λ1) < ε ? (λ0 + λ1) / 2 : Math.atan2(b, a),
          p = project(λ2, φ2),
          x2 = p[0],
          y2 = p[1],
          dx2 = x2 - x0,
          dy2 = y2 - y0,
          dz = dy * dx2 - dx * dy2;
      if (dz * dz / d2 > δ2 // perpendicular projected distance
          || abs((dx * dx2 + dy * dy2) / d2 - .5) > .3 // midpoint close to an end
          || a0 * a1 + b0 * b1 + c0 * c1 < cosMinDistance) { // angular distance
        resampleLineTo(x0, y0, λ0, a0, b0, c0, x2, y2, λ2, a /= m, b /= m, c, depth, stream);
        stream.point(x2, y2);
        resampleLineTo(x2, y2, λ2, a, b, c, x1, y1, λ1, a1, b1, c1, depth, stream);
      }
    }
  }

  resample.precision = function(_) {
    if (!arguments.length) return Math.sqrt(δ2);
    maxDepth = (δ2 = _ * _) > 0 && 16;
    return resample;
  };

  return resample;
}

d3.geo.path = function() {
  var pointRadius = 4.5,
      projection,
      context,
      projectStream,
      contextStream,
      cacheStream;

  function path(object) {
    if (object) {
      if (typeof pointRadius === "function") contextStream.pointRadius(+pointRadius.apply(this, arguments));
      if (!cacheStream || !cacheStream.valid) cacheStream = projectStream(contextStream);
      d3.geo.stream(object, cacheStream);
    }
    return contextStream.result();
  }

  path.area = function(object) {
    d3_geo_pathAreaSum = 0;
    d3.geo.stream(object, projectStream(d3_geo_pathArea));
    return d3_geo_pathAreaSum;
  };

  path.centroid = function(object) {
    d3_geo_centroidX0 = d3_geo_centroidY0 = d3_geo_centroidZ0 =
    d3_geo_centroidX1 = d3_geo_centroidY1 = d3_geo_centroidZ1 =
    d3_geo_centroidX2 = d3_geo_centroidY2 = d3_geo_centroidZ2 = 0;
    d3.geo.stream(object, projectStream(d3_geo_pathCentroid));
    return d3_geo_centroidZ2 ? [d3_geo_centroidX2 / d3_geo_centroidZ2, d3_geo_centroidY2 / d3_geo_centroidZ2]
        : d3_geo_centroidZ1 ? [d3_geo_centroidX1 / d3_geo_centroidZ1, d3_geo_centroidY1 / d3_geo_centroidZ1]
        : d3_geo_centroidZ0 ? [d3_geo_centroidX0 / d3_geo_centroidZ0, d3_geo_centroidY0 / d3_geo_centroidZ0]
        : [NaN, NaN];
  };

  path.bounds = function(object) {
    d3_geo_pathBoundsX1 = d3_geo_pathBoundsY1 = -(d3_geo_pathBoundsX0 = d3_geo_pathBoundsY0 = Infinity);
    d3.geo.stream(object, projectStream(d3_geo_pathBounds));
    return [[d3_geo_pathBoundsX0, d3_geo_pathBoundsY0], [d3_geo_pathBoundsX1, d3_geo_pathBoundsY1]];
  };

  path.projection = function(_) {
    if (!arguments.length) return projection;
    projectStream = (projection = _) ? _.stream || d3_geo_pathProjectStream(_) : d3_identity;
    return reset();
  };

  path.context = function(_) {
    if (!arguments.length) return context;
    contextStream = (context = _) == null ? new d3_geo_pathBuffer : new d3_geo_pathContext(_);
    if (typeof pointRadius !== "function") contextStream.pointRadius(pointRadius);
    return reset();
  };

  path.pointRadius = function(_) {
    if (!arguments.length) return pointRadius;
    pointRadius = typeof _ === "function" ? _ : (contextStream.pointRadius(+_), +_);
    return path;
  };

  function reset() {
    cacheStream = null;
    return path;
  }

  return path.projection(d3.geo.albersUsa()).context(null);
};

function d3_geo_pathProjectStream(project) {
  var resample = d3_geo_resample(function(x, y) { return project([x * d3_degrees, y * d3_degrees]); });
  return function(stream) { return d3_geo_projectionRadians(resample(stream)); };
}

d3.geo.transform = function(methods) {
  return {
    stream: function(stream) {
      var transform = new d3_geo_transform(stream);
      for (var k in methods) transform[k] = methods[k];
      return transform;
    }
  };
};

function d3_geo_transform(stream) {
  this.stream = stream;
}

d3_geo_transform.prototype = {
  point: function(x, y) { this.stream.point(x, y); },
  sphere: function() { this.stream.sphere(); },
  lineStart: function() { this.stream.lineStart(); },
  lineEnd: function() { this.stream.lineEnd(); },
  polygonStart: function() { this.stream.polygonStart(); },
  polygonEnd: function() { this.stream.polygonEnd(); }
};

function d3_geo_transformPoint(stream, point) {
  return {
    point: point,
    sphere: function() { stream.sphere(); },
    lineStart: function() { stream.lineStart(); },
    lineEnd: function() { stream.lineEnd(); },
    polygonStart: function() { stream.polygonStart(); },
    polygonEnd: function() { stream.polygonEnd(); },
  };
}

d3.geo.projection = d3_geo_projection;
d3.geo.projectionMutator = d3_geo_projectionMutator;

function d3_geo_projection(project) {
  return d3_geo_projectionMutator(function() { return project; })();
}

function d3_geo_projectionMutator(projectAt) {
  var project,
      rotate,
      projectRotate,
      projectResample = d3_geo_resample(function(x, y) { x = project(x, y); return [x[0] * k + δx, δy - x[1] * k]; }),
      k = 150, // scale
      x = 480, y = 250, // translate
      λ = 0, φ = 0, // center
      δλ = 0, δφ = 0, δγ = 0, // rotate
      δx, δy, // center
      preclip = d3_geo_clipAntimeridian,
      postclip = d3_identity,
      clipAngle = null,
      clipExtent = null,
      stream;

  function projection(point) {
    point = projectRotate(point[0] * d3_radians, point[1] * d3_radians);
    return [point[0] * k + δx, δy - point[1] * k];
  }

  function invert(point) {
    point = projectRotate.invert((point[0] - δx) / k, (δy - point[1]) / k);
    return point && [point[0] * d3_degrees, point[1] * d3_degrees];
  }

  projection.stream = function(output) {
    if (stream) stream.valid = false;
    stream = d3_geo_projectionRadians(preclip(rotate, projectResample(postclip(output))));
    stream.valid = true; // allow caching by d3.geo.path
    return stream;
  };

  projection.clipAngle = function(_) {
    if (!arguments.length) return clipAngle;
    preclip = _ == null ? (clipAngle = _, d3_geo_clipAntimeridian) : d3_geo_clipCircle((clipAngle = +_) * d3_radians);
    return invalidate();
  };

  projection.clipExtent = function(_) {
    if (!arguments.length) return clipExtent;
    clipExtent = _;
    postclip = _ ? d3_geo_clipExtent(_[0][0], _[0][1], _[1][0], _[1][1]) : d3_identity;
    return invalidate();
  };

  projection.scale = function(_) {
    if (!arguments.length) return k;
    k = +_;
    return reset();
  };

  projection.translate = function(_) {
    if (!arguments.length) return [x, y];
    x = +_[0];
    y = +_[1];
    return reset();
  };

  projection.center = function(_) {
    if (!arguments.length) return [λ * d3_degrees, φ * d3_degrees];
    λ = _[0] % 360 * d3_radians;
    φ = _[1] % 360 * d3_radians;
    return reset();
  };

  projection.rotate = function(_) {
    if (!arguments.length) return [δλ * d3_degrees, δφ * d3_degrees, δγ * d3_degrees];
    δλ = _[0] % 360 * d3_radians;
    δφ = _[1] % 360 * d3_radians;
    δγ = _.length > 2 ? _[2] % 360 * d3_radians : 0;
    return reset();
  };

  d3.rebind(projection, projectResample, "precision");

  function reset() {
    projectRotate = d3_geo_compose(rotate = d3_geo_rotation(δλ, δφ, δγ), project);
    var center = project(λ, φ);
    δx = x - center[0] * k;
    δy = y + center[1] * k;
    return invalidate();
  }

  function invalidate() {
    if (stream) stream.valid = false, stream = null;
    return projection;
  }

  return function() {
    project = projectAt.apply(this, arguments);
    projection.invert = project.invert && invert;
    return reset();
  };
}

function d3_geo_projectionRadians(stream) {
  return d3_geo_transformPoint(stream, function(x, y) {
    stream.point(x * d3_radians, y * d3_radians);
  });
}

function d3_geo_equirectangular(λ, φ) {
  return [λ, φ];
}

(d3.geo.equirectangular = function() {
  return d3_geo_projection(d3_geo_equirectangular);
}).raw = d3_geo_equirectangular.invert = d3_geo_equirectangular;

d3.geo.rotation = function(rotate) {
  rotate = d3_geo_rotation(rotate[0] % 360 * d3_radians, rotate[1] * d3_radians, rotate.length > 2 ? rotate[2] * d3_radians : 0);

  function forward(coordinates) {
    coordinates = rotate(coordinates[0] * d3_radians, coordinates[1] * d3_radians);
    return coordinates[0] *= d3_degrees, coordinates[1] *= d3_degrees, coordinates;
  }

  forward.invert = function(coordinates) {
    coordinates = rotate.invert(coordinates[0] * d3_radians, coordinates[1] * d3_radians);
    return coordinates[0] *= d3_degrees, coordinates[1] *= d3_degrees, coordinates;
  };

  return forward;
};

function d3_geo_identityRotation(λ, φ) {
  return [λ > π ? λ - τ : λ < -π ? λ + τ : λ, φ];
}

d3_geo_identityRotation.invert = d3_geo_equirectangular;

// Note: |δλ| must be < 2π
function d3_geo_rotation(δλ, δφ, δγ) {
  return δλ ? (δφ || δγ ? d3_geo_compose(d3_geo_rotationλ(δλ), d3_geo_rotationφγ(δφ, δγ))
    : d3_geo_rotationλ(δλ))
    : (δφ || δγ ? d3_geo_rotationφγ(δφ, δγ)
    : d3_geo_identityRotation);
}

function d3_geo_forwardRotationλ(δλ) {
  return function(λ, φ) {
    return λ += δλ, [λ > π ? λ - τ : λ < -π ? λ + τ : λ, φ];
  };
}

function d3_geo_rotationλ(δλ) {
  var rotation = d3_geo_forwardRotationλ(δλ);
  rotation.invert = d3_geo_forwardRotationλ(-δλ);
  return rotation;
}

function d3_geo_rotationφγ(δφ, δγ) {
  var cosδφ = Math.cos(δφ),
      sinδφ = Math.sin(δφ),
      cosδγ = Math.cos(δγ),
      sinδγ = Math.sin(δγ);

  function rotation(λ, φ) {
    var cosφ = Math.cos(φ),
        x = Math.cos(λ) * cosφ,
        y = Math.sin(λ) * cosφ,
        z = Math.sin(φ),
        k = z * cosδφ + x * sinδφ;
    return [
      Math.atan2(y * cosδγ - k * sinδγ, x * cosδφ - z * sinδφ),
      d3_asin(k * cosδγ + y * sinδγ)
    ];
  }

  rotation.invert = function(λ, φ) {
    var cosφ = Math.cos(φ),
        x = Math.cos(λ) * cosφ,
        y = Math.sin(λ) * cosφ,
        z = Math.sin(φ),
        k = z * cosδγ - y * sinδγ;
    return [
      Math.atan2(y * cosδγ + z * sinδγ, x * cosδφ + k * sinδφ),
      d3_asin(k * cosδφ - x * sinδφ)
    ];
  };

  return rotation;
}

d3.geo.circle = function() {
  var origin = [0, 0],
      angle,
      precision = 6,
      interpolate;

  function circle() {
    var center = typeof origin === "function" ? origin.apply(this, arguments) : origin,
        rotate = d3_geo_rotation(-center[0] * d3_radians, -center[1] * d3_radians, 0).invert,
        ring = [];

    interpolate(null, null, 1, {
      point: function(x, y) {
        ring.push(x = rotate(x, y));
        x[0] *= d3_degrees, x[1] *= d3_degrees;
      }
    });

    return {type: "Polygon", coordinates: [ring]};
  }

  circle.origin = function(x) {
    if (!arguments.length) return origin;
    origin = x;
    return circle;
  };

  circle.angle = function(x) {
    if (!arguments.length) return angle;
    interpolate = d3_geo_circleInterpolate((angle = +x) * d3_radians, precision * d3_radians);
    return circle;
  };

  circle.precision = function(_) {
    if (!arguments.length) return precision;
    interpolate = d3_geo_circleInterpolate(angle * d3_radians, (precision = +_) * d3_radians);
    return circle;
  };

  return circle.angle(90);
};

// Interpolates along a circle centered at [0°, 0°], with a given radius and
// precision.
function d3_geo_circleInterpolate(radius, precision) {
  var cr = Math.cos(radius),
      sr = Math.sin(radius);
  return function(from, to, direction, listener) {
    var step = direction * precision;
    if (from != null) {
      from = d3_geo_circleAngle(cr, from);
      to = d3_geo_circleAngle(cr, to);
      if (direction > 0 ? from < to: from > to) from += direction * τ;
    } else {
      from = radius + direction * τ;
      to = radius - .5 * step;
    }
    for (var point, t = from; direction > 0 ? t > to : t < to; t -= step) {
      listener.point((point = d3_geo_spherical([
        cr,
        -sr * Math.cos(t),
        -sr * Math.sin(t)
      ]))[0], point[1]);
    }
  };
}

// Signed angle of a cartesian point relative to [cr, 0, 0].
function d3_geo_circleAngle(cr, point) {
  var a = d3_geo_cartesian(point);
  a[0] -= cr;
  d3_geo_cartesianNormalize(a);
  var angle = d3_acos(-a[1]);
  return ((-a[2] < 0 ? -angle : angle) + 2 * Math.PI - ε) % (2 * Math.PI);
}

// Length returned in radians; multiply by radius for distance.
d3.geo.distance = function(a, b) {
  var Δλ = (b[0] - a[0]) * d3_radians,
      φ0 = a[1] * d3_radians, φ1 = b[1] * d3_radians,
      sinΔλ = Math.sin(Δλ), cosΔλ = Math.cos(Δλ),
      sinφ0 = Math.sin(φ0), cosφ0 = Math.cos(φ0),
      sinφ1 = Math.sin(φ1), cosφ1 = Math.cos(φ1),
      t;
  return Math.atan2(Math.sqrt((t = cosφ1 * sinΔλ) * t + (t = cosφ0 * sinφ1 - sinφ0 * cosφ1 * cosΔλ) * t), sinφ0 * sinφ1 + cosφ0 * cosφ1 * cosΔλ);
};

d3.geo.graticule = function() {
  var x1, x0, X1, X0,
      y1, y0, Y1, Y0,
      dx = 10, dy = dx, DX = 90, DY = 360,
      x, y, X, Y,
      precision = 2.5;

  function graticule() {
    return {type: "MultiLineString", coordinates: lines()};
  }

  function lines() {
    return d3.range(Math.ceil(X0 / DX) * DX, X1, DX).map(X)
        .concat(d3.range(Math.ceil(Y0 / DY) * DY, Y1, DY).map(Y))
        .concat(d3.range(Math.ceil(x0 / dx) * dx, x1, dx).filter(function(x) { return abs(x % DX) > ε; }).map(x))
        .concat(d3.range(Math.ceil(y0 / dy) * dy, y1, dy).filter(function(y) { return abs(y % DY) > ε; }).map(y));
  }

  graticule.lines = function() {
    return lines().map(function(coordinates) { return {type: "LineString", coordinates: coordinates}; });
  };

  graticule.outline = function() {
    return {
      type: "Polygon",
      coordinates: [
        X(X0).concat(
        Y(Y1).slice(1),
        X(X1).reverse().slice(1),
        Y(Y0).reverse().slice(1))
      ]
    };
  };

  graticule.extent = function(_) {
    if (!arguments.length) return graticule.minorExtent();
    return graticule.majorExtent(_).minorExtent(_);
  };

  graticule.majorExtent = function(_) {
    if (!arguments.length) return [[X0, Y0], [X1, Y1]];
    X0 = +_[0][0], X1 = +_[1][0];
    Y0 = +_[0][1], Y1 = +_[1][1];
    if (X0 > X1) _ = X0, X0 = X1, X1 = _;
    if (Y0 > Y1) _ = Y0, Y0 = Y1, Y1 = _;
    return graticule.precision(precision);
  };

  graticule.minorExtent = function(_) {
    if (!arguments.length) return [[x0, y0], [x1, y1]];
    x0 = +_[0][0], x1 = +_[1][0];
    y0 = +_[0][1], y1 = +_[1][1];
    if (x0 > x1) _ = x0, x0 = x1, x1 = _;
    if (y0 > y1) _ = y0, y0 = y1, y1 = _;
    return graticule.precision(precision);
  };

  graticule.step = function(_) {
    if (!arguments.length) return graticule.minorStep();
    return graticule.majorStep(_).minorStep(_);
  };

  graticule.majorStep = function(_) {
    if (!arguments.length) return [DX, DY];
    DX = +_[0], DY = +_[1];
    return graticule;
  };

  graticule.minorStep = function(_) {
    if (!arguments.length) return [dx, dy];
    dx = +_[0], dy = +_[1];
    return graticule;
  };

  graticule.precision = function(_) {
    if (!arguments.length) return precision;
    precision = +_;
    x = d3_geo_graticuleX(y0, y1, 90);
    y = d3_geo_graticuleY(x0, x1, precision);
    X = d3_geo_graticuleX(Y0, Y1, 90);
    Y = d3_geo_graticuleY(X0, X1, precision);
    return graticule;
  };

  return graticule
      .majorExtent([[-180, -90 + ε], [180, 90 - ε]])
      .minorExtent([[-180, -80 - ε], [180, 80 + ε]]);
};

function d3_geo_graticuleX(y0, y1, dy) {
  var y = d3.range(y0, y1 - ε, dy).concat(y1);
  return function(x) { return y.map(function(y) { return [x, y]; }); };
}

function d3_geo_graticuleY(x0, x1, dx) {
  var x = d3.range(x0, x1 - ε, dx).concat(x1);
  return function(y) { return x.map(function(x) { return [x, y]; }); };
}
function d3_source(d) {
  return d.source;
}
function d3_target(d) {
  return d.target;
}

// @deprecated use {type: "LineString"} or d3.geo.distance instead.
d3.geo.greatArc = function() {
  var source = d3_source, source_,
      target = d3_target, target_;

  function greatArc() {
    return {type: "LineString", coordinates: [
      source_ || source.apply(this, arguments),
      target_ || target.apply(this, arguments)
    ]};
  }

  greatArc.distance = function() {
    return d3.geo.distance(
      source_ || source.apply(this, arguments),
      target_ || target.apply(this, arguments)
    );
  };

  greatArc.source = function(_) {
    if (!arguments.length) return source;
    source = _, source_ = typeof _ === "function" ? null : _;
    return greatArc;
  };

  greatArc.target = function(_) {
    if (!arguments.length) return target;
    target = _, target_ = typeof _ === "function" ? null : _;
    return greatArc;
  };

  greatArc.precision = function() {
    return arguments.length ? greatArc : 0;
  };

  return greatArc;
};

d3.geo.interpolate = function(source, target) {
  return d3_geo_interpolate(
    source[0] * d3_radians, source[1] * d3_radians,
    target[0] * d3_radians, target[1] * d3_radians
  );
};

function d3_geo_interpolate(x0, y0, x1, y1) {
  var cy0 = Math.cos(y0),
      sy0 = Math.sin(y0),
      cy1 = Math.cos(y1),
      sy1 = Math.sin(y1),
      kx0 = cy0 * Math.cos(x0),
      ky0 = cy0 * Math.sin(x0),
      kx1 = cy1 * Math.cos(x1),
      ky1 = cy1 * Math.sin(x1),
      d = 2 * Math.asin(Math.sqrt(d3_haversin(y1 - y0) + cy0 * cy1 * d3_haversin(x1 - x0))),
      k = 1 / Math.sin(d);

  var interpolate = d ? function(t) {
    var B = Math.sin(t *= d) * k,
        A = Math.sin(d - t) * k,
        x = A * kx0 + B * kx1,
        y = A * ky0 + B * ky1,
        z = A * sy0 + B * sy1;
    return [
      Math.atan2(y, x) * d3_degrees,
      Math.atan2(z, Math.sqrt(x * x + y * y)) * d3_degrees
    ];
  } : function() { return [x0 * d3_degrees, y0 * d3_degrees]; };

  interpolate.distance = d;

  return interpolate;
};

d3.geo.length = function(object) {
  d3_geo_lengthSum = 0;
  d3.geo.stream(object, d3_geo_length);
  return d3_geo_lengthSum;
};

var d3_geo_lengthSum;

var d3_geo_length = {
  sphere: d3_noop,
  point: d3_noop,
  lineStart: d3_geo_lengthLineStart,
  lineEnd: d3_noop,
  polygonStart: d3_noop,
  polygonEnd: d3_noop
};

function d3_geo_lengthLineStart() {
  var λ0, sinφ0, cosφ0;

  d3_geo_length.point = function(λ, φ) {
    λ0 = λ * d3_radians, sinφ0 = Math.sin(φ *= d3_radians), cosφ0 = Math.cos(φ);
    d3_geo_length.point = nextPoint;
  };

  d3_geo_length.lineEnd = function() {
    d3_geo_length.point = d3_geo_length.lineEnd = d3_noop;
  };

  function nextPoint(λ, φ) {
    var sinφ = Math.sin(φ *= d3_radians),
        cosφ = Math.cos(φ),
        t = abs((λ *= d3_radians) - λ0),
        cosΔλ = Math.cos(t);
    d3_geo_lengthSum += Math.atan2(Math.sqrt((t = cosφ * Math.sin(t)) * t + (t = cosφ0 * sinφ - sinφ0 * cosφ * cosΔλ) * t), sinφ0 * sinφ + cosφ0 * cosφ * cosΔλ);
    λ0 = λ, sinφ0 = sinφ, cosφ0 = cosφ;
  }
}
// Abstract azimuthal projection.
function d3_geo_azimuthal(scale, angle) {
  function azimuthal(λ, φ) {
    var cosλ = Math.cos(λ),
        cosφ = Math.cos(φ),
        k = scale(cosλ * cosφ);
    return [
      k * cosφ * Math.sin(λ),
      k * Math.sin(φ)
    ];
  }

  azimuthal.invert = function(x, y) {
    var ρ = Math.sqrt(x * x + y * y),
        c = angle(ρ),
        sinc = Math.sin(c),
        cosc = Math.cos(c);
    return [
      Math.atan2(x * sinc, ρ * cosc),
      Math.asin(ρ && y * sinc / ρ)
    ];
  };

  return azimuthal;
}

var d3_geo_azimuthalEqualArea = d3_geo_azimuthal(
  function(cosλcosφ) { return Math.sqrt(2 / (1 + cosλcosφ)); },
  function(ρ) { return 2 * Math.asin(ρ / 2); }
);

(d3.geo.azimuthalEqualArea = function() {
  return d3_geo_projection(d3_geo_azimuthalEqualArea);
}).raw = d3_geo_azimuthalEqualArea;

var d3_geo_azimuthalEquidistant = d3_geo_azimuthal(
  function(cosλcosφ) { var c = Math.acos(cosλcosφ); return c && c / Math.sin(c); },
  d3_identity
);

(d3.geo.azimuthalEquidistant = function() {
  return d3_geo_projection(d3_geo_azimuthalEquidistant);
}).raw = d3_geo_azimuthalEquidistant;

function d3_geo_conicConformal(φ0, φ1) {
  var cosφ0 = Math.cos(φ0),
      t = function(φ) { return Math.tan(π / 4 + φ / 2); },
      n = φ0 === φ1 ? Math.sin(φ0) : Math.log(cosφ0 / Math.cos(φ1)) / Math.log(t(φ1) / t(φ0)),
      F = cosφ0 * Math.pow(t(φ0), n) / n;

  if (!n) return d3_geo_mercator;

  function forward(λ, φ) {
    if (F > 0) { if (φ < -halfπ + ε) φ = -halfπ + ε; }
    else { if (φ > halfπ - ε) φ = halfπ - ε; }
    var ρ = F / Math.pow(t(φ), n);
    return [
      ρ * Math.sin(n * λ),
      F - ρ * Math.cos(n * λ)
    ];
  }

  forward.invert = function(x, y) {
    var ρ0_y = F - y,
        ρ = d3_sgn(n) * Math.sqrt(x * x + ρ0_y * ρ0_y);
    return [
      Math.atan2(x, ρ0_y) / n,
      2 * Math.atan(Math.pow(F / ρ, 1 / n)) - halfπ
    ];
  };

  return forward;
}

(d3.geo.conicConformal = function() {
  return d3_geo_conic(d3_geo_conicConformal);
}).raw = d3_geo_conicConformal;

function d3_geo_conicEquidistant(φ0, φ1) {
  var cosφ0 = Math.cos(φ0),
      n = φ0 === φ1 ? Math.sin(φ0) : (cosφ0 - Math.cos(φ1)) / (φ1 - φ0),
      G = cosφ0 / n + φ0;

  if (abs(n) < ε) return d3_geo_equirectangular;

  function forward(λ, φ) {
    var ρ = G - φ;
    return [
      ρ * Math.sin(n * λ),
      G - ρ * Math.cos(n * λ)
    ];
  }

  forward.invert = function(x, y) {
    var ρ0_y = G - y;
    return [
      Math.atan2(x, ρ0_y) / n,
      G - d3_sgn(n) * Math.sqrt(x * x + ρ0_y * ρ0_y)
    ];
  };

  return forward;
}

(d3.geo.conicEquidistant = function() {
  return d3_geo_conic(d3_geo_conicEquidistant);
}).raw = d3_geo_conicEquidistant;

var d3_geo_gnomonic = d3_geo_azimuthal(
  function(cosλcosφ) { return 1 / cosλcosφ; },
  Math.atan
);

(d3.geo.gnomonic = function() {
  return d3_geo_projection(d3_geo_gnomonic);
}).raw = d3_geo_gnomonic;

function d3_geo_mercator(λ, φ) {
  return [λ, Math.log(Math.tan(π / 4 + φ / 2))];
}

d3_geo_mercator.invert = function(x, y) {
  return [x, 2 * Math.atan(Math.exp(y)) - halfπ];
};

function d3_geo_mercatorProjection(project) {
  var m = d3_geo_projection(project),
      scale = m.scale,
      translate = m.translate,
      clipExtent = m.clipExtent,
      clipAuto;

  m.scale = function() {
    var v = scale.apply(m, arguments);
    return v === m ? (clipAuto ? m.clipExtent(null) : m) : v;
  };

  m.translate = function() {
    var v = translate.apply(m, arguments);
    return v === m ? (clipAuto ? m.clipExtent(null) : m) : v;
  };

  m.clipExtent = function(_) {
    var v = clipExtent.apply(m, arguments);
    if (v === m) {
      if (clipAuto = _ == null) {
        var k = π * scale(), t = translate();
        clipExtent([[t[0] - k, t[1] - k], [t[0] + k, t[1] + k]]);
      }
    } else if (clipAuto) {
      v = null;
    }
    return v;
  };

  return m.clipExtent(null);
}

(d3.geo.mercator = function() {
  return d3_geo_mercatorProjection(d3_geo_mercator);
}).raw = d3_geo_mercator;

var d3_geo_orthographic = d3_geo_azimuthal(
  function() { return 1; },
  Math.asin
);

(d3.geo.orthographic = function() {
  return d3_geo_projection(d3_geo_orthographic);
}).raw = d3_geo_orthographic;

var d3_geo_stereographic = d3_geo_azimuthal(
  function(cosλcosφ) { return 1 / (1 + cosλcosφ); },
  function(ρ) { return 2 * Math.atan(ρ); }
);

(d3.geo.stereographic = function() {
  return d3_geo_projection(d3_geo_stereographic);
}).raw = d3_geo_stereographic;

function d3_geo_transverseMercator(λ, φ) {
  return [Math.log(Math.tan(π / 4 + φ / 2)), -λ];
}

d3_geo_transverseMercator.invert = function(x, y) {
  return [-y, 2 * Math.atan(Math.exp(x)) - halfπ];
};

(d3.geo.transverseMercator = function() {
  var projection = d3_geo_mercatorProjection(d3_geo_transverseMercator),
      center = projection.center,
      rotate = projection.rotate;

  projection.center = function(_) {
    return _
        ? center([-_[1], _[0]])
        : ((_ = center()), [_[1], -_[0]]);
  };

  projection.rotate = function(_) {
    return _
        ? rotate([_[0], _[1], _.length > 2 ? _[2] + 90 : 90])
        : ((_ = rotate()), [_[0], _[1], _[2] - 90]);
  };

  return rotate([0, 0, 90]);
}).raw = d3_geo_transverseMercator;
d3.geom = {};
function d3_geom_pointX(d) {
  return d[0];
}

function d3_geom_pointY(d) {
  return d[1];
}

/**
 * Computes the 2D convex hull of a set of points using the monotone chain
 * algorithm:
 * http://en.wikibooks.org/wiki/Algorithm_Implementation/Geometry/Convex_hull/Monotone_chain)
 *
 * The runtime of this algorithm is O(n log n), where n is the number of input
 * points. However in practice it outperforms other O(n log n) hulls.
 *
 * @param vertices [[x1, y1], [x2, y2], ...]
 * @returns polygon [[x1, y1], [x2, y2], ...]
 */
d3.geom.hull = function(vertices) {
  var x = d3_geom_pointX,
      y = d3_geom_pointY;

  if (arguments.length) return hull(vertices);

  function hull(data) {
    // Hull of < 3 points is not well-defined
    if (data.length < 3) return [];

    var fx = d3_functor(x),
        fy = d3_functor(y),
        i,
        n = data.length,
        points = [], // of the form [[x0, y0, 0], ..., [xn, yn, n]]
        flippedPoints = [];

    for (i = 0 ; i < n; i++) {
      points.push([+fx.call(this, data[i], i), +fy.call(this, data[i], i), i]);
    }

    // sort ascending by x-coord first, y-coord second
    points.sort(d3_geom_hullOrder);

    // we flip bottommost points across y axis so we can use the upper hull routine on both
    for (i = 0; i < n; i++) flippedPoints.push([points[i][0], -points[i][1]]);

    var upper = d3_geom_hullUpper(points),
        lower = d3_geom_hullUpper(flippedPoints);

    // construct the polygon, removing possible duplicate endpoints
    var skipLeft = lower[0] === upper[0],
        skipRight  = lower[lower.length - 1] === upper[upper.length - 1],
        polygon = [];

    // add upper hull in r->l order
    // then add lower hull in l->r order
    for (i = upper.length - 1; i >= 0; --i) polygon.push(data[points[upper[i]][2]]);
    for (i = +skipLeft; i < lower.length - skipRight; ++i) polygon.push(data[points[lower[i]][2]]);

    return polygon;
  }

  hull.x = function(_) {
    return arguments.length ? (x = _, hull) : x;
  };

  hull.y = function(_) {
    return arguments.length ? (y = _, hull) : y;
  };

  return hull;
};

// finds the 'upper convex hull' (see wiki link above)
// assumes points arg has >=3 elements, is sorted by x, unique in y
// returns array of indices into points in left to right order
function d3_geom_hullUpper(points) {
  var n = points.length,
      hull = [0, 1],
      hs = 2; // hull size

  for (var i = 2; i < n; i++) {
    while (hs > 1 && d3_cross2d(points[hull[hs-2]], points[hull[hs-1]], points[i]) <= 0) --hs;
    hull[hs++] = i;
  }

  // we slice to make sure that the points we 'popped' from hull don't stay behind
  return hull.slice(0, hs);
}

// comparator for ascending sort by x-coord first, y-coord second
function d3_geom_hullOrder(a, b) {
  return a[0] - b[0] || a[1] - b[1];
}

d3.geom.polygon = function(coordinates) {
  d3_subclass(coordinates, d3_geom_polygonPrototype);
  return coordinates;
};

var d3_geom_polygonPrototype = d3.geom.polygon.prototype = [];

d3_geom_polygonPrototype.area = function() {
  var i = -1,
      n = this.length,
      a,
      b = this[n - 1],
      area = 0;

  while (++i < n) {
    a = b;
    b = this[i];
    area += a[1] * b[0] - a[0] * b[1];
  }

  return area * .5;
};

d3_geom_polygonPrototype.centroid = function(k) {
  var i = -1,
      n = this.length,
      x = 0,
      y = 0,
      a,
      b = this[n - 1],
      c;

  if (!arguments.length) k = -1 / (6 * this.area());

  while (++i < n) {
    a = b;
    b = this[i];
    c = a[0] * b[1] - b[0] * a[1];
    x += (a[0] + b[0]) * c;
    y += (a[1] + b[1]) * c;
  }

  return [x * k, y * k];
};

// The Sutherland-Hodgman clipping algorithm.
// Note: requires the clip polygon to be counterclockwise and convex.
d3_geom_polygonPrototype.clip = function(subject) {
  var input,
      closed = d3_geom_polygonClosed(subject),
      i = -1,
      n = this.length - d3_geom_polygonClosed(this),
      j,
      m,
      a = this[n - 1],
      b,
      c,
      d;

  while (++i < n) {
    input = subject.slice();
    subject.length = 0;
    b = this[i];
    c = input[(m = input.length - closed) - 1];
    j = -1;
    while (++j < m) {
      d = input[j];
      if (d3_geom_polygonInside(d, a, b)) {
        if (!d3_geom_polygonInside(c, a, b)) {
          subject.push(d3_geom_polygonIntersect(c, d, a, b));
        }
        subject.push(d);
      } else if (d3_geom_polygonInside(c, a, b)) {
        subject.push(d3_geom_polygonIntersect(c, d, a, b));
      }
      c = d;
    }
    if (closed) subject.push(subject[0]);
    a = b;
  }

  return subject;
};

function d3_geom_polygonInside(p, a, b) {
  return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
}

// Intersect two infinite lines cd and ab.
function d3_geom_polygonIntersect(c, d, a, b) {
  var x1 = c[0], x3 = a[0], x21 = d[0] - x1, x43 = b[0] - x3,
      y1 = c[1], y3 = a[1], y21 = d[1] - y1, y43 = b[1] - y3,
      ua = (x43 * (y1 - y3) - y43 * (x1 - x3)) / (y43 * x21 - x43 * y21);
  return [x1 + ua * x21, y1 + ua * y21];
}

// Returns true if the polygon is closed.
function d3_geom_polygonClosed(coordinates) {
  var a = coordinates[0],
      b = coordinates[coordinates.length - 1];
  return !(a[0] - b[0] || a[1] - b[1]);
}

var d3_geom_voronoiEdges,
    d3_geom_voronoiCells,
    d3_geom_voronoiBeaches,
    d3_geom_voronoiBeachPool = [],
    d3_geom_voronoiFirstCircle,
    d3_geom_voronoiCircles,
    d3_geom_voronoiCirclePool = [];


function d3_geom_voronoiBeach() {
  d3_geom_voronoiRedBlackNode(this);
  this.edge =
  this.site =
  this.circle = null;
}

function d3_geom_voronoiCreateBeach(site) {
  var beach = d3_geom_voronoiBeachPool.pop() || new d3_geom_voronoiBeach;
  beach.site = site;
  return beach;
}

function d3_geom_voronoiDetachBeach(beach) {
  d3_geom_voronoiDetachCircle(beach);
  d3_geom_voronoiBeaches.remove(beach);
  d3_geom_voronoiBeachPool.push(beach);
  d3_geom_voronoiRedBlackNode(beach);
}

function d3_geom_voronoiRemoveBeach(beach) {
  var circle = beach.circle,
      x = circle.x,
      y = circle.cy,
      vertex = {x: x, y: y},
      previous = beach.P,
      next = beach.N,
      disappearing = [beach];

  d3_geom_voronoiDetachBeach(beach);

  var lArc = previous;
  while (lArc.circle
      && abs(x - lArc.circle.x) < ε
      && abs(y - lArc.circle.cy) < ε) {
    previous = lArc.P;
    disappearing.unshift(lArc);
    d3_geom_voronoiDetachBeach(lArc);
    lArc = previous;
  }

  disappearing.unshift(lArc);
  d3_geom_voronoiDetachCircle(lArc);

  var rArc = next;
  while (rArc.circle
      && abs(x - rArc.circle.x) < ε
      && abs(y - rArc.circle.cy) < ε) {
    next = rArc.N;
    disappearing.push(rArc);
    d3_geom_voronoiDetachBeach(rArc);
    rArc = next;
  }

  disappearing.push(rArc);
  d3_geom_voronoiDetachCircle(rArc);

  var nArcs = disappearing.length,
      iArc;
  for (iArc = 1; iArc < nArcs; ++iArc) {
    rArc = disappearing[iArc];
    lArc = disappearing[iArc - 1];
    d3_geom_voronoiSetEdgeEnd(rArc.edge, lArc.site, rArc.site, vertex);
  }

  lArc = disappearing[0];
  rArc = disappearing[nArcs - 1];
  rArc.edge = d3_geom_voronoiCreateEdge(lArc.site, rArc.site, null, vertex);

  d3_geom_voronoiAttachCircle(lArc);
  d3_geom_voronoiAttachCircle(rArc);
}

function d3_geom_voronoiAddBeach(site) {
  var x = site.x,
      directrix = site.y,
      lArc,
      rArc,
      dxl,
      dxr,
      node = d3_geom_voronoiBeaches._;

  while (node) {
    dxl = d3_geom_voronoiLeftBreakPoint(node, directrix) - x;
    if (dxl > ε) node = node.L; else {
      dxr = x - d3_geom_voronoiRightBreakPoint(node, directrix);
      if (dxr > ε) {
        if (!node.R) {
          lArc = node;
          break;
        }
        node = node.R;
      } else {
        if (dxl > -ε) {
          lArc = node.P;
          rArc = node;
        } else if (dxr > -ε) {
          lArc = node;
          rArc = node.N;
        } else {
          lArc = rArc = node;
        }
        break;
      }
    }
  }

  var newArc = d3_geom_voronoiCreateBeach(site);
  d3_geom_voronoiBeaches.insert(lArc, newArc);

  if (!lArc && !rArc) return;

  if (lArc === rArc) {
    d3_geom_voronoiDetachCircle(lArc);
    rArc = d3_geom_voronoiCreateBeach(lArc.site);
    d3_geom_voronoiBeaches.insert(newArc, rArc);
    newArc.edge = rArc.edge = d3_geom_voronoiCreateEdge(lArc.site, newArc.site);
    d3_geom_voronoiAttachCircle(lArc);
    d3_geom_voronoiAttachCircle(rArc);
    return;
  }

  if (!rArc) { // && lArc
    newArc.edge = d3_geom_voronoiCreateEdge(lArc.site, newArc.site);
    return;
  }

  // else lArc !== rArc
  d3_geom_voronoiDetachCircle(lArc);
  d3_geom_voronoiDetachCircle(rArc);

  var lSite = lArc.site,
      ax = lSite.x,
      ay = lSite.y,
      bx = site.x - ax,
      by = site.y - ay,
      rSite = rArc.site,
      cx = rSite.x - ax,
      cy = rSite.y - ay,
      d = 2 * (bx * cy - by * cx),
      hb = bx * bx + by * by,
      hc = cx * cx + cy * cy,
      vertex = {x: (cy * hb - by * hc) / d + ax, y: (bx * hc - cx * hb) / d + ay};

  d3_geom_voronoiSetEdgeEnd(rArc.edge, lSite, rSite, vertex);
  newArc.edge = d3_geom_voronoiCreateEdge(lSite, site, null, vertex);
  rArc.edge = d3_geom_voronoiCreateEdge(site, rSite, null, vertex);
  d3_geom_voronoiAttachCircle(lArc);
  d3_geom_voronoiAttachCircle(rArc);
}

function d3_geom_voronoiLeftBreakPoint(arc, directrix) {
  var site = arc.site,
      rfocx = site.x,
      rfocy = site.y,
      pby2 = rfocy - directrix;

  if (!pby2) return rfocx;

  var lArc = arc.P;
  if (!lArc) return -Infinity;

  site = lArc.site;
  var lfocx = site.x,
      lfocy = site.y,
      plby2 = lfocy - directrix;

  if (!plby2) return lfocx;

  var hl = lfocx - rfocx,
      aby2 = 1 / pby2 - 1 / plby2,
      b = hl / plby2;

  if (aby2) return (-b + Math.sqrt(b * b - 2 * aby2 * (hl * hl / (-2 * plby2) - lfocy + plby2 / 2 + rfocy - pby2 / 2))) / aby2 + rfocx;

  return (rfocx + lfocx) / 2;
}

function d3_geom_voronoiRightBreakPoint(arc, directrix) {
  var rArc = arc.N;
  if (rArc) return d3_geom_voronoiLeftBreakPoint(rArc, directrix);
  var site = arc.site;
  return site.y === directrix ? site.x : Infinity;
}

function d3_geom_voronoiCell(site) {
  this.site = site;
  this.edges = [];
}

d3_geom_voronoiCell.prototype.prepare = function() {
  var halfEdges = this.edges,
      iHalfEdge = halfEdges.length,
      edge;

  while (iHalfEdge--) {
    edge = halfEdges[iHalfEdge].edge;
    if (!edge.b || !edge.a) halfEdges.splice(iHalfEdge, 1);
  }

  halfEdges.sort(d3_geom_voronoiHalfEdgeOrder);
  return halfEdges.length;
};

function d3_geom_voronoiCloseCells(extent) {
  var x0 = extent[0][0],
      x1 = extent[1][0],
      y0 = extent[0][1],
      y1 = extent[1][1],
      x2,
      y2,
      x3,
      y3,
      cells = d3_geom_voronoiCells,
      iCell = cells.length,
      cell,
      iHalfEdge,
      halfEdges,
      nHalfEdges,
      start,
      end;

  while (iCell--) {
    cell = cells[iCell];
    if (!cell || !cell.prepare()) continue;
    halfEdges = cell.edges;
    nHalfEdges = halfEdges.length;
    iHalfEdge = 0;
    while (iHalfEdge < nHalfEdges) {
      end = halfEdges[iHalfEdge].end(), x3 = end.x, y3 = end.y;
      start = halfEdges[++iHalfEdge % nHalfEdges].start(), x2 = start.x, y2 = start.y;
      if (abs(x3 - x2) > ε || abs(y3 - y2) > ε) {
        halfEdges.splice(iHalfEdge, 0, new d3_geom_voronoiHalfEdge(d3_geom_voronoiCreateBorderEdge(cell.site, end,
            abs(x3 - x0) < ε && y1 - y3 > ε ? {x: x0, y: abs(x2 - x0) < ε ? y2 : y1}
            : abs(y3 - y1) < ε && x1 - x3 > ε ? {x: abs(y2 - y1) < ε ? x2 : x1, y: y1}
            : abs(x3 - x1) < ε && y3 - y0 > ε ? {x: x1, y: abs(x2 - x1) < ε ? y2 : y0}
            : abs(y3 - y0) < ε && x3 - x0 > ε ? {x: abs(y2 - y0) < ε ? x2 : x0, y: y0}
            : null), cell.site, null));
        ++nHalfEdges;
      }
    }
  }
}

function d3_geom_voronoiHalfEdgeOrder(a, b) {
  return b.angle - a.angle;
}
function d3_geom_voronoiCircle() {
  d3_geom_voronoiRedBlackNode(this);
  this.x =
  this.y =
  this.arc =
  this.site =
  this.cy = null;
}

function d3_geom_voronoiAttachCircle(arc) {
  var lArc = arc.P,
      rArc = arc.N;

  if (!lArc || !rArc) return;

  var lSite = lArc.site,
      cSite = arc.site,
      rSite = rArc.site;

  if (lSite === rSite) return;

  var bx = cSite.x,
      by = cSite.y,
      ax = lSite.x - bx,
      ay = lSite.y - by,
      cx = rSite.x - bx,
      cy = rSite.y - by;

  var d = 2 * (ax * cy - ay * cx);
  if (d >= -ε2) return;

  var ha = ax * ax + ay * ay,
      hc = cx * cx + cy * cy,
      x = (cy * ha - ay * hc) / d,
      y = (ax * hc - cx * ha) / d,
      cy = y + by;

  var circle = d3_geom_voronoiCirclePool.pop() || new d3_geom_voronoiCircle;
  circle.arc = arc;
  circle.site = cSite;
  circle.x = x + bx;
  circle.y = cy + Math.sqrt(x * x + y * y); // y bottom
  circle.cy = cy;

  arc.circle = circle;

  var before = null,
      node = d3_geom_voronoiCircles._;

  while (node) {
    if (circle.y < node.y || (circle.y === node.y && circle.x <= node.x)) {
      if (node.L) node = node.L;
      else { before = node.P; break; }
    } else {
      if (node.R) node = node.R;
      else { before = node; break; }
    }
  }

  d3_geom_voronoiCircles.insert(before, circle);
  if (!before) d3_geom_voronoiFirstCircle = circle;
}

function d3_geom_voronoiDetachCircle(arc) {
  var circle = arc.circle;
  if (circle) {
    if (!circle.P) d3_geom_voronoiFirstCircle = circle.N;
    d3_geom_voronoiCircles.remove(circle);
    d3_geom_voronoiCirclePool.push(circle);
    d3_geom_voronoiRedBlackNode(circle);
    arc.circle = null;
  }
}

function d3_geom_voronoiClipEdges(extent) {
  var edges = d3_geom_voronoiEdges,
      clip = d3_geom_clipLine(extent[0][0], extent[0][1], extent[1][0], extent[1][1]),
      i = edges.length,
      e;
  while (i--) {
    e = edges[i];
    if (!d3_geom_voronoiConnectEdge(e, extent)
        || !clip(e)
        || (abs(e.a.x - e.b.x) < ε && abs(e.a.y - e.b.y) < ε)) {
      e.a = e.b = null;
      edges.splice(i, 1);
    }
  }
}

function d3_geom_voronoiConnectEdge(edge, extent) {
  var vb = edge.b;
  if (vb) return true;

  var va = edge.a,
      x0 = extent[0][0],
      x1 = extent[1][0],
      y0 = extent[0][1],
      y1 = extent[1][1],
      lSite = edge.l,
      rSite = edge.r,
      lx = lSite.x,
      ly = lSite.y,
      rx = rSite.x,
      ry = rSite.y,
      fx = (lx + rx) / 2,
      fy = (ly + ry) / 2,
      fm,
      fb;

  if (ry === ly) {
    if (fx < x0 || fx >= x1) return;
    if (lx > rx) {
      if (!va) va = {x: fx, y: y0};
      else if (va.y >= y1) return;
      vb = {x: fx, y: y1};
    } else {
      if (!va) va = {x: fx, y: y1};
      else if (va.y < y0) return;
      vb = {x: fx, y: y0};
    }
  } else {
    fm = (lx - rx) / (ry - ly);
    fb = fy - fm * fx;
    if (fm < -1 || fm > 1) {
      if (lx > rx) {
        if (!va) va = {x: (y0 - fb) / fm, y: y0};
        else if (va.y >= y1) return;
        vb = {x: (y1 - fb) / fm, y: y1};
      } else {
        if (!va) va = {x: (y1 - fb) / fm, y: y1};
        else if (va.y < y0) return;
        vb = {x: (y0 - fb) / fm, y: y0};
      }
    } else {
      if (ly < ry) {
        if (!va) va = {x: x0, y: fm * x0 + fb};
        else if (va.x >= x1) return;
        vb = {x: x1, y: fm * x1 + fb};
      } else {
        if (!va) va = {x: x1, y: fm * x1 + fb};
        else if (va.x < x0) return;
        vb = {x: x0, y: fm * x0 + fb};
      }
    }
  }

  edge.a = va;
  edge.b = vb;
  return true;
}
function d3_geom_voronoiEdge(lSite, rSite) {
  this.l = lSite;
  this.r = rSite;
  this.a = this.b = null; // for border edges
}

function d3_geom_voronoiCreateEdge(lSite, rSite, va, vb) {
  var edge = new d3_geom_voronoiEdge(lSite, rSite);
  d3_geom_voronoiEdges.push(edge);
  if (va) d3_geom_voronoiSetEdgeEnd(edge, lSite, rSite, va);
  if (vb) d3_geom_voronoiSetEdgeEnd(edge, rSite, lSite, vb);
  d3_geom_voronoiCells[lSite.i].edges.push(new d3_geom_voronoiHalfEdge(edge, lSite, rSite));
  d3_geom_voronoiCells[rSite.i].edges.push(new d3_geom_voronoiHalfEdge(edge, rSite, lSite));
  return edge;
}

function d3_geom_voronoiCreateBorderEdge(lSite, va, vb) {
  var edge = new d3_geom_voronoiEdge(lSite, null);
  edge.a = va;
  edge.b = vb;
  d3_geom_voronoiEdges.push(edge);
  return edge;
}

function d3_geom_voronoiSetEdgeEnd(edge, lSite, rSite, vertex) {
  if (!edge.a && !edge.b) {
    edge.a = vertex;
    edge.l = lSite;
    edge.r = rSite;
  } else if (edge.l === rSite) {
    edge.b = vertex;
  } else {
    edge.a = vertex;
  }
}

function d3_geom_voronoiHalfEdge(edge, lSite, rSite) {
  var va = edge.a,
      vb = edge.b;
  this.edge = edge;
  this.site = lSite;
  this.angle = rSite ? Math.atan2(rSite.y - lSite.y, rSite.x - lSite.x)
      : edge.l === lSite ? Math.atan2(vb.x - va.x, va.y - vb.y)
      : Math.atan2(va.x - vb.x, vb.y - va.y);
};

d3_geom_voronoiHalfEdge.prototype = {
  start: function() { return this.edge.l === this.site ? this.edge.a : this.edge.b; },
  end: function() { return this.edge.l === this.site ? this.edge.b : this.edge.a; }
};
function d3_geom_voronoiRedBlackTree() {
  this._ = null; // root node
}

function d3_geom_voronoiRedBlackNode(node) {
  node.U = // parent node
  node.C = // color - true for red, false for black
  node.L = // left node
  node.R = // right node
  node.P = // previous node
  node.N = null; // next node
}

d3_geom_voronoiRedBlackTree.prototype = {

  insert: function(after, node) {
    var parent, grandpa, uncle;

    if (after) {
      node.P = after;
      node.N = after.N;
      if (after.N) after.N.P = node;
      after.N = node;
      if (after.R) {
        after = after.R;
        while (after.L) after = after.L;
        after.L = node;
      } else {
        after.R = node;
      }
      parent = after;
    } else if (this._) {
      after = d3_geom_voronoiRedBlackFirst(this._);
      node.P = null;
      node.N = after;
      after.P = after.L = node;
      parent = after;
    } else {
      node.P = node.N = null;
      this._ = node;
      parent = null;
    }
    node.L = node.R = null;
    node.U = parent;
    node.C = true;

    after = node;
    while (parent && parent.C) {
      grandpa = parent.U;
      if (parent === grandpa.L) {
        uncle = grandpa.R;
        if (uncle && uncle.C) {
          parent.C = uncle.C = false;
          grandpa.C = true;
          after = grandpa;
        } else {
          if (after === parent.R) {
            d3_geom_voronoiRedBlackRotateLeft(this, parent);
            after = parent;
            parent = after.U;
          }
          parent.C = false;
          grandpa.C = true;
          d3_geom_voronoiRedBlackRotateRight(this, grandpa);
        }
      } else {
        uncle = grandpa.L;
        if (uncle && uncle.C) {
          parent.C = uncle.C = false;
          grandpa.C = true;
          after = grandpa;
        } else {
          if (after === parent.L) {
            d3_geom_voronoiRedBlackRotateRight(this, parent);
            after = parent;
            parent = after.U;
          }
          parent.C = false;
          grandpa.C = true;
          d3_geom_voronoiRedBlackRotateLeft(this, grandpa);
        }
      }
      parent = after.U;
    }
    this._.C = false;
  },

  remove: function(node) {
    if (node.N) node.N.P = node.P;
    if (node.P) node.P.N = node.N;
    node.N = node.P = null;

    var parent = node.U,
        sibling,
        left = node.L,
        right = node.R,
        next,
        red;

    if (!left) next = right;
    else if (!right) next = left;
    else next = d3_geom_voronoiRedBlackFirst(right);

    if (parent) {
      if (parent.L === node) parent.L = next;
      else parent.R = next;
    } else {
      this._ = next;
    }

    if (left && right) {
      red = next.C;
      next.C = node.C;
      next.L = left;
      left.U = next;
      if (next !== right) {
        parent = next.U;
        next.U = node.U;
        node = next.R;
        parent.L = node;
        next.R = right;
        right.U = next;
      } else {
        next.U = parent;
        parent = next;
        node = next.R;
      }
    } else {
      red = node.C;
      node = next;
    }

    if (node) node.U = parent;
    if (red) return;
    if (node && node.C) { node.C = false; return; }

    do {
      if (node === this._) break;
      if (node === parent.L) {
        sibling = parent.R;
        if (sibling.C) {
          sibling.C = false;
          parent.C = true;
          d3_geom_voronoiRedBlackRotateLeft(this, parent);
          sibling = parent.R;
        }
        if ((sibling.L && sibling.L.C)
            || (sibling.R && sibling.R.C)) {
          if (!sibling.R || !sibling.R.C) {
            sibling.L.C = false;
            sibling.C = true;
            d3_geom_voronoiRedBlackRotateRight(this, sibling);
            sibling = parent.R;
          }
          sibling.C = parent.C;
          parent.C = sibling.R.C = false;
          d3_geom_voronoiRedBlackRotateLeft(this, parent);
          node = this._;
          break;
        }
      } else {
        sibling = parent.L;
        if (sibling.C) {
          sibling.C = false;
          parent.C = true;
          d3_geom_voronoiRedBlackRotateRight(this, parent);
          sibling = parent.L;
        }
        if ((sibling.L && sibling.L.C)
          || (sibling.R && sibling.R.C)) {
          if (!sibling.L || !sibling.L.C) {
            sibling.R.C = false;
            sibling.C = true;
            d3_geom_voronoiRedBlackRotateLeft(this, sibling);
            sibling = parent.L;
          }
          sibling.C = parent.C;
          parent.C = sibling.L.C = false;
          d3_geom_voronoiRedBlackRotateRight(this, parent);
          node = this._;
          break;
        }
      }
      sibling.C = true;
      node = parent;
      parent = parent.U;
    } while (!node.C);

    if (node) node.C = false;
  }

};

function d3_geom_voronoiRedBlackRotateLeft(tree, node) {
  var p = node,
      q = node.R,
      parent = p.U;

  if (parent) {
    if (parent.L === p) parent.L = q;
    else parent.R = q;
  } else {
    tree._ = q;
  }

  q.U = parent;
  p.U = q;
  p.R = q.L;
  if (p.R) p.R.U = p;
  q.L = p;
}

function d3_geom_voronoiRedBlackRotateRight(tree, node) {
  var p = node,
      q = node.L,
      parent = p.U;

  if (parent) {
    if (parent.L === p) parent.L = q;
    else parent.R = q;
  } else {
    tree._ = q;
  }

  q.U = parent;
  p.U = q;
  p.L = q.R;
  if (p.L) p.L.U = p;
  q.R = p;
}

function d3_geom_voronoiRedBlackFirst(node) {
  while (node.L) node = node.L;
  return node;
}

function d3_geom_voronoi(sites, bbox) {
  var site = sites.sort(d3_geom_voronoiVertexOrder).pop(),
      x0,
      y0,
      circle;

  d3_geom_voronoiEdges = [];
  d3_geom_voronoiCells = new Array(sites.length);
  d3_geom_voronoiBeaches = new d3_geom_voronoiRedBlackTree;
  d3_geom_voronoiCircles = new d3_geom_voronoiRedBlackTree;

  while (true) {
    circle = d3_geom_voronoiFirstCircle;
    if (site && (!circle || site.y < circle.y || (site.y === circle.y && site.x < circle.x))) {
      if (site.x !== x0 || site.y !== y0) {
        d3_geom_voronoiCells[site.i] = new d3_geom_voronoiCell(site);
        d3_geom_voronoiAddBeach(site);
        x0 = site.x, y0 = site.y;
      }
      site = sites.pop();
    } else if (circle) {
      d3_geom_voronoiRemoveBeach(circle.arc);
    } else {
      break;
    }
  }

  if (bbox) d3_geom_voronoiClipEdges(bbox), d3_geom_voronoiCloseCells(bbox);

  var diagram = {cells: d3_geom_voronoiCells, edges: d3_geom_voronoiEdges};

  d3_geom_voronoiBeaches =
  d3_geom_voronoiCircles =
  d3_geom_voronoiEdges =
  d3_geom_voronoiCells = null;

  return diagram;
};

function d3_geom_voronoiVertexOrder(a, b) {
  return b.y - a.y || b.x - a.x;
}

d3.geom.voronoi = function(points) {
  var x = d3_geom_pointX,
      y = d3_geom_pointY,
      fx = x,
      fy = y,
      clipExtent = d3_geom_voronoiClipExtent;

  // @deprecated; use voronoi(data) instead.
  if (points) return voronoi(points);

  function voronoi(data) {
    var polygons = new Array(data.length),
        x0 = clipExtent[0][0],
        y0 = clipExtent[0][1],
        x1 = clipExtent[1][0],
        y1 = clipExtent[1][1];

    d3_geom_voronoi(sites(data), clipExtent).cells.forEach(function(cell, i) {
      var edges = cell.edges,
          site = cell.site,
          polygon = polygons[i] = edges.length ? edges.map(function(e) { var s = e.start(); return [s.x, s.y]; })
              : site.x >= x0 && site.x <= x1 && site.y >= y0 && site.y <= y1 ? [[x0, y1], [x1, y1], [x1, y0], [x0, y0]]
              : [];
      polygon.point = data[i];
    });

    return polygons;
  }

  function sites(data) {
    return data.map(function(d, i) {
      return {
        x: Math.round(fx(d, i) / ε) * ε,
        y: Math.round(fy(d, i) / ε) * ε,
        i: i
      };
    });
  }

  voronoi.links = function(data) {
    return d3_geom_voronoi(sites(data)).edges.filter(function(edge) {
      return edge.l && edge.r;
    }).map(function(edge) {
      return {
        source: data[edge.l.i],
        target: data[edge.r.i]
      };
    });
  };

  voronoi.triangles = function(data) {
    var triangles = [];

    d3_geom_voronoi(sites(data)).cells.forEach(function(cell, i) {
      var site = cell.site,
          edges = cell.edges.sort(d3_geom_voronoiHalfEdgeOrder),
          j = -1,
          m = edges.length,
          e0,
          s0,
          e1 = edges[m - 1].edge,
          s1 = e1.l === site ? e1.r : e1.l;

      while (++j < m) {
        e0 = e1;
        s0 = s1;
        e1 = edges[j].edge;
        s1 = e1.l === site ? e1.r : e1.l;
        if (i < s0.i && i < s1.i && d3_geom_voronoiTriangleArea(site, s0, s1) < 0) {
          triangles.push([data[i], data[s0.i], data[s1.i]]);
        }
      }
    });

    return triangles;
  };

  voronoi.x = function(_) {
    return arguments.length ? (fx = d3_functor(x = _), voronoi) : x;
  };

  voronoi.y = function(_) {
    return arguments.length ? (fy = d3_functor(y = _), voronoi) : y;
  };

  voronoi.clipExtent = function(_) {
    if (!arguments.length) return clipExtent === d3_geom_voronoiClipExtent ? null : clipExtent;
    clipExtent = _ == null ? d3_geom_voronoiClipExtent : _;
    return voronoi;
  };

  // @deprecated; use clipExtent instead.
  voronoi.size = function(_) {
    if (!arguments.length) return clipExtent === d3_geom_voronoiClipExtent ? null : clipExtent && clipExtent[1];
    return voronoi.clipExtent(_ && [[0, 0], _]);
  };

  return voronoi;
};

var d3_geom_voronoiClipExtent = [[-1e6, -1e6], [1e6, 1e6]];

function d3_geom_voronoiTriangleArea(a, b, c) {
  return (a.x - c.x) * (b.y - a.y) - (a.x - b.x) * (c.y - a.y);
}

// @deprecated; use d3.geom.voronoi triangles instead.
d3.geom.delaunay = function(vertices) {
  return d3.geom.voronoi().triangles(vertices);
};

d3.geom.quadtree = function(points, x1, y1, x2, y2) {
  var x = d3_geom_pointX,
      y = d3_geom_pointY,
      compat;

  // For backwards-compatibility.
  if (compat = arguments.length) {
    x = d3_geom_quadtreeCompatX;
    y = d3_geom_quadtreeCompatY;
    if (compat === 3) {
      y2 = y1;
      x2 = x1;
      y1 = x1 = 0;
    }
    return quadtree(points);
  }

  function quadtree(data) {
    var d,
        fx = d3_functor(x),
        fy = d3_functor(y),
        xs,
        ys,
        i,
        n,
        x1_,
        y1_,
        x2_,
        y2_;

    if (x1 != null) {
      x1_ = x1, y1_ = y1, x2_ = x2, y2_ = y2;
    } else {
      // Compute bounds, and cache points temporarily.
      x2_ = y2_ = -(x1_ = y1_ = Infinity);
      xs = [], ys = [];
      n = data.length;
      if (compat) for (i = 0; i < n; ++i) {
        d = data[i];
        if (d.x < x1_) x1_ = d.x;
        if (d.y < y1_) y1_ = d.y;
        if (d.x > x2_) x2_ = d.x;
        if (d.y > y2_) y2_ = d.y;
        xs.push(d.x);
        ys.push(d.y);
      } else for (i = 0; i < n; ++i) {
        var x_ = +fx(d = data[i], i),
            y_ = +fy(d, i);
        if (x_ < x1_) x1_ = x_;
        if (y_ < y1_) y1_ = y_;
        if (x_ > x2_) x2_ = x_;
        if (y_ > y2_) y2_ = y_;
        xs.push(x_);
        ys.push(y_);
      }
    }

    // Squarify the bounds.
    var dx = x2_ - x1_,
        dy = y2_ - y1_;
    if (dx > dy) y2_ = y1_ + dx;
    else x2_ = x1_ + dy;

    // Recursively inserts the specified point p at the node n or one of its
    // descendants. The bounds are defined by [x1, x2] and [y1, y2].
    function insert(n, d, x, y, x1, y1, x2, y2) {
      if (isNaN(x) || isNaN(y)) return; // ignore invalid points
      if (n.leaf) {
        var nx = n.x,
            ny = n.y;
        if (nx != null) {
          // If the point at this leaf node is at the same position as the new
          // point we are adding, we leave the point associated with the
          // internal node while adding the new point to a child node. This
          // avoids infinite recursion.
          if ((abs(nx - x) + abs(ny - y)) < .01) {
            insertChild(n, d, x, y, x1, y1, x2, y2);
          } else {
            var nPoint = n.point;
            n.x = n.y = n.point = null;
            insertChild(n, nPoint, nx, ny, x1, y1, x2, y2);
            insertChild(n, d, x, y, x1, y1, x2, y2);
          }
        } else {
          n.x = x, n.y = y, n.point = d;
        }
      } else {
        insertChild(n, d, x, y, x1, y1, x2, y2);
      }
    }

    // Recursively inserts the specified point [x, y] into a descendant of node
    // n. The bounds are defined by [x1, x2] and [y1, y2].
    function insertChild(n, d, x, y, x1, y1, x2, y2) {
      // Compute the split point, and the quadrant in which to insert p.
      var sx = (x1 + x2) * .5,
          sy = (y1 + y2) * .5,
          right = x >= sx,
          bottom = y >= sy,
          i = (bottom << 1) + right;

      // Recursively insert into the child node.
      n.leaf = false;
      n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());

      // Update the bounds as we recurse.
      if (right) x1 = sx; else x2 = sx;
      if (bottom) y1 = sy; else y2 = sy;
      insert(n, d, x, y, x1, y1, x2, y2);
    }

    // Create the root node.
    var root = d3_geom_quadtreeNode();

    root.add = function(d) {
      insert(root, d, +fx(d, ++i), +fy(d, i), x1_, y1_, x2_, y2_);
    };

    root.visit = function(f) {
      d3_geom_quadtreeVisit(f, root, x1_, y1_, x2_, y2_);
    };

    // Insert all points.
    i = -1;
    if (x1 == null) {
      while (++i < n) {
        insert(root, data[i], xs[i], ys[i], x1_, y1_, x2_, y2_);
      }
      --i; // index of last insertion
    } else data.forEach(root.add);

    // Discard captured fields.
    xs = ys = data = d = null;

    return root;
  }

  quadtree.x = function(_) {
    return arguments.length ? (x = _, quadtree) : x;
  };

  quadtree.y = function(_) {
    return arguments.length ? (y = _, quadtree) : y;
  };

  quadtree.extent = function(_) {
    if (!arguments.length) return x1 == null ? null : [[x1, y1], [x2, y2]];
    if (_ == null) x1 = y1 = x2 = y2 = null;
    else x1 = +_[0][0], y1 = +_[0][1], x2 = +_[1][0], y2 = +_[1][1];
    return quadtree;
  };

  quadtree.size = function(_) {
    if (!arguments.length) return x1 == null ? null : [x2 - x1, y2 - y1];
    if (_ == null) x1 = y1 = x2 = y2 = null;
    else x1 = y1 = 0, x2 = +_[0], y2 = +_[1];
    return quadtree;
  };

  return quadtree;
};

function d3_geom_quadtreeCompatX(d) { return d.x; }
function d3_geom_quadtreeCompatY(d) { return d.y; }

function d3_geom_quadtreeNode() {
  return {
    leaf: true,
    nodes: [],
    point: null,
    x: null,
    y: null
  };
}

function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
  if (!f(node, x1, y1, x2, y2)) {
    var sx = (x1 + x2) * .5,
        sy = (y1 + y2) * .5,
        children = node.nodes;
    if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
    if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
    if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
    if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
  }
}

d3.interpolateRgb = d3_interpolateRgb;

function d3_interpolateRgb(a, b) {
  a = d3.rgb(a);
  b = d3.rgb(b);
  var ar = a.r,
      ag = a.g,
      ab = a.b,
      br = b.r - ar,
      bg = b.g - ag,
      bb = b.b - ab;
  return function(t) {
    return "#"
        + d3_rgb_hex(Math.round(ar + br * t))
        + d3_rgb_hex(Math.round(ag + bg * t))
        + d3_rgb_hex(Math.round(ab + bb * t));
  };
}

d3.interpolateObject = d3_interpolateObject;

function d3_interpolateObject(a, b) {
  var i = {},
      c = {},
      k;
  for (k in a) {
    if (k in b) {
      i[k] = d3_interpolate(a[k], b[k]);
    } else {
      c[k] = a[k];
    }
  }
  for (k in b) {
    if (!(k in a)) {
      c[k] = b[k];
    }
  }
  return function(t) {
    for (k in i) c[k] = i[k](t);
    return c;
  };
}
d3.interpolateNumber = d3_interpolateNumber;

function d3_interpolateNumber(a, b) {
  b -= a = +a;
  return function(t) { return a + b * t; };
}

d3.interpolateString = d3_interpolateString;

function d3_interpolateString(a, b) {
  var bi = d3_interpolate_numberA.lastIndex = d3_interpolate_numberB.lastIndex = 0, // scan index for next number in b
      am, // current match in a
      bm, // current match in b
      bs, // string preceding current number in b, if any
      i = -1, // index in s
      s = [], // string constants and placeholders
      q = []; // number interpolators

  // Coerce inputs to strings.
  a = a + "", b = b + "";

  // Interpolate pairs of numbers in a & b.
  while ((am = d3_interpolate_numberA.exec(a))
      && (bm = d3_interpolate_numberB.exec(b))) {
    if ((bs = bm.index) > bi) { // a string precedes the next number in b
      bs = b.slice(bi, bs);
      if (s[i]) s[i] += bs; // coalesce with previous string
      else s[++i] = bs;
    }
    if ((am = am[0]) === (bm = bm[0])) { // numbers in a & b match
      if (s[i]) s[i] += bm; // coalesce with previous string
      else s[++i] = bm;
    } else { // interpolate non-matching numbers
      s[++i] = null;
      q.push({i: i, x: d3_interpolateNumber(am, bm)});
    }
    bi = d3_interpolate_numberB.lastIndex;
  }

  // Add remains of b.
  if (bi < b.length) {
    bs = b.slice(bi);
    if (s[i]) s[i] += bs; // coalesce with previous string
    else s[++i] = bs;
  }

  // Special optimization for only a single match.
  // Otherwise, interpolate each of the numbers and rejoin the string.
  return s.length < 2
      ? (q[0] ? (b = q[0].x, function(t) { return b(t) + ""; })
      : function() { return b; })
      : (b = q.length, function(t) {
          for (var i = 0, o; i < b; ++i) s[(o = q[i]).i] = o.x(t);
          return s.join("");
        });
}

var d3_interpolate_numberA = /[-+]?(?:\d+\.?\d*|\.?\d+)(?:[eE][-+]?\d+)?/g,
    d3_interpolate_numberB = new RegExp(d3_interpolate_numberA.source, "g");

d3.interpolate = d3_interpolate;

function d3_interpolate(a, b) {
  var i = d3.interpolators.length, f;
  while (--i >= 0 && !(f = d3.interpolators[i](a, b)));
  return f;
}

d3.interpolators = [
  function(a, b) {
    var t = typeof b;
    return (t === "string" ? (d3_rgb_names.has(b) || /^(#|rgb\(|hsl\()/.test(b) ? d3_interpolateRgb : d3_interpolateString)
        : b instanceof d3_color ? d3_interpolateRgb
        : Array.isArray(b) ? d3_interpolateArray
        : t === "object" && isNaN(b) ? d3_interpolateObject
        : d3_interpolateNumber)(a, b);
  }
];

d3.interpolateArray = d3_interpolateArray;

function d3_interpolateArray(a, b) {
  var x = [],
      c = [],
      na = a.length,
      nb = b.length,
      n0 = Math.min(a.length, b.length),
      i;
  for (i = 0; i < n0; ++i) x.push(d3_interpolate(a[i], b[i]));
  for (; i < na; ++i) c[i] = a[i];
  for (; i < nb; ++i) c[i] = b[i];
  return function(t) {
    for (i = 0; i < n0; ++i) c[i] = x[i](t);
    return c;
  };
}

var d3_ease_default = function() { return d3_identity; };

var d3_ease = d3.map({
  linear: d3_ease_default,
  poly: d3_ease_poly,
  quad: function() { return d3_ease_quad; },
  cubic: function() { return d3_ease_cubic; },
  sin: function() { return d3_ease_sin; },
  exp: function() { return d3_ease_exp; },
  circle: function() { return d3_ease_circle; },
  elastic: d3_ease_elastic,
  back: d3_ease_back,
  bounce: function() { return d3_ease_bounce; }
});

var d3_ease_mode = d3.map({
  "in": d3_identity,
  "out": d3_ease_reverse,
  "in-out": d3_ease_reflect,
  "out-in": function(f) { return d3_ease_reflect(d3_ease_reverse(f)); }
});

d3.ease = function(name) {
  var i = name.indexOf("-"),
      t = i >= 0 ? name.slice(0, i) : name,
      m = i >= 0 ? name.slice(i + 1) : "in";
  t = d3_ease.get(t) || d3_ease_default;
  m = d3_ease_mode.get(m) || d3_identity;
  return d3_ease_clamp(m(t.apply(null, d3_arraySlice.call(arguments, 1))));
};

function d3_ease_clamp(f) {
  return function(t) {
    return t <= 0 ? 0 : t >= 1 ? 1 : f(t);
  };
}

function d3_ease_reverse(f) {
  return function(t) {
    return 1 - f(1 - t);
  };
}

function d3_ease_reflect(f) {
  return function(t) {
    return .5 * (t < .5 ? f(2 * t) : (2 - f(2 - 2 * t)));
  };
}

function d3_ease_quad(t) {
  return t * t;
}

function d3_ease_cubic(t) {
  return t * t * t;
}

// Optimized clamp(reflect(poly(3))).
function d3_ease_cubicInOut(t) {
  if (t <= 0) return 0;
  if (t >= 1) return 1;
  var t2 = t * t, t3 = t2 * t;
  return 4 * (t < .5 ? t3 : 3 * (t - t2) + t3 - .75);
}

function d3_ease_poly(e) {
  return function(t) {
    return Math.pow(t, e);
  };
}

function d3_ease_sin(t) {
  return 1 - Math.cos(t * halfπ);
}

function d3_ease_exp(t) {
  return Math.pow(2, 10 * (t - 1));
}

function d3_ease_circle(t) {
  return 1 - Math.sqrt(1 - t * t);
}

function d3_ease_elastic(a, p) {
  var s;
  if (arguments.length < 2) p = 0.45;
  if (arguments.length) s = p / τ * Math.asin(1 / a);
  else a = 1, s = p / 4;
  return function(t) {
    return 1 + a * Math.pow(2, -10 * t) * Math.sin((t - s) * τ / p);
  };
}

function d3_ease_back(s) {
  if (!s) s = 1.70158;
  return function(t) {
    return t * t * ((s + 1) * t - s);
  };
}

function d3_ease_bounce(t) {
  return t < 1 / 2.75 ? 7.5625 * t * t
      : t < 2 / 2.75 ? 7.5625 * (t -= 1.5 / 2.75) * t + .75
      : t < 2.5 / 2.75 ? 7.5625 * (t -= 2.25 / 2.75) * t + .9375
      : 7.5625 * (t -= 2.625 / 2.75) * t + .984375;
}

d3.interpolateHcl = d3_interpolateHcl;

function d3_interpolateHcl(a, b) {
  a = d3.hcl(a);
  b = d3.hcl(b);
  var ah = a.h,
      ac = a.c,
      al = a.l,
      bh = b.h - ah,
      bc = b.c - ac,
      bl = b.l - al;
  if (isNaN(bc)) bc = 0, ac = isNaN(ac) ? b.c : ac;
  if (isNaN(bh)) bh = 0, ah = isNaN(ah) ? b.h : ah;
  else if (bh > 180) bh -= 360; else if (bh < -180) bh += 360; // shortest path
  return function(t) {
    return d3_hcl_lab(ah + bh * t, ac + bc * t, al + bl * t) + "";
  };
}

d3.interpolateHsl = d3_interpolateHsl;

function d3_interpolateHsl(a, b) {
  a = d3.hsl(a);
  b = d3.hsl(b);
  var ah = a.h,
      as = a.s,
      al = a.l,
      bh = b.h - ah,
      bs = b.s - as,
      bl = b.l - al;
  if (isNaN(bs)) bs = 0, as = isNaN(as) ? b.s : as;
  if (isNaN(bh)) bh = 0, ah = isNaN(ah) ? b.h : ah;
  else if (bh > 180) bh -= 360; else if (bh < -180) bh += 360; // shortest path
  return function(t) {
    return d3_hsl_rgb(ah + bh * t, as + bs * t, al + bl * t) + "";
  };
}

d3.interpolateLab = d3_interpolateLab;

function d3_interpolateLab(a, b) {
  a = d3.lab(a);
  b = d3.lab(b);
  var al = a.l,
      aa = a.a,
      ab = a.b,
      bl = b.l - al,
      ba = b.a - aa,
      bb = b.b - ab;
  return function(t) {
    return d3_lab_rgb(al + bl * t, aa + ba * t, ab + bb * t) + "";
  };
}
d3.interpolateRound = d3_interpolateRound;

function d3_interpolateRound(a, b) {
  b -= a;
  return function(t) { return Math.round(a + b * t); };
}

d3.transform = function(string) {
  var g = d3_document.createElementNS(d3.ns.prefix.svg, "g");
  return (d3.transform = function(string) {
    if (string != null) {
      g.setAttribute("transform", string);
      var t = g.transform.baseVal.consolidate();
    }
    return new d3_transform(t ? t.matrix : d3_transformIdentity);
  })(string);
};

// Compute x-scale and normalize the first row.
// Compute shear and make second row orthogonal to first.
// Compute y-scale and normalize the second row.
// Finally, compute the rotation.
function d3_transform(m) {
  var r0 = [m.a, m.b],
      r1 = [m.c, m.d],
      kx = d3_transformNormalize(r0),
      kz = d3_transformDot(r0, r1),
      ky = d3_transformNormalize(d3_transformCombine(r1, r0, -kz)) || 0;
  if (r0[0] * r1[1] < r1[0] * r0[1]) {
    r0[0] *= -1;
    r0[1] *= -1;
    kx *= -1;
    kz *= -1;
  }
  this.rotate = (kx ? Math.atan2(r0[1], r0[0]) : Math.atan2(-r1[0], r1[1])) * d3_degrees;
  this.translate = [m.e, m.f];
  this.scale = [kx, ky];
  this.skew = ky ? Math.atan2(kz, ky) * d3_degrees : 0;
};

d3_transform.prototype.toString = function() {
  return "translate(" + this.translate
      + ")rotate(" + this.rotate
      + ")skewX(" + this.skew
      + ")scale(" + this.scale
      + ")";
};

function d3_transformDot(a, b) {
  return a[0] * b[0] + a[1] * b[1];
}

function d3_transformNormalize(a) {
  var k = Math.sqrt(d3_transformDot(a, a));
  if (k) {
    a[0] /= k;
    a[1] /= k;
  }
  return k;
}

function d3_transformCombine(a, b, k) {
  a[0] += k * b[0];
  a[1] += k * b[1];
  return a;
}

var d3_transformIdentity = {a: 1, b: 0, c: 0, d: 1, e: 0, f: 0};

d3.interpolateTransform = d3_interpolateTransform;

function d3_interpolateTransform(a, b) {
  var s = [], // string constants and placeholders
      q = [], // number interpolators
      n,
      A = d3.transform(a),
      B = d3.transform(b),
      ta = A.translate,
      tb = B.translate,
      ra = A.rotate,
      rb = B.rotate,
      wa = A.skew,
      wb = B.skew,
      ka = A.scale,
      kb = B.scale;

  if (ta[0] != tb[0] || ta[1] != tb[1]) {
    s.push("translate(", null, ",", null, ")");
    q.push({i: 1, x: d3_interpolateNumber(ta[0], tb[0])}, {i: 3, x: d3_interpolateNumber(ta[1], tb[1])});
  } else if (tb[0] || tb[1]) {
    s.push("translate(" + tb + ")");
  } else {
    s.push("");
  }

  if (ra != rb) {
    if (ra - rb > 180) rb += 360; else if (rb - ra > 180) ra += 360; // shortest path
    q.push({i: s.push(s.pop() + "rotate(", null, ")") - 2, x: d3_interpolateNumber(ra, rb)});
  } else if (rb) {
    s.push(s.pop() + "rotate(" + rb + ")");
  }

  if (wa != wb) {
    q.push({i: s.push(s.pop() + "skewX(", null, ")") - 2, x: d3_interpolateNumber(wa, wb)});
  } else if (wb) {
    s.push(s.pop() + "skewX(" + wb + ")");
  }

  if (ka[0] != kb[0] || ka[1] != kb[1]) {
    n = s.push(s.pop() + "scale(", null, ",", null, ")");
    q.push({i: n - 4, x: d3_interpolateNumber(ka[0], kb[0])}, {i: n - 2, x: d3_interpolateNumber(ka[1], kb[1])});
  } else if (kb[0] != 1 || kb[1] != 1) {
    s.push(s.pop() + "scale(" + kb + ")");
  }

  n = q.length;
  return function(t) {
    var i = -1, o;
    while (++i < n) s[(o = q[i]).i] = o.x(t);
    return s.join("");
  };
}
function d3_uninterpolateNumber(a, b) {
  b = b - (a = +a) ? 1 / (b - a) : 0;
  return function(x) { return (x - a) * b; };
}

function d3_uninterpolateClamp(a, b) {
  b = b - (a = +a) ? 1 / (b - a) : 0;
  return function(x) { return Math.max(0, Math.min(1, (x - a) * b)); };
}
d3.layout = {};

// Implements hierarchical edge bundling using Holten's algorithm. For each
// input link, a path is computed that travels through the tree, up the parent
// hierarchy to the least common ancestor, and then back down to the destination
// node. Each path is simply an array of nodes.
d3.layout.bundle = function() {
  return function(links) {
    var paths = [],
        i = -1,
        n = links.length;
    while (++i < n) paths.push(d3_layout_bundlePath(links[i]));
    return paths;
  };
};

function d3_layout_bundlePath(link) {
  var start = link.source,
      end = link.target,
      lca = d3_layout_bundleLeastCommonAncestor(start, end),
      points = [start];
  while (start !== lca) {
    start = start.parent;
    points.push(start);
  }
  var k = points.length;
  while (end !== lca) {
    points.splice(k, 0, end);
    end = end.parent;
  }
  return points;
}

function d3_layout_bundleAncestors(node) {
  var ancestors = [],
      parent = node.parent;
  while (parent != null) {
    ancestors.push(node);
    node = parent;
    parent = parent.parent;
  }
  ancestors.push(node);
  return ancestors;
}

function d3_layout_bundleLeastCommonAncestor(a, b) {
  if (a === b) return a;
  var aNodes = d3_layout_bundleAncestors(a),
      bNodes = d3_layout_bundleAncestors(b),
      aNode = aNodes.pop(),
      bNode = bNodes.pop(),
      sharedNode = null;
  while (aNode === bNode) {
    sharedNode = aNode;
    aNode = aNodes.pop();
    bNode = bNodes.pop();
  }
  return sharedNode;
}

d3.layout.chord = function() {
  var chord = {},
      chords,
      groups,
      matrix,
      n,
      padding = 0,
      sortGroups,
      sortSubgroups,
      sortChords;

  function relayout() {
    var subgroups = {},
        groupSums = [],
        groupIndex = d3.range(n),
        subgroupIndex = [],
        k,
        x,
        x0,
        i,
        j;

    chords = [];
    groups = [];

    // Compute the sum.
    k = 0, i = -1; while (++i < n) {
      x = 0, j = -1; while (++j < n) {
        x += matrix[i][j];
      }
      groupSums.push(x);
      subgroupIndex.push(d3.range(n));
      k += x;
    }

    // Sort groups…
    if (sortGroups) {
      groupIndex.sort(function(a, b) {
        return sortGroups(groupSums[a], groupSums[b]);
      });
    }

    // Sort subgroups…
    if (sortSubgroups) {
      subgroupIndex.forEach(function(d, i) {
        d.sort(function(a, b) {
          return sortSubgroups(matrix[i][a], matrix[i][b]);
        });
      });
    }

    // Convert the sum to scaling factor for [0, 2pi].
    // TODO Allow start and end angle to be specified.
    // TODO Allow padding to be specified as percentage?
    k = (τ - padding * n) / k;

    // Compute the start and end angle for each group and subgroup.
    // Note: Opera has a bug reordering object literal properties!
    x = 0, i = -1; while (++i < n) {
      x0 = x, j = -1; while (++j < n) {
        var di = groupIndex[i],
            dj = subgroupIndex[di][j],
            v = matrix[di][dj],
            a0 = x,
            a1 = x += v * k;
        subgroups[di + "-" + dj] = {
          index: di,
          subindex: dj,
          startAngle: a0,
          endAngle: a1,
          value: v
        };
      }
      groups[di] = {
        index: di,
        startAngle: x0,
        endAngle: x,
        value: (x - x0) / k
      };
      x += padding;
    }

    // Generate chords for each (non-empty) subgroup-subgroup link.
    i = -1; while (++i < n) {
      j = i - 1; while (++j < n) {
        var source = subgroups[i + "-" + j],
            target = subgroups[j + "-" + i];
        if (source.value || target.value) {
          chords.push(source.value < target.value
              ? {source: target, target: source}
              : {source: source, target: target});
        }
      }
    }

    if (sortChords) resort();
  }

  function resort() {
    chords.sort(function(a, b) {
      return sortChords(
          (a.source.value + a.target.value) / 2,
          (b.source.value + b.target.value) / 2);
    });
  }

  chord.matrix = function(x) {
    if (!arguments.length) return matrix;
    n = (matrix = x) && matrix.length;
    chords = groups = null;
    return chord;
  };

  chord.padding = function(x) {
    if (!arguments.length) return padding;
    padding = x;
    chords = groups = null;
    return chord;
  };

  chord.sortGroups = function(x) {
    if (!arguments.length) return sortGroups;
    sortGroups = x;
    chords = groups = null;
    return chord;
  };

  chord.sortSubgroups = function(x) {
    if (!arguments.length) return sortSubgroups;
    sortSubgroups = x;
    chords = null;
    return chord;
  };

  chord.sortChords = function(x) {
    if (!arguments.length) return sortChords;
    sortChords = x;
    if (chords) resort();
    return chord;
  };

  chord.chords = function() {
    if (!chords) relayout();
    return chords;
  };

  chord.groups = function() {
    if (!groups) relayout();
    return groups;
  };

  return chord;
};

// A rudimentary force layout using Gauss-Seidel.
d3.layout.force = function() {
  var force = {},
      event = d3.dispatch("start", "tick", "end"),
      size = [1, 1],
      drag,
      alpha,
      friction = .9,
      linkDistance = d3_layout_forceLinkDistance,
      linkStrength = d3_layout_forceLinkStrength,
      charge = -30,
      chargeDistance2 = d3_layout_forceChargeDistance2,
      gravity = .1,
      theta2 = .64,
      nodes = [],
      links = [],
      distances,
      strengths,
      charges;

  function repulse(node) {
    return function(quad, x1, _, x2) {
      if (quad.point !== node) {
        var dx = quad.cx - node.x,
            dy = quad.cy - node.y,
            dw = x2 - x1,
            dn = dx * dx + dy * dy;

        /* Barnes-Hut criterion. */
        if (dw * dw / theta2 < dn) {
          if (dn < chargeDistance2) {
            var k = quad.charge / dn;
            node.px -= dx * k;
            node.py -= dy * k;
          }
          return true;
        }

        if (quad.point && dn && dn < chargeDistance2) {
          var k = quad.pointCharge / dn;
          node.px -= dx * k;
          node.py -= dy * k;
        }
      }
      return !quad.charge;
    };
  }

  force.tick = function() {
    // simulated annealing, basically
    if ((alpha *= .99) < .005) {
      event.end({type: "end", alpha: alpha = 0});
      return true;
    }

    var n = nodes.length,
        m = links.length,
        q,
        i, // current index
        o, // current object
        s, // current source
        t, // current target
        l, // current distance
        k, // current force
        x, // x-distance
        y; // y-distance

    // gauss-seidel relaxation for links
    for (i = 0; i < m; ++i) {
      o = links[i];
      s = o.source;
      t = o.target;
      x = t.x - s.x;
      y = t.y - s.y;
      if (l = (x * x + y * y)) {
        l = alpha * strengths[i] * ((l = Math.sqrt(l)) - distances[i]) / l;
        x *= l;
        y *= l;
        t.x -= x * (k = s.weight / (t.weight + s.weight));
        t.y -= y * k;
        s.x += x * (k = 1 - k);
        s.y += y * k;
      }
    }

    // apply gravity forces
    if (k = alpha * gravity) {
      x = size[0] / 2;
      y = size[1] / 2;
      i = -1; if (k) while (++i < n) {
        o = nodes[i];
        o.x += (x - o.x) * k;
        o.y += (y - o.y) * k;
      }
    }

    // compute quadtree center of mass and apply charge forces
    if (charge) {
      d3_layout_forceAccumulate(q = d3.geom.quadtree(nodes), alpha, charges);
      i = -1; while (++i < n) {
        if (!(o = nodes[i]).fixed) {
          q.visit(repulse(o));
        }
      }
    }

    // position verlet integration
    i = -1; while (++i < n) {
      o = nodes[i];
      if (o.fixed) {
        o.x = o.px;
        o.y = o.py;
      } else {
        o.x -= (o.px - (o.px = o.x)) * friction;
        o.y -= (o.py - (o.py = o.y)) * friction;
      }
    }

    event.tick({type: "tick", alpha: alpha});
  };

  force.nodes = function(x) {
    if (!arguments.length) return nodes;
    nodes = x;
    return force;
  };

  force.links = function(x) {
    if (!arguments.length) return links;
    links = x;
    return force;
  };

  force.size = function(x) {
    if (!arguments.length) return size;
    size = x;
    return force;
  };

  force.linkDistance = function(x) {
    if (!arguments.length) return linkDistance;
    linkDistance = typeof x === "function" ? x : +x;
    return force;
  };

  // For backwards-compatibility.
  force.distance = force.linkDistance;

  force.linkStrength = function(x) {
    if (!arguments.length) return linkStrength;
    linkStrength = typeof x === "function" ? x : +x;
    return force;
  };

  force.friction = function(x) {
    if (!arguments.length) return friction;
    friction = +x;
    return force;
  };

  force.charge = function(x) {
    if (!arguments.length) return charge;
    charge = typeof x === "function" ? x : +x;
    return force;
  };

  force.chargeDistance = function(x) {
    if (!arguments.length) return Math.sqrt(chargeDistance2);
    chargeDistance2 = x * x;
    return force;
  };

  force.gravity = function(x) {
    if (!arguments.length) return gravity;
    gravity = +x;
    return force;
  };

  force.theta = function(x) {
    if (!arguments.length) return Math.sqrt(theta2);
    theta2 = x * x;
    return force;
  };

  force.alpha = function(x) {
    if (!arguments.length) return alpha;

    x = +x;
    if (alpha) { // if we're already running
      if (x > 0) alpha = x; // we might keep it hot
      else alpha = 0; // or, next tick will dispatch "end"
    } else if (x > 0) { // otherwise, fire it up!
      event.start({type: "start", alpha: alpha = x});
      d3.timer(force.tick);
    }

    return force;
  };

  force.start = function() {
    var i,
        n = nodes.length,
        m = links.length,
        w = size[0],
        h = size[1],
        neighbors,
        o;

    for (i = 0; i < n; ++i) {
      (o = nodes[i]).index = i;
      o.weight = 0;
    }

    for (i = 0; i < m; ++i) {
      o = links[i];
      if (typeof o.source == "number") o.source = nodes[o.source];
      if (typeof o.target == "number") o.target = nodes[o.target];
      ++o.source.weight;
      ++o.target.weight;
    }

    for (i = 0; i < n; ++i) {
      o = nodes[i];
      if (isNaN(o.x)) o.x = position("x", w);
      if (isNaN(o.y)) o.y = position("y", h);
      if (isNaN(o.px)) o.px = o.x;
      if (isNaN(o.py)) o.py = o.y;
    }

    distances = [];
    if (typeof linkDistance === "function") for (i = 0; i < m; ++i) distances[i] = +linkDistance.call(this, links[i], i);
    else for (i = 0; i < m; ++i) distances[i] = linkDistance;

    strengths = [];
    if (typeof linkStrength === "function") for (i = 0; i < m; ++i) strengths[i] = +linkStrength.call(this, links[i], i);
    else for (i = 0; i < m; ++i) strengths[i] = linkStrength;

    charges = [];
    if (typeof charge === "function") for (i = 0; i < n; ++i) charges[i] = +charge.call(this, nodes[i], i);
    else for (i = 0; i < n; ++i) charges[i] = charge;

    // inherit node position from first neighbor with defined position
    // or if no such neighbors, initialize node position randomly
    // initialize neighbors lazily to avoid overhead when not needed
    function position(dimension, size) {
      if (!neighbors) {
        neighbors = new Array(n);
        for (j = 0; j < n; ++j) {
          neighbors[j] = [];
        }
        for (j = 0; j < m; ++j) {
          var o = links[j];
          neighbors[o.source.index].push(o.target);
          neighbors[o.target.index].push(o.source);
        }
      }
      var candidates = neighbors[i],
          j = -1,
          m = candidates.length,
          x;
      while (++j < m) if (!isNaN(x = candidates[j][dimension])) return x;
      return Math.random() * size;
    }

    return force.resume();
  };

  force.resume = function() {
    return force.alpha(.1);
  };

  force.stop = function() {
    return force.alpha(0);
  };

  // use `node.call(force.drag)` to make nodes draggable
  force.drag = function() {
    if (!drag) drag = d3.behavior.drag()
        .origin(d3_identity)
        .on("dragstart.force", d3_layout_forceDragstart)
        .on("drag.force", dragmove)
        .on("dragend.force", d3_layout_forceDragend);

    if (!arguments.length) return drag;

    this.on("mouseover.force", d3_layout_forceMouseover)
        .on("mouseout.force", d3_layout_forceMouseout)
        .call(drag);
  };

  function dragmove(d) {
    d.px = d3.event.x, d.py = d3.event.y;
    force.resume(); // restart annealing
  }

  return d3.rebind(force, event, "on");
};

// The fixed property has three bits:
// Bit 1 can be set externally (e.g., d.fixed = true) and show persist.
// Bit 2 stores the dragging state, from mousedown to mouseup.
// Bit 3 stores the hover state, from mouseover to mouseout.
// Dragend is a special case: it also clears the hover state.

function d3_layout_forceDragstart(d) {
  d.fixed |= 2; // set bit 2
}

function d3_layout_forceDragend(d) {
  d.fixed &= ~6; // unset bits 2 and 3
}

function d3_layout_forceMouseover(d) {
  d.fixed |= 4; // set bit 3
  d.px = d.x, d.py = d.y; // set velocity to zero
}

function d3_layout_forceMouseout(d) {
  d.fixed &= ~4; // unset bit 3
}

function d3_layout_forceAccumulate(quad, alpha, charges) {
  var cx = 0,
      cy = 0;
  quad.charge = 0;
  if (!quad.leaf) {
    var nodes = quad.nodes,
        n = nodes.length,
        i = -1,
        c;
    while (++i < n) {
      c = nodes[i];
      if (c == null) continue;
      d3_layout_forceAccumulate(c, alpha, charges);
      quad.charge += c.charge;
      cx += c.charge * c.cx;
      cy += c.charge * c.cy;
    }
  }
  if (quad.point) {
    // jitter internal nodes that are coincident
    if (!quad.leaf) {
      quad.point.x += Math.random() - .5;
      quad.point.y += Math.random() - .5;
    }
    var k = alpha * charges[quad.point.index];
    quad.charge += quad.pointCharge = k;
    cx += k * quad.point.x;
    cy += k * quad.point.y;
  }
  quad.cx = cx / quad.charge;
  quad.cy = cy / quad.charge;
}

var d3_layout_forceLinkDistance = 20,
    d3_layout_forceLinkStrength = 1,
    d3_layout_forceChargeDistance2 = Infinity;

d3.layout.hierarchy = function() {
  var sort = d3_layout_hierarchySort,
      children = d3_layout_hierarchyChildren,
      value = d3_layout_hierarchyValue;

  function hierarchy(root) {
    var stack = [root],
        nodes = [],
        node;

    root.depth = 0;

    while ((node = stack.pop()) != null) {
      nodes.push(node);
      if ((childs = children.call(hierarchy, node, node.depth)) && (n = childs.length)) {
        var n, childs, child;
        while (--n >= 0) {
          stack.push(child = childs[n]);
          child.parent = node;
          child.depth = node.depth + 1;
        }
        if (value) node.value = 0;
        node.children = childs;
      } else {
        if (value) node.value = +value.call(hierarchy, node, node.depth) || 0;
        delete node.children;
      }
    }

    d3_layout_hierarchyVisitAfter(root, function(node) {
      var childs, parent;
      if (sort && (childs = node.children)) childs.sort(sort);
      if (value && (parent = node.parent)) parent.value += node.value;
    });

    return nodes;
  }

  hierarchy.sort = function(x) {
    if (!arguments.length) return sort;
    sort = x;
    return hierarchy;
  };

  hierarchy.children = function(x) {
    if (!arguments.length) return children;
    children = x;
    return hierarchy;
  };

  hierarchy.value = function(x) {
    if (!arguments.length) return value;
    value = x;
    return hierarchy;
  };

  // Re-evaluates the `value` property for the specified hierarchy.
  hierarchy.revalue = function(root) {
    if (value) {
      d3_layout_hierarchyVisitBefore(root, function(node) {
        if (node.children) node.value = 0;
      });
      d3_layout_hierarchyVisitAfter(root, function(node) {
        var parent;
        if (!node.children) node.value = +value.call(hierarchy, node, node.depth) || 0;
        if (parent = node.parent) parent.value += node.value;
      });
    }
    return root;
  };

  return hierarchy;
};

// A method assignment helper for hierarchy subclasses.
function d3_layout_hierarchyRebind(object, hierarchy) {
  d3.rebind(object, hierarchy, "sort", "children", "value");

  // Add an alias for nodes and links, for convenience.
  object.nodes = object;
  object.links = d3_layout_hierarchyLinks;

  return object;
}

// Pre-order traversal.
function d3_layout_hierarchyVisitBefore(node, callback) {
  var nodes = [node];
  while ((node = nodes.pop()) != null) {
    callback(node);
    if ((children = node.children) && (n = children.length)) {
      var n, children;
      while (--n >= 0) nodes.push(children[n]);
    }
  }
}

// Post-order traversal.
function d3_layout_hierarchyVisitAfter(node, callback) {
  var nodes = [node], nodes2 = [];
  while ((node = nodes.pop()) != null) {
    nodes2.push(node);
    if ((children = node.children) && (n = children.length)) {
      var i = -1, n, children;
      while (++i < n) nodes.push(children[i]);
    }
  }
  while ((node = nodes2.pop()) != null) {
    callback(node);
  }
}

function d3_layout_hierarchyChildren(d) {
  return d.children;
}

function d3_layout_hierarchyValue(d) {
  return d.value;
}

function d3_layout_hierarchySort(a, b) {
  return b.value - a.value;
}

// Returns an array source+target objects for the specified nodes.
function d3_layout_hierarchyLinks(nodes) {
  return d3.merge(nodes.map(function(parent) {
    return (parent.children || []).map(function(child) {
      return {source: parent, target: child};
    });
  }));
}

d3.layout.partition = function() {
  var hierarchy = d3.layout.hierarchy(),
      size = [1, 1]; // width, height

  function position(node, x, dx, dy) {
    var children = node.children;
    node.x = x;
    node.y = node.depth * dy;
    node.dx = dx;
    node.dy = dy;
    if (children && (n = children.length)) {
      var i = -1,
          n,
          c,
          d;
      dx = node.value ? dx / node.value : 0;
      while (++i < n) {
        position(c = children[i], x, d = c.value * dx, dy);
        x += d;
      }
    }
  }

  function depth(node) {
    var children = node.children,
        d = 0;
    if (children && (n = children.length)) {
      var i = -1,
          n;
      while (++i < n) d = Math.max(d, depth(children[i]));
    }
    return 1 + d;
  }

  function partition(d, i) {
    var nodes = hierarchy.call(this, d, i);
    position(nodes[0], 0, size[0], size[1] / depth(nodes[0]));
    return nodes;
  }

  partition.size = function(x) {
    if (!arguments.length) return size;
    size = x;
    return partition;
  };

  return d3_layout_hierarchyRebind(partition, hierarchy);
};

d3.layout.pie = function() {
  var value = Number,
      sort = d3_layout_pieSortByValue,
      startAngle = 0,
      endAngle = τ;

  function pie(data) {

    // Compute the numeric values for each data element.
    var values = data.map(function(d, i) { return +value.call(pie, d, i); });

    // Compute the start angle.
    var a = +(typeof startAngle === "function"
        ? startAngle.apply(this, arguments)
        : startAngle);

    // Compute the angular scale factor: from value to radians.
    var k = ((typeof endAngle === "function"
        ? endAngle.apply(this, arguments)
        : endAngle) - a)
        / d3.sum(values);

    // Optionally sort the data.
    var index = d3.range(data.length);
    if (sort != null) index.sort(sort === d3_layout_pieSortByValue
        ? function(i, j) { return values[j] - values[i]; }
        : function(i, j) { return sort(data[i], data[j]); });

    // Compute the arcs!
    // They are stored in the original data's order.
    var arcs = [];
    index.forEach(function(i) {
      var d;
      arcs[i] = {
        data: data[i],
        value: d = values[i],
        startAngle: a,
        endAngle: a += d * k
      };
    });
    return arcs;
  }

  /**
   * Specifies the value function *x*, which returns a nonnegative numeric value
   * for each datum. The default value function is `Number`. The value function
   * is passed two arguments: the current datum and the current index.
   */
  pie.value = function(x) {
    if (!arguments.length) return value;
    value = x;
    return pie;
  };

  /**
   * Specifies a sort comparison operator *x*. The comparator is passed two data
   * elements from the data array, a and b; it returns a negative value if a is
   * less than b, a positive value if a is greater than b, and zero if a equals
   * b.
   */
  pie.sort = function(x) {
    if (!arguments.length) return sort;
    sort = x;
    return pie;
  };

  /**
   * Specifies the overall start angle of the pie chart. Defaults to 0. The
   * start angle can be specified either as a constant or as a function; in the
   * case of a function, it is evaluated once per array (as opposed to per
   * element).
   */
  pie.startAngle = function(x) {
    if (!arguments.length) return startAngle;
    startAngle = x;
    return pie;
  };

  /**
   * Specifies the overall end angle of the pie chart. Defaults to 2π. The
   * end angle can be specified either as a constant or as a function; in the
   * case of a function, it is evaluated once per array (as opposed to per
   * element).
   */
  pie.endAngle = function(x) {
    if (!arguments.length) return endAngle;
    endAngle = x;
    return pie;
  };

  return pie;
};

var d3_layout_pieSortByValue = {};

// data is two-dimensional array of x,y; we populate y0
d3.layout.stack = function() {
  var values = d3_identity,
      order = d3_layout_stackOrderDefault,
      offset = d3_layout_stackOffsetZero,
      out = d3_layout_stackOut,
      x = d3_layout_stackX,
      y = d3_layout_stackY;

  function stack(data, index) {

    // Convert series to canonical two-dimensional representation.
    var series = data.map(function(d, i) {
      return values.call(stack, d, i);
    });

    // Convert each series to canonical [[x,y]] representation.
    var points = series.map(function(d) {
      return d.map(function(v, i) {
        return [x.call(stack, v, i), y.call(stack, v, i)];
      });
    });

    // Compute the order of series, and permute them.
    var orders = order.call(stack, points, index);
    series = d3.permute(series, orders);
    points = d3.permute(points, orders);

    // Compute the baseline…
    var offsets = offset.call(stack, points, index);

    // And propagate it to other series.
    var n = series.length,
        m = series[0].length,
        i,
        j,
        o;
    for (j = 0; j < m; ++j) {
      out.call(stack, series[0][j], o = offsets[j], points[0][j][1]);
      for (i = 1; i < n; ++i) {
        out.call(stack, series[i][j], o += points[i - 1][j][1], points[i][j][1]);
      }
    }

    return data;
  }

  stack.values = function(x) {
    if (!arguments.length) return values;
    values = x;
    return stack;
  };

  stack.order = function(x) {
    if (!arguments.length) return order;
    order = typeof x === "function" ? x : d3_layout_stackOrders.get(x) || d3_layout_stackOrderDefault;
    return stack;
  };

  stack.offset = function(x) {
    if (!arguments.length) return offset;
    offset = typeof x === "function" ? x : d3_layout_stackOffsets.get(x) || d3_layout_stackOffsetZero;
    return stack;
  };

  stack.x = function(z) {
    if (!arguments.length) return x;
    x = z;
    return stack;
  };

  stack.y = function(z) {
    if (!arguments.length) return y;
    y = z;
    return stack;
  };

  stack.out = function(z) {
    if (!arguments.length) return out;
    out = z;
    return stack;
  };

  return stack;
};

function d3_layout_stackX(d) {
  return d.x;
}

function d3_layout_stackY(d) {
  return d.y;
}

function d3_layout_stackOut(d, y0, y) {
  d.y0 = y0;
  d.y = y;
}

var d3_layout_stackOrders = d3.map({

  "inside-out": function(data) {
    var n = data.length,
        i,
        j,
        max = data.map(d3_layout_stackMaxIndex),
        sums = data.map(d3_layout_stackReduceSum),
        index = d3.range(n).sort(function(a, b) { return max[a] - max[b]; }),
        top = 0,
        bottom = 0,
        tops = [],
        bottoms = [];
    for (i = 0; i < n; ++i) {
      j = index[i];
      if (top < bottom) {
        top += sums[j];
        tops.push(j);
      } else {
        bottom += sums[j];
        bottoms.push(j);
      }
    }
    return bottoms.reverse().concat(tops);
  },

  "reverse": function(data) {
    return d3.range(data.length).reverse();
  },

  "default": d3_layout_stackOrderDefault

});

var d3_layout_stackOffsets = d3.map({

  "silhouette": function(data) {
    var n = data.length,
        m = data[0].length,
        sums = [],
        max = 0,
        i,
        j,
        o,
        y0 = [];
    for (j = 0; j < m; ++j) {
      for (i = 0, o = 0; i < n; i++) o += data[i][j][1];
      if (o > max) max = o;
      sums.push(o);
    }
    for (j = 0; j < m; ++j) {
      y0[j] = (max - sums[j]) / 2;
    }
    return y0;
  },

  "wiggle": function(data) {
    var n = data.length,
        x = data[0],
        m = x.length,
        i,
        j,
        k,
        s1,
        s2,
        s3,
        dx,
        o,
        o0,
        y0 = [];
    y0[0] = o = o0 = 0;
    for (j = 1; j < m; ++j) {
      for (i = 0, s1 = 0; i < n; ++i) s1 += data[i][j][1];
      for (i = 0, s2 = 0, dx = x[j][0] - x[j - 1][0]; i < n; ++i) {
        for (k = 0, s3 = (data[i][j][1] - data[i][j - 1][1]) / (2 * dx); k < i; ++k) {
          s3 += (data[k][j][1] - data[k][j - 1][1]) / dx;
        }
        s2 += s3 * data[i][j][1];
      }
      y0[j] = o -= s1 ? s2 / s1 * dx : 0;
      if (o < o0) o0 = o;
    }
    for (j = 0; j < m; ++j) y0[j] -= o0;
    return y0;
  },

  "expand": function(data) {
    var n = data.length,
        m = data[0].length,
        k = 1 / n,
        i,
        j,
        o,
        y0 = [];
    for (j = 0; j < m; ++j) {
      for (i = 0, o = 0; i < n; i++) o += data[i][j][1];
      if (o) for (i = 0; i < n; i++) data[i][j][1] /= o;
      else for (i = 0; i < n; i++) data[i][j][1] = k;
    }
    for (j = 0; j < m; ++j) y0[j] = 0;
    return y0;
  },

  "zero": d3_layout_stackOffsetZero

});

function d3_layout_stackOrderDefault(data) {
  return d3.range(data.length);
}

function d3_layout_stackOffsetZero(data) {
  var j = -1,
      m = data[0].length,
      y0 = [];
  while (++j < m) y0[j] = 0;
  return y0;
}

function d3_layout_stackMaxIndex(array) {
  var i = 1,
      j = 0,
      v = array[0][1],
      k,
      n = array.length;
  for (; i < n; ++i) {
    if ((k = array[i][1]) > v) {
      j = i;
      v = k;
    }
  }
  return j;
}

function d3_layout_stackReduceSum(d) {
  return d.reduce(d3_layout_stackSum, 0);
}

function d3_layout_stackSum(p, d) {
  return p + d[1];
}

d3.layout.histogram = function() {
  var frequency = true,
      valuer = Number,
      ranger = d3_layout_histogramRange,
      binner = d3_layout_histogramBinSturges;

  function histogram(data, i) {
    var bins = [],
        values = data.map(valuer, this),
        range = ranger.call(this, values, i),
        thresholds = binner.call(this, range, values, i),
        bin,
        i = -1,
        n = values.length,
        m = thresholds.length - 1,
        k = frequency ? 1 : 1 / n,
        x;

    // Initialize the bins.
    while (++i < m) {
      bin = bins[i] = [];
      bin.dx = thresholds[i + 1] - (bin.x = thresholds[i]);
      bin.y = 0;
    }

    // Fill the bins, ignoring values outside the range.
    if (m > 0) {
      i = -1; while(++i < n) {
        x = values[i];
        if (x >= range[0] && x <= range[1]) {
          bin = bins[d3.bisect(thresholds, x, 1, m) - 1];
          bin.y += k;
          bin.push(data[i]);
        }
      }
    }

    return bins;
  }

  // Specifies how to extract a value from the associated data. The default
  // value function is `Number`, which is equivalent to the identity function.
  histogram.value = function(x) {
    if (!arguments.length) return valuer;
    valuer = x;
    return histogram;
  };

  // Specifies the range of the histogram. Values outside the specified range
  // will be ignored. The argument `x` may be specified either as a two-element
  // array representing the minimum and maximum value of the range, or as a
  // function that returns the range given the array of values and the current
  // index `i`. The default range is the extent (minimum and maximum) of the
  // values.
  histogram.range = function(x) {
    if (!arguments.length) return ranger;
    ranger = d3_functor(x);
    return histogram;
  };

  // Specifies how to bin values in the histogram. The argument `x` may be
  // specified as a number, in which case the range of values will be split
  // uniformly into the given number of bins. Or, `x` may be an array of
  // threshold values, defining the bins; the specified array must contain the
  // rightmost (upper) value, thus specifying n + 1 values for n bins. Or, `x`
  // may be a function which is evaluated, being passed the range, the array of
  // values, and the current index `i`, returning an array of thresholds. The
  // default bin function will divide the values into uniform bins using
  // Sturges' formula.
  histogram.bins = function(x) {
    if (!arguments.length) return binner;
    binner = typeof x === "number"
        ? function(range) { return d3_layout_histogramBinFixed(range, x); }
        : d3_functor(x);
    return histogram;
  };

  // Specifies whether the histogram's `y` value is a count (frequency) or a
  // probability (density). The default value is true.
  histogram.frequency = function(x) {
    if (!arguments.length) return frequency;
    frequency = !!x;
    return histogram;
  };

  return histogram;
};

function d3_layout_histogramBinSturges(range, values) {
  return d3_layout_histogramBinFixed(range, Math.ceil(Math.log(values.length) / Math.LN2 + 1));
}

function d3_layout_histogramBinFixed(range, n) {
  var x = -1,
      b = +range[0],
      m = (range[1] - b) / n,
      f = [];
  while (++x <= n) f[x] = m * x + b;
  return f;
}

function d3_layout_histogramRange(values) {
  return [d3.min(values), d3.max(values)];
}

d3.layout.pack = function() {
  var hierarchy = d3.layout.hierarchy().sort(d3_layout_packSort),
      padding = 0,
      size = [1, 1],
      radius;

  function pack(d, i) {
    var nodes = hierarchy.call(this, d, i),
        root = nodes[0],
        w = size[0],
        h = size[1],
        r = radius == null ? Math.sqrt : typeof radius === "function" ? radius : function() { return radius; };

    // Recursively compute the layout.
    root.x = root.y = 0;
    d3_layout_hierarchyVisitAfter(root, function(d) { d.r = +r(d.value); });
    d3_layout_hierarchyVisitAfter(root, d3_layout_packSiblings);

    // When padding, recompute the layout using scaled padding.
    if (padding) {
      var dr = padding * (radius ? 1 : Math.max(2 * root.r / w, 2 * root.r / h)) / 2;
      d3_layout_hierarchyVisitAfter(root, function(d) { d.r += dr; });
      d3_layout_hierarchyVisitAfter(root, d3_layout_packSiblings);
      d3_layout_hierarchyVisitAfter(root, function(d) { d.r -= dr; });
    }

    // Translate and scale the layout to fit the requested size.
    d3_layout_packTransform(root, w / 2, h / 2, radius ? 1 : 1 / Math.max(2 * root.r / w, 2 * root.r / h));

    return nodes;
  }

  pack.size = function(_) {
    if (!arguments.length) return size;
    size = _;
    return pack;
  };

  pack.radius = function(_) {
    if (!arguments.length) return radius;
    radius = _ == null || typeof _ === "function" ? _ : +_;
    return pack;
  };

  pack.padding = function(_) {
    if (!arguments.length) return padding;
    padding = +_;
    return pack;
  };

  return d3_layout_hierarchyRebind(pack, hierarchy);
};

function d3_layout_packSort(a, b) {
  return a.value - b.value;
}

function d3_layout_packInsert(a, b) {
  var c = a._pack_next;
  a._pack_next = b;
  b._pack_prev = a;
  b._pack_next = c;
  c._pack_prev = b;
}

function d3_layout_packSplice(a, b) {
  a._pack_next = b;
  b._pack_prev = a;
}

function d3_layout_packIntersects(a, b) {
  var dx = b.x - a.x,
      dy = b.y - a.y,
      dr = a.r + b.r;
  return .999 * dr * dr > dx * dx + dy * dy; // relative error within epsilon
}

function d3_layout_packSiblings(node) {
  if (!(nodes = node.children) || !(n = nodes.length)) return;

  var nodes,
      xMin = Infinity,
      xMax = -Infinity,
      yMin = Infinity,
      yMax = -Infinity,
      a, b, c, i, j, k, n;

  function bound(node) {
    xMin = Math.min(node.x - node.r, xMin);
    xMax = Math.max(node.x + node.r, xMax);
    yMin = Math.min(node.y - node.r, yMin);
    yMax = Math.max(node.y + node.r, yMax);
  }

  // Create node links.
  nodes.forEach(d3_layout_packLink);

  // Create first node.
  a = nodes[0];
  a.x = -a.r;
  a.y = 0;
  bound(a);

  // Create second node.
  if (n > 1) {
    b = nodes[1];
    b.x = b.r;
    b.y = 0;
    bound(b);

    // Create third node and build chain.
    if (n > 2) {
      c = nodes[2];
      d3_layout_packPlace(a, b, c);
      bound(c);
      d3_layout_packInsert(a, c);
      a._pack_prev = c;
      d3_layout_packInsert(c, b);
      b = a._pack_next;

      // Now iterate through the rest.
      for (i = 3; i < n; i++) {
        d3_layout_packPlace(a, b, c = nodes[i]);

        // Search for the closest intersection.
        var isect = 0, s1 = 1, s2 = 1;
        for (j = b._pack_next; j !== b; j = j._pack_next, s1++) {
          if (d3_layout_packIntersects(j, c)) {
            isect = 1;
            break;
          }
        }
        if (isect == 1) {
          for (k = a._pack_prev; k !== j._pack_prev; k = k._pack_prev, s2++) {
            if (d3_layout_packIntersects(k, c)) {
              break;
            }
          }
        }

        // Update node chain.
        if (isect) {
          if (s1 < s2 || (s1 == s2 && b.r < a.r)) d3_layout_packSplice(a, b = j);
          else d3_layout_packSplice(a = k, b);
          i--;
        } else {
          d3_layout_packInsert(a, c);
          b = c;
          bound(c);
        }
      }
    }
  }

  // Re-center the circles and compute the encompassing radius.
  var cx = (xMin + xMax) / 2,
      cy = (yMin + yMax) / 2,
      cr = 0;
  for (i = 0; i < n; i++) {
    c = nodes[i];
    c.x -= cx;
    c.y -= cy;
    cr = Math.max(cr, c.r + Math.sqrt(c.x * c.x + c.y * c.y));
  }
  node.r = cr;

  // Remove node links.
  nodes.forEach(d3_layout_packUnlink);
}

function d3_layout_packLink(node) {
  node._pack_next = node._pack_prev = node;
}

function d3_layout_packUnlink(node) {
  delete node._pack_next;
  delete node._pack_prev;
}

function d3_layout_packTransform(node, x, y, k) {
  var children = node.children;
  node.x = (x += k * node.x);
  node.y = (y += k * node.y);
  node.r *= k;
  if (children) {
    var i = -1, n = children.length;
    while (++i < n) d3_layout_packTransform(children[i], x, y, k);
  }
}

function d3_layout_packPlace(a, b, c) {
  var db = a.r + c.r,
      dx = b.x - a.x,
      dy = b.y - a.y;
  if (db && (dx || dy)) {
    var da = b.r + c.r,
        dc = dx * dx + dy * dy;
    da *= da;
    db *= db;
    var x = .5 + (db - da) / (2 * dc),
        y = Math.sqrt(Math.max(0, 2 * da * (db + dc) - (db -= dc) * db - da * da)) / (2 * dc);
    c.x = a.x + x * dx + y * dy;
    c.y = a.y + x * dy - y * dx;
  } else {
    c.x = a.x + db;
    c.y = a.y;
  }
}

// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm
d3.layout.tree = function() {
  var hierarchy = d3.layout.hierarchy().sort(null).value(null),
      separation = d3_layout_treeSeparation,
      size = [1, 1], // width, height
      nodeSize = null;

  function tree(d, i) {
    var nodes = hierarchy.call(this, d, i),
        root0 = nodes[0],
        root1 = wrapTree(root0);

    // Compute the layout using Buchheim et al.'s algorithm.
    d3_layout_hierarchyVisitAfter(root1, firstWalk), root1.parent.m = -root1.z;
    d3_layout_hierarchyVisitBefore(root1, secondWalk);

    // If a fixed node size is specified, scale x and y.
    if (nodeSize) d3_layout_hierarchyVisitBefore(root0, sizeNode);

    // If a fixed tree size is specified, scale x and y based on the extent.
    // Compute the left-most, right-most, and depth-most nodes for extents.
    else {
      var left = root0,
          right = root0,
          bottom = root0;
      d3_layout_hierarchyVisitBefore(root0, function(node) {
        if (node.x < left.x) left = node;
        if (node.x > right.x) right = node;
        if (node.depth > bottom.depth) bottom = node;
      });
      var tx = separation(left, right) / 2 - left.x,
          kx = size[0] / (right.x + separation(right, left) / 2 + tx),
          ky = size[1] / (bottom.depth || 1);
      d3_layout_hierarchyVisitBefore(root0, function(node) {
        node.x = (node.x + tx) * kx;
        node.y = node.depth * ky;
      });
    }

    return nodes;
  }

  function wrapTree(root0) {
    var root1 = {A: null, children: [root0]},
        queue = [root1],
        node1;

    while ((node1 = queue.pop()) != null) {
      for (var children = node1.children, child, i = 0, n = children.length; i < n; ++i) {
        queue.push((children[i] = child = {
          _: children[i], // source node
          parent: node1,
          children: (child = children[i].children) && child.slice() || [],
          A: null, // default ancestor
          a: null, // ancestor
          z: 0, // prelim
          m: 0, // mod
          c: 0, // change
          s: 0, // shift
          t: null, // thread
          i: i // number
        }).a = child);
      }
    }

    return root1.children[0];
  }

  // FIRST WALK
  // Computes a preliminary x-coordinate for v. Before that, FIRST WALK is
  // applied recursively to the children of v, as well as the function
  // APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the
  // node v is placed to the midpoint of its outermost children.
  function firstWalk(v) {
    var children = v.children,
        siblings = v.parent.children,
        w = v.i ? siblings[v.i - 1] : null;
    if (children.length) {
      d3_layout_treeShift(v);
      var midpoint = (children[0].z + children[children.length - 1].z) / 2;
      if (w) {
        v.z = w.z + separation(v._, w._);
        v.m = v.z - midpoint;
      } else {
        v.z = midpoint;
      }
    } else if (w) {
      v.z = w.z + separation(v._, w._);
    }
    v.parent.A = apportion(v, w, v.parent.A || siblings[0]);
  }

  // SECOND WALK
  // Computes all real x-coordinates by summing up the modifiers recursively.
  function secondWalk(v) {
    v._.x = v.z + v.parent.m;
    v.m += v.parent.m;
  }

  // APPORTION
  // The core of the algorithm. Here, a new subtree is combined with the
  // previous subtrees. Threads are used to traverse the inside and outside
  // contours of the left and right subtree up to the highest common level. The
  // vertices used for the traversals are vi+, vi-, vo-, and vo+, where the
  // superscript o means outside and i means inside, the subscript - means left
  // subtree and + means right subtree. For summing up the modifiers along the
  // contour, we use respective variables si+, si-, so-, and so+. Whenever two
  // nodes of the inside contours conflict, we compute the left one of the
  // greatest uncommon ancestors using the function ANCESTOR and call MOVE
  // SUBTREE to shift the subtree and prepare the shifts of smaller subtrees.
  // Finally, we add a new thread (if necessary).
  function apportion(v, w, ancestor) {
    if (w) {
      var vip = v,
          vop = v,
          vim = w,
          vom = vip.parent.children[0],
          sip = vip.m,
          sop = vop.m,
          sim = vim.m,
          som = vom.m,
          shift;
      while (vim = d3_layout_treeRight(vim), vip = d3_layout_treeLeft(vip), vim && vip) {
        vom = d3_layout_treeLeft(vom);
        vop = d3_layout_treeRight(vop);
        vop.a = v;
        shift = vim.z + sim - vip.z - sip + separation(vim._, vip._);
        if (shift > 0) {
          d3_layout_treeMove(d3_layout_treeAncestor(vim, v, ancestor), v, shift);
          sip += shift;
          sop += shift;
        }
        sim += vim.m;
        sip += vip.m;
        som += vom.m;
        sop += vop.m;
      }
      if (vim && !d3_layout_treeRight(vop)) {
        vop.t = vim;
        vop.m += sim - sop;
      }
      if (vip && !d3_layout_treeLeft(vom)) {
        vom.t = vip;
        vom.m += sip - som;
        ancestor = v;
      }
    }
    return ancestor;
  }

  function sizeNode(node) {
    node.x *= size[0];
    node.y = node.depth * size[1];
  }

  tree.separation = function(x) {
    if (!arguments.length) return separation;
    separation = x;
    return tree;
  };

  tree.size = function(x) {
    if (!arguments.length) return nodeSize ? null : size;
    nodeSize = (size = x) == null ? sizeNode : null;
    return tree;
  };

  tree.nodeSize = function(x) {
    if (!arguments.length) return nodeSize ? size : null;
    nodeSize = (size = x) == null ? null : sizeNode;
    return tree;
  };

  return d3_layout_hierarchyRebind(tree, hierarchy);
};

function d3_layout_treeSeparation(a, b) {
  return a.parent == b.parent ? 1 : 2;
}

// function d3_layout_treeSeparationRadial(a, b) {
//   return (a.parent == b.parent ? 1 : 2) / a.depth;
// }

// NEXT LEFT
// This function is used to traverse the left contour of a subtree (or
// subforest). It returns the successor of v on this contour. This successor is
// either given by the leftmost child of v or by the thread of v. The function
// returns null if and only if v is on the highest level of its subtree.
function d3_layout_treeLeft(v) {
  var children = v.children;
  return children.length ? children[0] : v.t;
}

// NEXT RIGHT
// This function works analogously to NEXT LEFT.
function d3_layout_treeRight(v) {
  var children = v.children, n;
  return (n = children.length) ? children[n - 1] : v.t;
}

// MOVE SUBTREE
// Shifts the current subtree rooted at w+. This is done by increasing
// prelim(w+) and mod(w+) by shift.
function d3_layout_treeMove(wm, wp, shift) {
  var change = shift / (wp.i - wm.i);
  wp.c -= change;
  wp.s += shift;
  wm.c += change;
  wp.z += shift;
  wp.m += shift;
}

// EXECUTE SHIFTS
// All other shifts, applied to the smaller subtrees between w- and w+, are
// performed by this function. To prepare the shifts, we have to adjust
// change(w+), shift(w+), and change(w-).
function d3_layout_treeShift(v) {
  var shift = 0,
      change = 0,
      children = v.children,
      i = children.length,
      w;
  while (--i >= 0) {
    w = children[i];
    w.z += shift;
    w.m += shift;
    shift += w.s + (change += w.c);
  }
}

// ANCESTOR
// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise,
// returns the specified (default) ancestor.
function d3_layout_treeAncestor(vim, v, ancestor) {
  return vim.a.parent === v.parent ? vim.a : ancestor;
}

// Implements a hierarchical layout using the cluster (or dendrogram)
// algorithm.
d3.layout.cluster = function() {
  var hierarchy = d3.layout.hierarchy().sort(null).value(null),
      separation = d3_layout_treeSeparation,
      size = [1, 1], // width, height
      nodeSize = false;

  function cluster(d, i) {
    var nodes = hierarchy.call(this, d, i),
        root = nodes[0],
        previousNode,
        x = 0;

    // First walk, computing the initial x & y values.
    d3_layout_hierarchyVisitAfter(root, function(node) {
      var children = node.children;
      if (children && children.length) {
        node.x = d3_layout_clusterX(children);
        node.y = d3_layout_clusterY(children);
      } else {
        node.x = previousNode ? x += separation(node, previousNode) : 0;
        node.y = 0;
        previousNode = node;
      }
    });

    // Compute the left-most, right-most, and depth-most nodes for extents.
    var left = d3_layout_clusterLeft(root),
        right = d3_layout_clusterRight(root),
        x0 = left.x - separation(left, right) / 2,
        x1 = right.x + separation(right, left) / 2;

    // Second walk, normalizing x & y to the desired size.
    d3_layout_hierarchyVisitAfter(root, nodeSize ? function(node) {
      node.x = (node.x - root.x) * size[0];
      node.y = (root.y - node.y) * size[1];
    } : function(node) {
      node.x = (node.x - x0) / (x1 - x0) * size[0];
      node.y = (1 - (root.y ? node.y / root.y : 1)) * size[1];
    });

    return nodes;
  }

  cluster.separation = function(x) {
    if (!arguments.length) return separation;
    separation = x;
    return cluster;
  };

  cluster.size = function(x) {
    if (!arguments.length) return nodeSize ? null : size;
    nodeSize = (size = x) == null;
    return cluster;
  };

  cluster.nodeSize = function(x) {
    if (!arguments.length) return nodeSize ? size : null;
    nodeSize = (size = x) != null;
    return cluster;
  };

  return d3_layout_hierarchyRebind(cluster, hierarchy);
};

function d3_layout_clusterY(children) {
  return 1 + d3.max(children, function(child) {
    return child.y;
  });
}

function d3_layout_clusterX(children) {
  return children.reduce(function(x, child) {
    return x + child.x;
  }, 0) / children.length;
}

function d3_layout_clusterLeft(node) {
  var children = node.children;
  return children && children.length ? d3_layout_clusterLeft(children[0]) : node;
}

function d3_layout_clusterRight(node) {
  var children = node.children, n;
  return children && (n = children.length) ? d3_layout_clusterRight(children[n - 1]) : node;
}

// Squarified Treemaps by Mark Bruls, Kees Huizing, and Jarke J. van Wijk
// Modified to support a target aspect ratio by Jeff Heer
d3.layout.treemap = function() {
  var hierarchy = d3.layout.hierarchy(),
      round = Math.round,
      size = [1, 1], // width, height
      padding = null,
      pad = d3_layout_treemapPadNull,
      sticky = false,
      stickies,
      mode = "squarify",
      ratio = 0.5 * (1 + Math.sqrt(5)); // golden ratio

  // Compute the area for each child based on value & scale.
  function scale(children, k) {
    var i = -1,
        n = children.length,
        child,
        area;
    while (++i < n) {
      area = (child = children[i]).value * (k < 0 ? 0 : k);
      child.area = isNaN(area) || area <= 0 ? 0 : area;
    }
  }

  // Recursively arranges the specified node's children into squarified rows.
  function squarify(node) {
    var children = node.children;
    if (children && children.length) {
      var rect = pad(node),
          row = [],
          remaining = children.slice(), // copy-on-write
          child,
          best = Infinity, // the best row score so far
          score, // the current row score
          u = mode === "slice" ? rect.dx
            : mode === "dice" ? rect.dy
            : mode === "slice-dice" ? node.depth & 1 ? rect.dy : rect.dx
            : Math.min(rect.dx, rect.dy), // initial orientation
          n;
      scale(remaining, rect.dx * rect.dy / node.value);
      row.area = 0;
      while ((n = remaining.length) > 0) {
        row.push(child = remaining[n - 1]);
        row.area += child.area;
        if (mode !== "squarify" || (score = worst(row, u)) <= best) { // continue with this orientation
          remaining.pop();
          best = score;
        } else { // abort, and try a different orientation
          row.area -= row.pop().area;
          position(row, u, rect, false);
          u = Math.min(rect.dx, rect.dy);
          row.length = row.area = 0;
          best = Infinity;
        }
      }
      if (row.length) {
        position(row, u, rect, true);
        row.length = row.area = 0;
      }
      children.forEach(squarify);
    }
  }

  // Recursively resizes the specified node's children into existing rows.
  // Preserves the existing layout!
  function stickify(node) {
    var children = node.children;
    if (children && children.length) {
      var rect = pad(node),
          remaining = children.slice(), // copy-on-write
          child,
          row = [];
      scale(remaining, rect.dx * rect.dy / node.value);
      row.area = 0;
      while (child = remaining.pop()) {
        row.push(child);
        row.area += child.area;
        if (child.z != null) {
          position(row, child.z ? rect.dx : rect.dy, rect, !remaining.length);
          row.length = row.area = 0;
        }
      }
      children.forEach(stickify);
    }
  }

  // Computes the score for the specified row, as the worst aspect ratio.
  function worst(row, u) {
    var s = row.area,
        r,
        rmax = 0,
        rmin = Infinity,
        i = -1,
        n = row.length;
    while (++i < n) {
      if (!(r = row[i].area)) continue;
      if (r < rmin) rmin = r;
      if (r > rmax) rmax = r;
    }
    s *= s;
    u *= u;
    return s
        ? Math.max((u * rmax * ratio) / s, s / (u * rmin * ratio))
        : Infinity;
  }

  // Positions the specified row of nodes. Modifies `rect`.
  function position(row, u, rect, flush) {
    var i = -1,
        n = row.length,
        x = rect.x,
        y = rect.y,
        v = u ? round(row.area / u) : 0,
        o;
    if (u == rect.dx) { // horizontal subdivision
      if (flush || v > rect.dy) v = rect.dy; // over+underflow
      while (++i < n) {
        o = row[i];
        o.x = x;
        o.y = y;
        o.dy = v;
        x += o.dx = Math.min(rect.x + rect.dx - x, v ? round(o.area / v) : 0);
      }
      o.z = true;
      o.dx += rect.x + rect.dx - x; // rounding error
      rect.y += v;
      rect.dy -= v;
    } else { // vertical subdivision
      if (flush || v > rect.dx) v = rect.dx; // over+underflow
      while (++i < n) {
        o = row[i];
        o.x = x;
        o.y = y;
        o.dx = v;
        y += o.dy = Math.min(rect.y + rect.dy - y, v ? round(o.area / v) : 0);
      }
      o.z = false;
      o.dy += rect.y + rect.dy - y; // rounding error
      rect.x += v;
      rect.dx -= v;
    }
  }

  function treemap(d) {
    var nodes = stickies || hierarchy(d),
        root = nodes[0];
    root.x = 0;
    root.y = 0;
    root.dx = size[0];
    root.dy = size[1];
    if (stickies) hierarchy.revalue(root);
    scale([root], root.dx * root.dy / root.value);
    (stickies ? stickify : squarify)(root);
    if (sticky) stickies = nodes;
    return nodes;
  }

  treemap.size = function(x) {
    if (!arguments.length) return size;
    size = x;
    return treemap;
  };

  treemap.padding = function(x) {
    if (!arguments.length) return padding;

    function padFunction(node) {
      var p = x.call(treemap, node, node.depth);
      return p == null
          ? d3_layout_treemapPadNull(node)
          : d3_layout_treemapPad(node, typeof p === "number" ? [p, p, p, p] : p);
    }

    function padConstant(node) {
      return d3_layout_treemapPad(node, x);
    }

    var type;
    pad = (padding = x) == null ? d3_layout_treemapPadNull
        : (type = typeof x) === "function" ? padFunction
        : type === "number" ? (x = [x, x, x, x], padConstant)
        : padConstant;
    return treemap;
  };

  treemap.round = function(x) {
    if (!arguments.length) return round != Number;
    round = x ? Math.round : Number;
    return treemap;
  };

  treemap.sticky = function(x) {
    if (!arguments.length) return sticky;
    sticky = x;
    stickies = null;
    return treemap;
  };

  treemap.ratio = function(x) {
    if (!arguments.length) return ratio;
    ratio = x;
    return treemap;
  };

  treemap.mode = function(x) {
    if (!arguments.length) return mode;
    mode = x + "";
    return treemap;
  };

  return d3_layout_hierarchyRebind(treemap, hierarchy);
};

function d3_layout_treemapPadNull(node) {
  return {x: node.x, y: node.y, dx: node.dx, dy: node.dy};
}

function d3_layout_treemapPad(node, padding) {
  var x = node.x + padding[3],
      y = node.y + padding[0],
      dx = node.dx - padding[1] - padding[3],
      dy = node.dy - padding[0] - padding[2];
  if (dx < 0) { x += dx / 2; dx = 0; }
  if (dy < 0) { y += dy / 2; dy = 0; }
  return {x: x, y: y, dx: dx, dy: dy};
}
d3.random = {
  normal: function(µ, σ) {
    var n = arguments.length;
    if (n < 2) σ = 1;
    if (n < 1) µ = 0;
    return function() {
      var x, y, r;
      do {
        x = Math.random() * 2 - 1;
        y = Math.random() * 2 - 1;
        r = x * x + y * y;
      } while (!r || r > 1);
      return µ + σ * x * Math.sqrt(-2 * Math.log(r) / r);
    };
  },
  logNormal: function() {
    var random = d3.random.normal.apply(d3, arguments);
    return function() {
      return Math.exp(random());
    };
  },
  bates: function(m) {
    var random = d3.random.irwinHall(m);
    return function() {
      return random() / m;
    };
  },
  irwinHall: function(m) {
    return function() {
      for (var s = 0, j = 0; j < m; j++) s += Math.random();
      return s;
    };
  }
};
d3.scale = {};

function d3_scaleExtent(domain) {
  var start = domain[0], stop = domain[domain.length - 1];
  return start < stop ? [start, stop] : [stop, start];
}

function d3_scaleRange(scale) {
  return scale.rangeExtent ? scale.rangeExtent() : d3_scaleExtent(scale.range());
}
function d3_scale_bilinear(domain, range, uninterpolate, interpolate) {
  var u = uninterpolate(domain[0], domain[1]),
      i = interpolate(range[0], range[1]);
  return function(x) {
    return i(u(x));
  };
}

function d3_scale_nice(domain, nice) {
  var i0 = 0,
      i1 = domain.length - 1,
      x0 = domain[i0],
      x1 = domain[i1],
      dx;

  if (x1 < x0) {
    dx = i0, i0 = i1, i1 = dx;
    dx = x0, x0 = x1, x1 = dx;
  }

  domain[i0] = nice.floor(x0);
  domain[i1] = nice.ceil(x1);
  return domain;
}

function d3_scale_niceStep(step) {
  return step ? {
    floor: function(x) { return Math.floor(x / step) * step; },
    ceil: function(x) { return Math.ceil(x / step) * step; }
  } : d3_scale_niceIdentity;
}

var d3_scale_niceIdentity = {
  floor: d3_identity,
  ceil: d3_identity
};

function d3_scale_polylinear(domain, range, uninterpolate, interpolate) {
  var u = [],
      i = [],
      j = 0,
      k = Math.min(domain.length, range.length) - 1;

  // Handle descending domains.
  if (domain[k] < domain[0]) {
    domain = domain.slice().reverse();
    range = range.slice().reverse();
  }

  while (++j <= k) {
    u.push(uninterpolate(domain[j - 1], domain[j]));
    i.push(interpolate(range[j - 1], range[j]));
  }

  return function(x) {
    var j = d3.bisect(domain, x, 1, k) - 1;
    return i[j](u[j](x));
  };
}

d3.scale.linear = function() {
  return d3_scale_linear([0, 1], [0, 1], d3_interpolate, false);
};

function d3_scale_linear(domain, range, interpolate, clamp) {
  var output,
      input;

  function rescale() {
    var linear = Math.min(domain.length, range.length) > 2 ? d3_scale_polylinear : d3_scale_bilinear,
        uninterpolate = clamp ? d3_uninterpolateClamp : d3_uninterpolateNumber;
    output = linear(domain, range, uninterpolate, interpolate);
    input = linear(range, domain, uninterpolate, d3_interpolate);
    return scale;
  }

  function scale(x) {
    return output(x);
  }

  // Note: requires range is coercible to number!
  scale.invert = function(y) {
    return input(y);
  };

  scale.domain = function(x) {
    if (!arguments.length) return domain;
    domain = x.map(Number);
    return rescale();
  };

  scale.range = function(x) {
    if (!arguments.length) return range;
    range = x;
    return rescale();
  };

  scale.rangeRound = function(x) {
    return scale.range(x).interpolate(d3_interpolateRound);
  };

  scale.clamp = function(x) {
    if (!arguments.length) return clamp;
    clamp = x;
    return rescale();
  };

  scale.interpolate = function(x) {
    if (!arguments.length) return interpolate;
    interpolate = x;
    return rescale();
  };

  scale.ticks = function(m) {
    return d3_scale_linearTicks(domain, m);
  };

  scale.tickFormat = function(m, format) {
    return d3_scale_linearTickFormat(domain, m, format);
  };

  scale.nice = function(m) {
    d3_scale_linearNice(domain, m);
    return rescale();
  };

  scale.copy = function() {
    return d3_scale_linear(domain, range, interpolate, clamp);
  };

  return rescale();
}

function d3_scale_linearRebind(scale, linear) {
  return d3.rebind(scale, linear, "range", "rangeRound", "interpolate", "clamp");
}

function d3_scale_linearNice(domain, m) {
  return d3_scale_nice(domain, d3_scale_niceStep(d3_scale_linearTickRange(domain, m)[2]));
}

function d3_scale_linearTickRange(domain, m) {
  if (m == null) m = 10;

  var extent = d3_scaleExtent(domain),
      span = extent[1] - extent[0],
      step = Math.pow(10, Math.floor(Math.log(span / m) / Math.LN10)),
      err = m / span * step;

  // Filter ticks to get closer to the desired count.
  if (err <= .15) step *= 10;
  else if (err <= .35) step *= 5;
  else if (err <= .75) step *= 2;

  // Round start and stop values to step interval.
  extent[0] = Math.ceil(extent[0] / step) * step;
  extent[1] = Math.floor(extent[1] / step) * step + step * .5; // inclusive
  extent[2] = step;
  return extent;
}

function d3_scale_linearTicks(domain, m) {
  return d3.range.apply(d3, d3_scale_linearTickRange(domain, m));
}

function d3_scale_linearTickFormat(domain, m, format) {
  var range = d3_scale_linearTickRange(domain, m);
  if (format) {
    var match = d3_format_re.exec(format);
    match.shift();
    if (match[8] === "s") {
      var prefix = d3.formatPrefix(Math.max(abs(range[0]), abs(range[1])));
      if (!match[7]) match[7] = "." + d3_scale_linearPrecision(prefix.scale(range[2]));
      match[8] = "f";
      format = d3.format(match.join(""));
      return function(d) {
        return format(prefix.scale(d)) + prefix.symbol;
      };
    }
    if (!match[7]) match[7] = "." + d3_scale_linearFormatPrecision(match[8], range);
    format = match.join("");
  } else {
    format = ",." + d3_scale_linearPrecision(range[2]) + "f";
  }
  return d3.format(format);
}

var d3_scale_linearFormatSignificant = {s: 1, g: 1, p: 1, r: 1, e: 1};

// Returns the number of significant digits after the decimal point.
function d3_scale_linearPrecision(value) {
  return -Math.floor(Math.log(value) / Math.LN10 + .01);
}

// For some format types, the precision specifies the number of significant
// digits; for others, it specifies the number of digits after the decimal
// point. For significant format types, the desired precision equals one plus
// the difference between the decimal precision of the range’s maximum absolute
// value and the tick step’s decimal precision. For format "e", the digit before
// the decimal point counts as one.
function d3_scale_linearFormatPrecision(type, range) {
  var p = d3_scale_linearPrecision(range[2]);
  return type in d3_scale_linearFormatSignificant
      ? Math.abs(p - d3_scale_linearPrecision(Math.max(abs(range[0]), abs(range[1])))) + +(type !== "e")
      : p - (type === "%") * 2;
}

d3.scale.log = function() {
  return d3_scale_log(d3.scale.linear().domain([0, 1]), 10, true, [1, 10]);
};

function d3_scale_log(linear, base, positive, domain) {

  function log(x) {
    return (positive ? Math.log(x < 0 ? 0 : x) : -Math.log(x > 0 ? 0 : -x)) / Math.log(base);
  }

  function pow(x) {
    return positive ? Math.pow(base, x) : -Math.pow(base, -x);
  }

  function scale(x) {
    return linear(log(x));
  }

  scale.invert = function(x) {
    return pow(linear.invert(x));
  };

  scale.domain = function(x) {
    if (!arguments.length) return domain;
    positive = x[0] >= 0;
    linear.domain((domain = x.map(Number)).map(log));
    return scale;
  };

  scale.base = function(_) {
    if (!arguments.length) return base;
    base = +_;
    linear.domain(domain.map(log));
    return scale;
  };

  scale.nice = function() {
    var niced = d3_scale_nice(domain.map(log), positive ? Math : d3_scale_logNiceNegative);
    linear.domain(niced); // do not modify the linear scale’s domain in-place!
    domain = niced.map(pow);
    return scale;
  };

  scale.ticks = function() {
    var extent = d3_scaleExtent(domain),
        ticks = [],
        u = extent[0],
        v = extent[1],
        i = Math.floor(log(u)),
        j = Math.ceil(log(v)),
        n = base % 1 ? 2 : base;
    if (isFinite(j - i)) {
      if (positive) {
        for (; i < j; i++) for (var k = 1; k < n; k++) ticks.push(pow(i) * k);
        ticks.push(pow(i));
      } else {
        ticks.push(pow(i));
        for (; i++ < j;) for (var k = n - 1; k > 0; k--) ticks.push(pow(i) * k);
      }
      for (i = 0; ticks[i] < u; i++) {} // strip small values
      for (j = ticks.length; ticks[j - 1] > v; j--) {} // strip big values
      ticks = ticks.slice(i, j);
    }
    return ticks;
  };

  scale.tickFormat = function(n, format) {
    if (!arguments.length) return d3_scale_logFormat;
    if (arguments.length < 2) format = d3_scale_logFormat;
    else if (typeof format !== "function") format = d3.format(format);
    var k = Math.max(.1, n / scale.ticks().length),
        f = positive ? (e = 1e-12, Math.ceil) : (e = -1e-12, Math.floor),
        e;
    return function(d) {
      return d / pow(f(log(d) + e)) <= k ? format(d) : "";
    };
  };

  scale.copy = function() {
    return d3_scale_log(linear.copy(), base, positive, domain);
  };

  return d3_scale_linearRebind(scale, linear);
}

var d3_scale_logFormat = d3.format(".0e"),
    d3_scale_logNiceNegative = {floor: function(x) { return -Math.ceil(-x); }, ceil: function(x) { return -Math.floor(-x); }};

d3.scale.pow = function() {
  return d3_scale_pow(d3.scale.linear(), 1, [0, 1]);
};

function d3_scale_pow(linear, exponent, domain) {
  var powp = d3_scale_powPow(exponent),
      powb = d3_scale_powPow(1 / exponent);

  function scale(x) {
    return linear(powp(x));
  }

  scale.invert = function(x) {
    return powb(linear.invert(x));
  };

  scale.domain = function(x) {
    if (!arguments.length) return domain;
    linear.domain((domain = x.map(Number)).map(powp));
    return scale;
  };

  scale.ticks = function(m) {
    return d3_scale_linearTicks(domain, m);
  };

  scale.tickFormat = function(m, format) {
    return d3_scale_linearTickFormat(domain, m, format);
  };

  scale.nice = function(m) {
    return scale.domain(d3_scale_linearNice(domain, m));
  };

  scale.exponent = function(x) {
    if (!arguments.length) return exponent;
    powp = d3_scale_powPow(exponent = x);
    powb = d3_scale_powPow(1 / exponent);
    linear.domain(domain.map(powp));
    return scale;
  };

  scale.copy = function() {
    return d3_scale_pow(linear.copy(), exponent, domain);
  };

  return d3_scale_linearRebind(scale, linear);
}

function d3_scale_powPow(e) {
  return function(x) {
    return x < 0 ? -Math.pow(-x, e) : Math.pow(x, e);
  };
}

d3.scale.sqrt = function() {
  return d3.scale.pow().exponent(.5);
};

d3.scale.ordinal = function() {
  return d3_scale_ordinal([], {t: "range", a: [[]]});
};

function d3_scale_ordinal(domain, ranger) {
  var index,
      range,
      rangeBand;

  function scale(x) {
    return range[((index.get(x) || (ranger.t === "range" ? index.set(x, domain.push(x)) : NaN)) - 1) % range.length];
  }

  function steps(start, step) {
    return d3.range(domain.length).map(function(i) { return start + step * i; });
  }

  scale.domain = function(x) {
    if (!arguments.length) return domain;
    domain = [];
    index = new d3_Map;
    var i = -1, n = x.length, xi;
    while (++i < n) if (!index.has(xi = x[i])) index.set(xi, domain.push(xi));
    return scale[ranger.t].apply(scale, ranger.a);
  };

  scale.range = function(x) {
    if (!arguments.length) return range;
    range = x;
    rangeBand = 0;
    ranger = {t: "range", a: arguments};
    return scale;
  };

  scale.rangePoints = function(x, padding) {
    if (arguments.length < 2) padding = 0;
    var start = x[0],
        stop = x[1],
        step = (stop - start) / (Math.max(1, domain.length - 1) + padding);
    range = steps(domain.length < 2 ? (start + stop) / 2 : start + step * padding / 2, step);
    rangeBand = 0;
    ranger = {t: "rangePoints", a: arguments};
    return scale;
  };

  scale.rangeBands = function(x, padding, outerPadding) {
    if (arguments.length < 2) padding = 0;
    if (arguments.length < 3) outerPadding = padding;
    var reverse = x[1] < x[0],
        start = x[reverse - 0],
        stop = x[1 - reverse],
        step = (stop - start) / (domain.length - padding + 2 * outerPadding);
    range = steps(start + step * outerPadding, step);
    if (reverse) range.reverse();
    rangeBand = step * (1 - padding);
    ranger = {t: "rangeBands", a: arguments};
    return scale;
  };

  scale.rangeRoundBands = function(x, padding, outerPadding) {
    if (arguments.length < 2) padding = 0;
    if (arguments.length < 3) outerPadding = padding;
    var reverse = x[1] < x[0],
        start = x[reverse - 0],
        stop = x[1 - reverse],
        step = Math.floor((stop - start) / (domain.length - padding + 2 * outerPadding)),
        error = stop - start - (domain.length - padding) * step;
    range = steps(start + Math.round(error / 2), step);
    if (reverse) range.reverse();
    rangeBand = Math.round(step * (1 - padding));
    ranger = {t: "rangeRoundBands", a: arguments};
    return scale;
  };

  scale.rangeBand = function() {
    return rangeBand;
  };

  scale.rangeExtent = function() {
    return d3_scaleExtent(ranger.a[0]);
  };

  scale.copy = function() {
    return d3_scale_ordinal(domain, ranger);
  };

  return scale.domain(domain);
}

/*
 * This product includes color specifications and designs developed by Cynthia
 * Brewer (http://colorbrewer.org/). See lib/colorbrewer for more information.
 */

d3.scale.category10 = function() {
  return d3.scale.ordinal().range(d3_category10);
};

d3.scale.category20 = function() {
  return d3.scale.ordinal().range(d3_category20);
};

d3.scale.category20b = function() {
  return d3.scale.ordinal().range(d3_category20b);
};

d3.scale.category20c = function() {
  return d3.scale.ordinal().range(d3_category20c);
};

var d3_category10 = [
  0x1f77b4, 0xff7f0e, 0x2ca02c, 0xd62728, 0x9467bd,
  0x8c564b, 0xe377c2, 0x7f7f7f, 0xbcbd22, 0x17becf
].map(d3_rgbString);

var d3_category20 = [
  0x1f77b4, 0xaec7e8,
  0xff7f0e, 0xffbb78,
  0x2ca02c, 0x98df8a,
  0xd62728, 0xff9896,
  0x9467bd, 0xc5b0d5,
  0x8c564b, 0xc49c94,
  0xe377c2, 0xf7b6d2,
  0x7f7f7f, 0xc7c7c7,
  0xbcbd22, 0xdbdb8d,
  0x17becf, 0x9edae5
].map(d3_rgbString);

var d3_category20b = [
  0x393b79, 0x5254a3, 0x6b6ecf, 0x9c9ede,
  0x637939, 0x8ca252, 0xb5cf6b, 0xcedb9c,
  0x8c6d31, 0xbd9e39, 0xe7ba52, 0xe7cb94,
  0x843c39, 0xad494a, 0xd6616b, 0xe7969c,
  0x7b4173, 0xa55194, 0xce6dbd, 0xde9ed6
].map(d3_rgbString);

var d3_category20c = [
  0x3182bd, 0x6baed6, 0x9ecae1, 0xc6dbef,
  0xe6550d, 0xfd8d3c, 0xfdae6b, 0xfdd0a2,
  0x31a354, 0x74c476, 0xa1d99b, 0xc7e9c0,
  0x756bb1, 0x9e9ac8, 0xbcbddc, 0xdadaeb,
  0x636363, 0x969696, 0xbdbdbd, 0xd9d9d9
].map(d3_rgbString);

d3.scale.quantile = function() {
  return d3_scale_quantile([], []);
};

function d3_scale_quantile(domain, range) {
  var thresholds;

  function rescale() {
    var k = 0,
        q = range.length;
    thresholds = [];
    while (++k < q) thresholds[k - 1] = d3.quantile(domain, k / q);
    return scale;
  }

  function scale(x) {
    if (!isNaN(x = +x)) return range[d3.bisect(thresholds, x)];
  }

  scale.domain = function(x) {
    if (!arguments.length) return domain;
    domain = x.filter(d3_number).sort(d3_ascending);
    return rescale();
  };

  scale.range = function(x) {
    if (!arguments.length) return range;
    range = x;
    return rescale();
  };

  scale.quantiles = function() {
    return thresholds;
  };

  scale.invertExtent = function(y) {
    y = range.indexOf(y);
    return y < 0 ? [NaN, NaN] : [
      y > 0 ? thresholds[y - 1] : domain[0],
      y < thresholds.length ? thresholds[y] : domain[domain.length - 1]
    ];
  };

  scale.copy = function() {
    return d3_scale_quantile(domain, range); // copy on write!
  };

  return rescale();
}

d3.scale.quantize = function() {
  return d3_scale_quantize(0, 1, [0, 1]);
};

function d3_scale_quantize(x0, x1, range) {
  var kx, i;

  function scale(x) {
    return range[Math.max(0, Math.min(i, Math.floor(kx * (x - x0))))];
  }

  function rescale() {
    kx = range.length / (x1 - x0);
    i = range.length - 1;
    return scale;
  }

  scale.domain = function(x) {
    if (!arguments.length) return [x0, x1];
    x0 = +x[0];
    x1 = +x[x.length - 1];
    return rescale();
  };

  scale.range = function(x) {
    if (!arguments.length) return range;
    range = x;
    return rescale();
  };

  scale.invertExtent = function(y) {
    y = range.indexOf(y);
    y = y < 0 ? NaN : y / kx + x0;
    return [y, y + 1 / kx];
  };

  scale.copy = function() {
    return d3_scale_quantize(x0, x1, range); // copy on write
  };

  return rescale();
}

d3.scale.threshold = function() {
  return d3_scale_threshold([.5], [0, 1]);
};

function d3_scale_threshold(domain, range) {

  function scale(x) {
    if (x <= x) return range[d3.bisect(domain, x)];
  }

  scale.domain = function(_) {
    if (!arguments.length) return domain;
    domain = _;
    return scale;
  };

  scale.range = function(_) {
    if (!arguments.length) return range;
    range = _;
    return scale;
  };

  scale.invertExtent = function(y) {
    y = range.indexOf(y);
    return [domain[y - 1], domain[y]];
  };

  scale.copy = function() {
    return d3_scale_threshold(domain, range);
  };

  return scale;
};

d3.scale.identity = function() {
  return d3_scale_identity([0, 1]);
};

function d3_scale_identity(domain) {

  function identity(x) { return +x; }

  identity.invert = identity;

  identity.domain = identity.range = function(x) {
    if (!arguments.length) return domain;
    domain = x.map(identity);
    return identity;
  };

  identity.ticks = function(m) {
    return d3_scale_linearTicks(domain, m);
  };

  identity.tickFormat = function(m, format) {
    return d3_scale_linearTickFormat(domain, m, format);
  };

  identity.copy = function() {
    return d3_scale_identity(domain);
  };

  return identity;
}
d3.svg = {};

d3.svg.arc = function() {
  var innerRadius = d3_svg_arcInnerRadius,
      outerRadius = d3_svg_arcOuterRadius,
      startAngle = d3_svg_arcStartAngle,
      endAngle = d3_svg_arcEndAngle;

  function arc() {
    var r0 = innerRadius.apply(this, arguments),
        r1 = outerRadius.apply(this, arguments),
        a0 = startAngle.apply(this, arguments) + d3_svg_arcOffset,
        a1 = endAngle.apply(this, arguments) + d3_svg_arcOffset,
        da = (a1 < a0 && (da = a0, a0 = a1, a1 = da), a1 - a0),
        df = da < π ? "0" : "1",
        c0 = Math.cos(a0),
        s0 = Math.sin(a0),
        c1 = Math.cos(a1),
        s1 = Math.sin(a1);
    return da >= d3_svg_arcMax
      ? (r0
      ? "M0," + r1
      + "A" + r1 + "," + r1 + " 0 1,1 0," + (-r1)
      + "A" + r1 + "," + r1 + " 0 1,1 0," + r1
      + "M0," + r0
      + "A" + r0 + "," + r0 + " 0 1,0 0," + (-r0)
      + "A" + r0 + "," + r0 + " 0 1,0 0," + r0
      + "Z"
      : "M0," + r1
      + "A" + r1 + "," + r1 + " 0 1,1 0," + (-r1)
      + "A" + r1 + "," + r1 + " 0 1,1 0," + r1
      + "Z")
      : (r0
      ? "M" + r1 * c0 + "," + r1 * s0
      + "A" + r1 + "," + r1 + " 0 " + df + ",1 " + r1 * c1 + "," + r1 * s1
      + "L" + r0 * c1 + "," + r0 * s1
      + "A" + r0 + "," + r0 + " 0 " + df + ",0 " + r0 * c0 + "," + r0 * s0
      + "Z"
      : "M" + r1 * c0 + "," + r1 * s0
      + "A" + r1 + "," + r1 + " 0 " + df + ",1 " + r1 * c1 + "," + r1 * s1
      + "L0,0"
      + "Z");
  }

  arc.innerRadius = function(v) {
    if (!arguments.length) return innerRadius;
    innerRadius = d3_functor(v);
    return arc;
  };

  arc.outerRadius = function(v) {
    if (!arguments.length) return outerRadius;
    outerRadius = d3_functor(v);
    return arc;
  };

  arc.startAngle = function(v) {
    if (!arguments.length) return startAngle;
    startAngle = d3_functor(v);
    return arc;
  };

  arc.endAngle = function(v) {
    if (!arguments.length) return endAngle;
    endAngle = d3_functor(v);
    return arc;
  };

  arc.centroid = function() {
    var r = (innerRadius.apply(this, arguments)
        + outerRadius.apply(this, arguments)) / 2,
        a = (startAngle.apply(this, arguments)
        + endAngle.apply(this, arguments)) / 2 + d3_svg_arcOffset;
    return [Math.cos(a) * r, Math.sin(a) * r];
  };

  return arc;
};

var d3_svg_arcOffset = -halfπ,
    d3_svg_arcMax = τ - ε;

function d3_svg_arcInnerRadius(d) {
  return d.innerRadius;
}

function d3_svg_arcOuterRadius(d) {
  return d.outerRadius;
}

function d3_svg_arcStartAngle(d) {
  return d.startAngle;
}

function d3_svg_arcEndAngle(d) {
  return d.endAngle;
}

function d3_svg_line(projection) {
  var x = d3_geom_pointX,
      y = d3_geom_pointY,
      defined = d3_true,
      interpolate = d3_svg_lineLinear,
      interpolateKey = interpolate.key,
      tension = .7;

  function line(data) {
    var segments = [],
        points = [],
        i = -1,
        n = data.length,
        d,
        fx = d3_functor(x),
        fy = d3_functor(y);

    function segment() {
      segments.push("M", interpolate(projection(points), tension));
    }

    while (++i < n) {
      if (defined.call(this, d = data[i], i)) {
        points.push([+fx.call(this, d, i), +fy.call(this, d, i)]);
      } else if (points.length) {
        segment();
        points = [];
      }
    }

    if (points.length) segment();

    return segments.length ? segments.join("") : null;
  }

  line.x = function(_) {
    if (!arguments.length) return x;
    x = _;
    return line;
  };

  line.y = function(_) {
    if (!arguments.length) return y;
    y = _;
    return line;
  };

  line.defined  = function(_) {
    if (!arguments.length) return defined;
    defined = _;
    return line;
  };

  line.interpolate = function(_) {
    if (!arguments.length) return interpolateKey;
    if (typeof _ === "function") interpolateKey = interpolate = _;
    else interpolateKey = (interpolate = d3_svg_lineInterpolators.get(_) || d3_svg_lineLinear).key;
    return line;
  };

  line.tension = function(_) {
    if (!arguments.length) return tension;
    tension = _;
    return line;
  };

  return line;
}

d3.svg.line = function() {
  return d3_svg_line(d3_identity);
};

// The various interpolators supported by the `line` class.
var d3_svg_lineInterpolators = d3.map({
  "linear": d3_svg_lineLinear,
  "linear-closed": d3_svg_lineLinearClosed,
  "step": d3_svg_lineStep,
  "step-before": d3_svg_lineStepBefore,
  "step-after": d3_svg_lineStepAfter,
  "basis": d3_svg_lineBasis,
  "basis-open": d3_svg_lineBasisOpen,
  "basis-closed": d3_svg_lineBasisClosed,
  "bundle": d3_svg_lineBundle,
  "cardinal": d3_svg_lineCardinal,
  "cardinal-open": d3_svg_lineCardinalOpen,
  "cardinal-closed": d3_svg_lineCardinalClosed,
  "monotone": d3_svg_lineMonotone
});

d3_svg_lineInterpolators.forEach(function(key, value) {
  value.key = key;
  value.closed = /-closed$/.test(key);
});

// Linear interpolation; generates "L" commands.
function d3_svg_lineLinear(points) {
  return points.join("L");
}

function d3_svg_lineLinearClosed(points) {
  return d3_svg_lineLinear(points) + "Z";
}

// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStep(points) {
  var i = 0,
      n = points.length,
      p = points[0],
      path = [p[0], ",", p[1]];
  while (++i < n) path.push("H", (p[0] + (p = points[i])[0]) / 2, "V", p[1]);
  if (n > 1) path.push("H", p[0]);
  return path.join("");
}

// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStepBefore(points) {
  var i = 0,
      n = points.length,
      p = points[0],
      path = [p[0], ",", p[1]];
  while (++i < n) path.push("V", (p = points[i])[1], "H", p[0]);
  return path.join("");
}

// Step interpolation; generates "H" and "V" commands.
function d3_svg_lineStepAfter(points) {
  var i = 0,
      n = points.length,
      p = points[0],
      path = [p[0], ",", p[1]];
  while (++i < n) path.push("H", (p = points[i])[0], "V", p[1]);
  return path.join("");
}

// Open cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinalOpen(points, tension) {
  return points.length < 4
      ? d3_svg_lineLinear(points)
      : points[1] + d3_svg_lineHermite(points.slice(1, points.length - 1),
        d3_svg_lineCardinalTangents(points, tension));
}

// Closed cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinalClosed(points, tension) {
  return points.length < 3
      ? d3_svg_lineLinear(points)
      : points[0] + d3_svg_lineHermite((points.push(points[0]), points),
        d3_svg_lineCardinalTangents([points[points.length - 2]]
        .concat(points, [points[1]]), tension));
}

// Cardinal spline interpolation; generates "C" commands.
function d3_svg_lineCardinal(points, tension) {
  return points.length < 3
      ? d3_svg_lineLinear(points)
      : points[0] + d3_svg_lineHermite(points,
        d3_svg_lineCardinalTangents(points, tension));
}

// Hermite spline construction; generates "C" commands.
function d3_svg_lineHermite(points, tangents) {
  if (tangents.length < 1
      || (points.length != tangents.length
      && points.length != tangents.length + 2)) {
    return d3_svg_lineLinear(points);
  }

  var quad = points.length != tangents.length,
      path = "",
      p0 = points[0],
      p = points[1],
      t0 = tangents[0],
      t = t0,
      pi = 1;

  if (quad) {
    path += "Q" + (p[0] - t0[0] * 2 / 3) + "," + (p[1] - t0[1] * 2 / 3)
        + "," + p[0] + "," + p[1];
    p0 = points[1];
    pi = 2;
  }

  if (tangents.length > 1) {
    t = tangents[1];
    p = points[pi];
    pi++;
    path += "C" + (p0[0] + t0[0]) + "," + (p0[1] + t0[1])
        + "," + (p[0] - t[0]) + "," + (p[1] - t[1])
        + "," + p[0] + "," + p[1];
    for (var i = 2; i < tangents.length; i++, pi++) {
      p = points[pi];
      t = tangents[i];
      path += "S" + (p[0] - t[0]) + "," + (p[1] - t[1])
          + "," + p[0] + "," + p[1];
    }
  }

  if (quad) {
    var lp = points[pi];
    path += "Q" + (p[0] + t[0] * 2 / 3) + "," + (p[1] + t[1] * 2 / 3)
        + "," + lp[0] + "," + lp[1];
  }

  return path;
}

// Generates tangents for a cardinal spline.
function d3_svg_lineCardinalTangents(points, tension) {
  var tangents = [],
      a = (1 - tension) / 2,
      p0,
      p1 = points[0],
      p2 = points[1],
      i = 1,
      n = points.length;
  while (++i < n) {
    p0 = p1;
    p1 = p2;
    p2 = points[i];
    tangents.push([a * (p2[0] - p0[0]), a * (p2[1] - p0[1])]);
  }
  return tangents;
}

// B-spline interpolation; generates "C" commands.
function d3_svg_lineBasis(points) {
  if (points.length < 3) return d3_svg_lineLinear(points);
  var i = 1,
      n = points.length,
      pi = points[0],
      x0 = pi[0],
      y0 = pi[1],
      px = [x0, x0, x0, (pi = points[1])[0]],
      py = [y0, y0, y0, pi[1]],
      path = [x0, ",", y0, "L", d3_svg_lineDot4(d3_svg_lineBasisBezier3, px), ",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, py)];
  points.push(points[n - 1]);
  while (++i <= n) {
    pi = points[i];
    px.shift(); px.push(pi[0]);
    py.shift(); py.push(pi[1]);
    d3_svg_lineBasisBezier(path, px, py);
  }
  points.pop();
  path.push("L", pi);
  return path.join("");
}

// Open B-spline interpolation; generates "C" commands.
function d3_svg_lineBasisOpen(points) {
  if (points.length < 4) return d3_svg_lineLinear(points);
  var path = [],
      i = -1,
      n = points.length,
      pi,
      px = [0],
      py = [0];
  while (++i < 3) {
    pi = points[i];
    px.push(pi[0]);
    py.push(pi[1]);
  }
  path.push(d3_svg_lineDot4(d3_svg_lineBasisBezier3, px)
    + "," + d3_svg_lineDot4(d3_svg_lineBasisBezier3, py));
  --i; while (++i < n) {
    pi = points[i];
    px.shift(); px.push(pi[0]);
    py.shift(); py.push(pi[1]);
    d3_svg_lineBasisBezier(path, px, py);
  }
  return path.join("");
}

// Closed B-spline interpolation; generates "C" commands.
function d3_svg_lineBasisClosed(points) {
  var path,
      i = -1,
      n = points.length,
      m = n + 4,
      pi,
      px = [],
      py = [];
  while (++i < 4) {
    pi = points[i % n];
    px.push(pi[0]);
    py.push(pi[1]);
  }
  path = [
    d3_svg_lineDot4(d3_svg_lineBasisBezier3, px), ",",
    d3_svg_lineDot4(d3_svg_lineBasisBezier3, py)
  ];
  --i; while (++i < m) {
    pi = points[i % n];
    px.shift(); px.push(pi[0]);
    py.shift(); py.push(pi[1]);
    d3_svg_lineBasisBezier(path, px, py);
  }
  return path.join("");
}

function d3_svg_lineBundle(points, tension) {
  var n = points.length - 1;
  if (n) {
    var x0 = points[0][0],
        y0 = points[0][1],
        dx = points[n][0] - x0,
        dy = points[n][1] - y0,
        i = -1,
        p,
        t;
    while (++i <= n) {
      p = points[i];
      t = i / n;
      p[0] = tension * p[0] + (1 - tension) * (x0 + t * dx);
      p[1] = tension * p[1] + (1 - tension) * (y0 + t * dy);
    }
  }
  return d3_svg_lineBasis(points);
}

// Returns the dot product of the given four-element vectors.
function d3_svg_lineDot4(a, b) {
  return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}

// Matrix to transform basis (b-spline) control points to bezier
// control points. Derived from FvD 11.2.8.
var d3_svg_lineBasisBezier1 = [0, 2/3, 1/3, 0],
    d3_svg_lineBasisBezier2 = [0, 1/3, 2/3, 0],
    d3_svg_lineBasisBezier3 = [0, 1/6, 2/3, 1/6];

// Pushes a "C" Bézier curve onto the specified path array, given the
// two specified four-element arrays which define the control points.
function d3_svg_lineBasisBezier(path, x, y) {
  path.push(
      "C", d3_svg_lineDot4(d3_svg_lineBasisBezier1, x),
      ",", d3_svg_lineDot4(d3_svg_lineBasisBezier1, y),
      ",", d3_svg_lineDot4(d3_svg_lineBasisBezier2, x),
      ",", d3_svg_lineDot4(d3_svg_lineBasisBezier2, y),
      ",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, x),
      ",", d3_svg_lineDot4(d3_svg_lineBasisBezier3, y));
}

// Computes the slope from points p0 to p1.
function d3_svg_lineSlope(p0, p1) {
  return (p1[1] - p0[1]) / (p1[0] - p0[0]);
}

// Compute three-point differences for the given points.
// http://en.wikipedia.org/wiki/Cubic_Hermite_spline#Finite_difference
function d3_svg_lineFiniteDifferences(points) {
  var i = 0,
      j = points.length - 1,
      m = [],
      p0 = points[0],
      p1 = points[1],
      d = m[0] = d3_svg_lineSlope(p0, p1);
  while (++i < j) {
    m[i] = (d + (d = d3_svg_lineSlope(p0 = p1, p1 = points[i + 1]))) / 2;
  }
  m[i] = d;
  return m;
}

// Interpolates the given points using Fritsch-Carlson Monotone cubic Hermite
// interpolation. Returns an array of tangent vectors. For details, see
// http://en.wikipedia.org/wiki/Monotone_cubic_interpolation
function d3_svg_lineMonotoneTangents(points) {
  var tangents = [],
      d,
      a,
      b,
      s,
      m = d3_svg_lineFiniteDifferences(points),
      i = -1,
      j = points.length - 1;

  // The first two steps are done by computing finite-differences:
  // 1. Compute the slopes of the secant lines between successive points.
  // 2. Initialize the tangents at every point as the average of the secants.

  // Then, for each segment…
  while (++i < j) {
    d = d3_svg_lineSlope(points[i], points[i + 1]);

    // 3. If two successive yk = y{k + 1} are equal (i.e., d is zero), then set
    // mk = m{k + 1} = 0 as the spline connecting these points must be flat to
    // preserve monotonicity. Ignore step 4 and 5 for those k.

    if (abs(d) < ε) {
      m[i] = m[i + 1] = 0;
    } else {
      // 4. Let ak = mk / dk and bk = m{k + 1} / dk.
      a = m[i] / d;
      b = m[i + 1] / d;

      // 5. Prevent overshoot and ensure monotonicity by restricting the
      // magnitude of vector <ak, bk> to a circle of radius 3.
      s = a * a + b * b;
      if (s > 9) {
        s = d * 3 / Math.sqrt(s);
        m[i] = s * a;
        m[i + 1] = s * b;
      }
    }
  }

  // Compute the normalized tangent vector from the slopes. Note that if x is
  // not monotonic, it's possible that the slope will be infinite, so we protect
  // against NaN by setting the coordinate to zero.
  i = -1; while (++i <= j) {
    s = (points[Math.min(j, i + 1)][0] - points[Math.max(0, i - 1)][0]) / (6 * (1 + m[i] * m[i]));
    tangents.push([s || 0, m[i] * s || 0]);
  }

  return tangents;
}

function d3_svg_lineMonotone(points) {
  return points.length < 3
      ? d3_svg_lineLinear(points)
      : points[0] + d3_svg_lineHermite(points, d3_svg_lineMonotoneTangents(points));
}

d3.svg.line.radial = function() {
  var line = d3_svg_line(d3_svg_lineRadial);
  line.radius = line.x, delete line.x;
  line.angle = line.y, delete line.y;
  return line;
};

function d3_svg_lineRadial(points) {
  var point,
      i = -1,
      n = points.length,
      r,
      a;
  while (++i < n) {
    point = points[i];
    r = point[0];
    a = point[1] + d3_svg_arcOffset;
    point[0] = r * Math.cos(a);
    point[1] = r * Math.sin(a);
  }
  return points;
}

function d3_svg_area(projection) {
  var x0 = d3_geom_pointX,
      x1 = d3_geom_pointX,
      y0 = 0,
      y1 = d3_geom_pointY,
      defined = d3_true,
      interpolate = d3_svg_lineLinear,
      interpolateKey = interpolate.key,
      interpolateReverse = interpolate,
      L = "L",
      tension = .7;

  function area(data) {
    var segments = [],
        points0 = [],
        points1 = [],
        i = -1,
        n = data.length,
        d,
        fx0 = d3_functor(x0),
        fy0 = d3_functor(y0),
        fx1 = x0 === x1 ? function() { return x; } : d3_functor(x1),
        fy1 = y0 === y1 ? function() { return y; } : d3_functor(y1),
        x,
        y;

    function segment() {
      segments.push("M", interpolate(projection(points1), tension),
          L, interpolateReverse(projection(points0.reverse()), tension),
          "Z");
    }

    while (++i < n) {
      if (defined.call(this, d = data[i], i)) {
        points0.push([x = +fx0.call(this, d, i), y = +fy0.call(this, d, i)]);
        points1.push([+fx1.call(this, d, i), +fy1.call(this, d, i)]);
      } else if (points0.length) {
        segment();
        points0 = [];
        points1 = [];
      }
    }

    if (points0.length) segment();

    return segments.length ? segments.join("") : null;
  }

  area.x = function(_) {
    if (!arguments.length) return x1;
    x0 = x1 = _;
    return area;
  };

  area.x0 = function(_) {
    if (!arguments.length) return x0;
    x0 = _;
    return area;
  };

  area.x1 = function(_) {
    if (!arguments.length) return x1;
    x1 = _;
    return area;
  };

  area.y = function(_) {
    if (!arguments.length) return y1;
    y0 = y1 = _;
    return area;
  };

  area.y0 = function(_) {
    if (!arguments.length) return y0;
    y0 = _;
    return area;
  };

  area.y1 = function(_) {
    if (!arguments.length) return y1;
    y1 = _;
    return area;
  };

  area.defined  = function(_) {
    if (!arguments.length) return defined;
    defined = _;
    return area;
  };

  area.interpolate = function(_) {
    if (!arguments.length) return interpolateKey;
    if (typeof _ === "function") interpolateKey = interpolate = _;
    else interpolateKey = (interpolate = d3_svg_lineInterpolators.get(_) || d3_svg_lineLinear).key;
    interpolateReverse = interpolate.reverse || interpolate;
    L = interpolate.closed ? "M" : "L";
    return area;
  };

  area.tension = function(_) {
    if (!arguments.length) return tension;
    tension = _;
    return area;
  };

  return area;
}

d3_svg_lineStepBefore.reverse = d3_svg_lineStepAfter;
d3_svg_lineStepAfter.reverse = d3_svg_lineStepBefore;

d3.svg.area = function() {
  return d3_svg_area(d3_identity);
};

d3.svg.area.radial = function() {
  var area = d3_svg_area(d3_svg_lineRadial);
  area.radius = area.x, delete area.x;
  area.innerRadius = area.x0, delete area.x0;
  area.outerRadius = area.x1, delete area.x1;
  area.angle = area.y, delete area.y;
  area.startAngle = area.y0, delete area.y0;
  area.endAngle = area.y1, delete area.y1;
  return area;
};

d3.svg.chord = function() {
  var source = d3_source,
      target = d3_target,
      radius = d3_svg_chordRadius,
      startAngle = d3_svg_arcStartAngle,
      endAngle = d3_svg_arcEndAngle;

  // TODO Allow control point to be customized.

  function chord(d, i) {
    var s = subgroup(this, source, d, i),
        t = subgroup(this, target, d, i);
    return "M" + s.p0
      + arc(s.r, s.p1, s.a1 - s.a0) + (equals(s, t)
      ? curve(s.r, s.p1, s.r, s.p0)
      : curve(s.r, s.p1, t.r, t.p0)
      + arc(t.r, t.p1, t.a1 - t.a0)
      + curve(t.r, t.p1, s.r, s.p0))
      + "Z";
  }

  function subgroup(self, f, d, i) {
    var subgroup = f.call(self, d, i),
        r = radius.call(self, subgroup, i),
        a0 = startAngle.call(self, subgroup, i) + d3_svg_arcOffset,
        a1 = endAngle.call(self, subgroup, i) + d3_svg_arcOffset;
    return {
      r: r,
      a0: a0,
      a1: a1,
      p0: [r * Math.cos(a0), r * Math.sin(a0)],
      p1: [r * Math.cos(a1), r * Math.sin(a1)]
    };
  }

  function equals(a, b) {
    return a.a0 == b.a0 && a.a1 == b.a1;
  }

  function arc(r, p, a) {
    return "A" + r + "," + r + " 0 " + +(a > π) + ",1 " + p;
  }

  function curve(r0, p0, r1, p1) {
    return "Q 0,0 " + p1;
  }

  chord.radius = function(v) {
    if (!arguments.length) return radius;
    radius = d3_functor(v);
    return chord;
  };

  chord.source = function(v) {
    if (!arguments.length) return source;
    source = d3_functor(v);
    return chord;
  };

  chord.target = function(v) {
    if (!arguments.length) return target;
    target = d3_functor(v);
    return chord;
  };

  chord.startAngle = function(v) {
    if (!arguments.length) return startAngle;
    startAngle = d3_functor(v);
    return chord;
  };

  chord.endAngle = function(v) {
    if (!arguments.length) return endAngle;
    endAngle = d3_functor(v);
    return chord;
  };

  return chord;
};

function d3_svg_chordRadius(d) {
  return d.radius;
}

d3.svg.diagonal = function() {
  var source = d3_source,
      target = d3_target,
      projection = d3_svg_diagonalProjection;

  function diagonal(d, i) {
    var p0 = source.call(this, d, i),
        p3 = target.call(this, d, i),
        m = (p0.y + p3.y) / 2,
        p = [p0, {x: p0.x, y: m}, {x: p3.x, y: m}, p3];
    p = p.map(projection);
    return "M" + p[0] + "C" + p[1] + " " + p[2] + " " + p[3];
  }

  diagonal.source = function(x) {
    if (!arguments.length) return source;
    source = d3_functor(x);
    return diagonal;
  };

  diagonal.target = function(x) {
    if (!arguments.length) return target;
    target = d3_functor(x);
    return diagonal;
  };

  diagonal.projection = function(x) {
    if (!arguments.length) return projection;
    projection = x;
    return diagonal;
  };

  return diagonal;
};

function d3_svg_diagonalProjection(d) {
  return [d.x, d.y];
}

d3.svg.diagonal.radial = function() {
  var diagonal = d3.svg.diagonal(),
      projection = d3_svg_diagonalProjection,
      projection_ = diagonal.projection;

  diagonal.projection = function(x) {
    return arguments.length
        ? projection_(d3_svg_diagonalRadialProjection(projection = x))
        : projection;
  };

  return diagonal;
};

function d3_svg_diagonalRadialProjection(projection) {
  return function() {
    var d = projection.apply(this, arguments),
        r = d[0],
        a = d[1] + d3_svg_arcOffset;
    return [r * Math.cos(a), r * Math.sin(a)];
  };
}

d3.svg.symbol = function() {
  var type = d3_svg_symbolType,
      size = d3_svg_symbolSize;

  function symbol(d, i) {
    return (d3_svg_symbols.get(type.call(this, d, i))
        || d3_svg_symbolCircle)
        (size.call(this, d, i));
  }

  symbol.type = function(x) {
    if (!arguments.length) return type;
    type = d3_functor(x);
    return symbol;
  };

  // size of symbol in square pixels
  symbol.size = function(x) {
    if (!arguments.length) return size;
    size = d3_functor(x);
    return symbol;
  };

  return symbol;
};

function d3_svg_symbolSize() {
  return 64;
}

function d3_svg_symbolType() {
  return "circle";
}

function d3_svg_symbolCircle(size) {
  var r = Math.sqrt(size / π);
  return "M0," + r
      + "A" + r + "," + r + " 0 1,1 0," + (-r)
      + "A" + r + "," + r + " 0 1,1 0," + r
      + "Z";
}

// TODO cross-diagonal?
var d3_svg_symbols = d3.map({
  "circle": d3_svg_symbolCircle,
  "cross": function(size) {
    var r = Math.sqrt(size / 5) / 2;
    return "M" + -3 * r + "," + -r
        + "H" + -r
        + "V" + -3 * r
        + "H" + r
        + "V" + -r
        + "H" + 3 * r
        + "V" + r
        + "H" + r
        + "V" + 3 * r
        + "H" + -r
        + "V" + r
        + "H" + -3 * r
        + "Z";
  },
  "diamond": function(size) {
    var ry = Math.sqrt(size / (2 * d3_svg_symbolTan30)),
        rx = ry * d3_svg_symbolTan30;
    return "M0," + -ry
        + "L" + rx + ",0"
        + " 0," + ry
        + " " + -rx + ",0"
        + "Z";
  },
  "square": function(size) {
    var r = Math.sqrt(size) / 2;
    return "M" + -r + "," + -r
        + "L" + r + "," + -r
        + " " + r + "," + r
        + " " + -r + "," + r
        + "Z";
  },
  "triangle-down": function(size) {
    var rx = Math.sqrt(size / d3_svg_symbolSqrt3),
        ry = rx * d3_svg_symbolSqrt3 / 2;
    return "M0," + ry
        + "L" + rx +"," + -ry
        + " " + -rx + "," + -ry
        + "Z";
  },
  "triangle-up": function(size) {
    var rx = Math.sqrt(size / d3_svg_symbolSqrt3),
        ry = rx * d3_svg_symbolSqrt3 / 2;
    return "M0," + -ry
        + "L" + rx +"," + ry
        + " " + -rx + "," + ry
        + "Z";
  }
});

d3.svg.symbolTypes = d3_svg_symbols.keys();

var d3_svg_symbolSqrt3 = Math.sqrt(3),
    d3_svg_symbolTan30 = Math.tan(30 * d3_radians);

function d3_transition(groups, id) {
  d3_subclass(groups, d3_transitionPrototype);

  groups.id = id; // Note: read-only!

  return groups;
}

var d3_transitionPrototype = [],
    d3_transitionId = 0,
    d3_transitionInheritId,
    d3_transitionInherit;

d3_transitionPrototype.call = d3_selectionPrototype.call;
d3_transitionPrototype.empty = d3_selectionPrototype.empty;
d3_transitionPrototype.node = d3_selectionPrototype.node;
d3_transitionPrototype.size = d3_selectionPrototype.size;

d3.transition = function(selection) {
  return arguments.length
      ? (d3_transitionInheritId ? selection.transition() : selection)
      : d3_selectionRoot.transition();
};

d3.transition.prototype = d3_transitionPrototype;


d3_transitionPrototype.select = function(selector) {
  var id = this.id,
      subgroups = [],
      subgroup,
      subnode,
      node;

  selector = d3_selection_selector(selector);

  for (var j = -1, m = this.length; ++j < m;) {
    subgroups.push(subgroup = []);
    for (var group = this[j], i = -1, n = group.length; ++i < n;) {
      if ((node = group[i]) && (subnode = selector.call(node, node.__data__, i, j))) {
        if ("__data__" in node) subnode.__data__ = node.__data__;
        d3_transitionNode(subnode, i, id, node.__transition__[id]);
        subgroup.push(subnode);
      } else {
        subgroup.push(null);
      }
    }
  }

  return d3_transition(subgroups, id);
};

d3_transitionPrototype.selectAll = function(selector) {
  var id = this.id,
      subgroups = [],
      subgroup,
      subnodes,
      node,
      subnode,
      transition;

  selector = d3_selection_selectorAll(selector);

  for (var j = -1, m = this.length; ++j < m;) {
    for (var group = this[j], i = -1, n = group.length; ++i < n;) {
      if (node = group[i]) {
        transition = node.__transition__[id];
        subnodes = selector.call(node, node.__data__, i, j);
        subgroups.push(subgroup = []);
        for (var k = -1, o = subnodes.length; ++k < o;) {
          if (subnode = subnodes[k]) d3_transitionNode(subnode, k, id, transition);
          subgroup.push(subnode);
        }
      }
    }
  }

  return d3_transition(subgroups, id);
};

d3_transitionPrototype.filter = function(filter) {
  var subgroups = [],
      subgroup,
      group,
      node;

  if (typeof filter !== "function") filter = d3_selection_filter(filter);

  for (var j = 0, m = this.length; j < m; j++) {
    subgroups.push(subgroup = []);
    for (var group = this[j], i = 0, n = group.length; i < n; i++) {
      if ((node = group[i]) && filter.call(node, node.__data__, i, j)) {
        subgroup.push(node);
      }
    }
  }

  return d3_transition(subgroups, this.id);
};

d3_transitionPrototype.tween = function(name, tween) {
  var id = this.id;
  if (arguments.length < 2) return this.node().__transition__[id].tween.get(name);
  return d3_selection_each(this, tween == null
        ? function(node) { node.__transition__[id].tween.remove(name); }
        : function(node) { node.__transition__[id].tween.set(name, tween); });
};

function d3_transition_tween(groups, name, value, tween) {
  var id = groups.id;
  return d3_selection_each(groups, typeof value === "function"
      ? function(node, i, j) { node.__transition__[id].tween.set(name, tween(value.call(node, node.__data__, i, j))); }
      : (value = tween(value), function(node) { node.__transition__[id].tween.set(name, value); }));
}

d3_transitionPrototype.attr = function(nameNS, value) {
  if (arguments.length < 2) {

    // For attr(object), the object specifies the names and values of the
    // attributes to transition. The values may be functions that are
    // evaluated for each element.
    for (value in nameNS) this.attr(value, nameNS[value]);
    return this;
  }

  var interpolate = nameNS == "transform" ? d3_interpolateTransform : d3_interpolate,
      name = d3.ns.qualify(nameNS);

  // For attr(string, null), remove the attribute with the specified name.
  function attrNull() {
    this.removeAttribute(name);
  }
  function attrNullNS() {
    this.removeAttributeNS(name.space, name.local);
  }

  // For attr(string, string), set the attribute with the specified name.
  function attrTween(b) {
    return b == null ? attrNull : (b += "", function() {
      var a = this.getAttribute(name), i;
      return a !== b && (i = interpolate(a, b), function(t) { this.setAttribute(name, i(t)); });
    });
  }
  function attrTweenNS(b) {
    return b == null ? attrNullNS : (b += "", function() {
      var a = this.getAttributeNS(name.space, name.local), i;
      return a !== b && (i = interpolate(a, b), function(t) { this.setAttributeNS(name.space, name.local, i(t)); });
    });
  }

  return d3_transition_tween(this, "attr." + nameNS, value, name.local ? attrTweenNS : attrTween);
};

d3_transitionPrototype.attrTween = function(nameNS, tween) {
  var name = d3.ns.qualify(nameNS);

  function attrTween(d, i) {
    var f = tween.call(this, d, i, this.getAttribute(name));
    return f && function(t) { this.setAttribute(name, f(t)); };
  }
  function attrTweenNS(d, i) {
    var f = tween.call(this, d, i, this.getAttributeNS(name.space, name.local));
    return f && function(t) { this.setAttributeNS(name.space, name.local, f(t)); };
  }

  return this.tween("attr." + nameNS, name.local ? attrTweenNS : attrTween);
};

d3_transitionPrototype.style = function(name, value, priority) {
  var n = arguments.length;
  if (n < 3) {

    // For style(object) or style(object, string), the object specifies the
    // names and values of the attributes to set or remove. The values may be
    // functions that are evaluated for each element. The optional string
    // specifies the priority.
    if (typeof name !== "string") {
      if (n < 2) value = "";
      for (priority in name) this.style(priority, name[priority], value);
      return this;
    }

    // For style(string, string) or style(string, function), use the default
    // priority. The priority is ignored for style(string, null).
    priority = "";
  }

  // For style(name, null) or style(name, null, priority), remove the style
  // property with the specified name. The priority is ignored.
  function styleNull() {
    this.style.removeProperty(name);
  }

  // For style(name, string) or style(name, string, priority), set the style
  // property with the specified name, using the specified priority.
  // Otherwise, a name, value and priority are specified, and handled as below.
  function styleString(b) {
    return b == null ? styleNull : (b += "", function() {
      var a = d3_window.getComputedStyle(this, null).getPropertyValue(name), i;
      return a !== b && (i = d3_interpolate(a, b), function(t) { this.style.setProperty(name, i(t), priority); });
    });
  }

  return d3_transition_tween(this, "style." + name, value, styleString);
};

d3_transitionPrototype.styleTween = function(name, tween, priority) {
  if (arguments.length < 3) priority = "";

  function styleTween(d, i) {
    var f = tween.call(this, d, i, d3_window.getComputedStyle(this, null).getPropertyValue(name));
    return f && function(t) { this.style.setProperty(name, f(t), priority); };
  }

  return this.tween("style." + name, styleTween);
};

d3_transitionPrototype.text = function(value) {
  return d3_transition_tween(this, "text", value, d3_transition_text);
};

function d3_transition_text(b) {
  if (b == null) b = "";
  return function() { this.textContent = b; };
}

d3_transitionPrototype.remove = function() {
  return this.each("end.transition", function() {
    var p;
    if (this.__transition__.count < 2 && (p = this.parentNode)) p.removeChild(this);
  });
};

d3_transitionPrototype.ease = function(value) {
  var id = this.id;
  if (arguments.length < 1) return this.node().__transition__[id].ease;
  if (typeof value !== "function") value = d3.ease.apply(d3, arguments);
  return d3_selection_each(this, function(node) { node.__transition__[id].ease = value; });
};

d3_transitionPrototype.delay = function(value) {
  var id = this.id;
  if (arguments.length < 1) return this.node().__transition__[id].delay;
  return d3_selection_each(this, typeof value === "function"
      ? function(node, i, j) { node.__transition__[id].delay = +value.call(node, node.__data__, i, j); }
      : (value = +value, function(node) { node.__transition__[id].delay = value; }));
};

d3_transitionPrototype.duration = function(value) {
  var id = this.id;
  if (arguments.length < 1) return this.node().__transition__[id].duration;
  return d3_selection_each(this, typeof value === "function"
      ? function(node, i, j) { node.__transition__[id].duration = Math.max(1, value.call(node, node.__data__, i, j)); }
      : (value = Math.max(1, value), function(node) { node.__transition__[id].duration = value; }));
};

d3_transitionPrototype.each = function(type, listener) {
  var id = this.id;
  if (arguments.length < 2) {
    var inherit = d3_transitionInherit,
        inheritId = d3_transitionInheritId;
    d3_transitionInheritId = id;
    d3_selection_each(this, function(node, i, j) {
      d3_transitionInherit = node.__transition__[id];
      type.call(node, node.__data__, i, j);
    });
    d3_transitionInherit = inherit;
    d3_transitionInheritId = inheritId;
  } else {
    d3_selection_each(this, function(node) {
      var transition = node.__transition__[id];
      (transition.event || (transition.event = d3.dispatch("start", "end"))).on(type, listener);
    });
  }
  return this;
};

d3_transitionPrototype.transition = function() {
  var id0 = this.id,
      id1 = ++d3_transitionId,
      subgroups = [],
      subgroup,
      group,
      node,
      transition;

  for (var j = 0, m = this.length; j < m; j++) {
    subgroups.push(subgroup = []);
    for (var group = this[j], i = 0, n = group.length; i < n; i++) {
      if (node = group[i]) {
        transition = Object.create(node.__transition__[id0]);
        transition.delay += transition.duration;
        d3_transitionNode(node, i, id1, transition);
      }
      subgroup.push(node);
    }
  }

  return d3_transition(subgroups, id1);
};

function d3_transitionNode(node, i, id, inherit) {
  var lock = node.__transition__ || (node.__transition__ = {active: 0, count: 0}),
      transition = lock[id];

  if (!transition) {
    var time = inherit.time;

    transition = lock[id] = {
      tween: new d3_Map,
      time: time,
      ease: inherit.ease,
      delay: inherit.delay,
      duration: inherit.duration
    };

    ++lock.count;

    d3.timer(function(elapsed) {
      var d = node.__data__,
          ease = transition.ease,
          delay = transition.delay,
          duration = transition.duration,
          timer = d3_timer_active,
          tweened = [];

      timer.t = delay + time;
      if (delay <= elapsed) return start(elapsed - delay);
      timer.c = start;

      function start(elapsed) {
        if (lock.active > id) return stop();
        lock.active = id;
        transition.event && transition.event.start.call(node, d, i);

        transition.tween.forEach(function(key, value) {
          if (value = value.call(node, d, i)) {
            tweened.push(value);
          }
        });

        d3.timer(function() { // defer to end of current frame
          timer.c = tick(elapsed || 1) ? d3_true : tick;
          return 1;
        }, 0, time);
      }

      function tick(elapsed) {
        if (lock.active !== id) return stop();

        var t = elapsed / duration,
            e = ease(t),
            n = tweened.length;

        while (n > 0) {
          tweened[--n].call(node, e);
        }

        if (t >= 1) {
          transition.event && transition.event.end.call(node, d, i);
          return stop();
        }
      }

      function stop() {
        if (--lock.count) delete lock[id];
        else delete node.__transition__;
        return 1;
      }
    }, 0, time);
  }
}

d3.svg.axis = function() {
  var scale = d3.scale.linear(),
      orient = d3_svg_axisDefaultOrient,
      innerTickSize = 6,
      outerTickSize = 6,
      tickPadding = 3,
      tickArguments_ = [10],
      tickValues = null,
      tickFormat_;

  function axis(g) {
    g.each(function() {
      var g = d3.select(this);

      // Stash a snapshot of the new scale, and retrieve the old snapshot.
      var scale0 = this.__chart__ || scale,
          scale1 = this.__chart__ = scale.copy();

      // Ticks, or domain values for ordinal scales.
      var ticks = tickValues == null ? (scale1.ticks ? scale1.ticks.apply(scale1, tickArguments_) : scale1.domain()) : tickValues,
          tickFormat = tickFormat_ == null ? (scale1.tickFormat ? scale1.tickFormat.apply(scale1, tickArguments_) : d3_identity) : tickFormat_,
          tick = g.selectAll(".tick").data(ticks, scale1),
          tickEnter = tick.enter().insert("g", ".domain").attr("class", "tick").style("opacity", ε),
          tickExit = d3.transition(tick.exit()).style("opacity", ε).remove(),
          tickUpdate = d3.transition(tick.order()).style("opacity", 1),
          tickTransform;

      // Domain.
      var range = d3_scaleRange(scale1),
          path = g.selectAll(".domain").data([0]),
          pathUpdate = (path.enter().append("path").attr("class", "domain"), d3.transition(path));

      tickEnter.append("line");
      tickEnter.append("text");

      var lineEnter = tickEnter.select("line"),
          lineUpdate = tickUpdate.select("line"),
          text = tick.select("text").text(tickFormat),
          textEnter = tickEnter.select("text"),
          textUpdate = tickUpdate.select("text");

      switch (orient) {
        case "bottom": {
          tickTransform = d3_svg_axisX;
          lineEnter.attr("y2", innerTickSize);
          textEnter.attr("y", Math.max(innerTickSize, 0) + tickPadding);
          lineUpdate.attr("x2", 0).attr("y2", innerTickSize);
          textUpdate.attr("x", 0).attr("y", Math.max(innerTickSize, 0) + tickPadding);
          text.attr("dy", ".71em").style("text-anchor", "middle");
          pathUpdate.attr("d", "M" + range[0] + "," + outerTickSize + "V0H" + range[1] + "V" + outerTickSize);
          break;
        }
        case "top": {
          tickTransform = d3_svg_axisX;
          lineEnter.attr("y2", -innerTickSize);
          textEnter.attr("y", -(Math.max(innerTickSize, 0) + tickPadding));
          lineUpdate.attr("x2", 0).attr("y2", -innerTickSize);
          textUpdate.attr("x", 0).attr("y", -(Math.max(innerTickSize, 0) + tickPadding));
          text.attr("dy", "0em").style("text-anchor", "middle");
          pathUpdate.attr("d", "M" + range[0] + "," + -outerTickSize + "V0H" + range[1] + "V" + -outerTickSize);
          break;
        }
        case "left": {
          tickTransform = d3_svg_axisY;
          lineEnter.attr("x2", -innerTickSize);
          textEnter.attr("x", -(Math.max(innerTickSize, 0) + tickPadding));
          lineUpdate.attr("x2", -innerTickSize).attr("y2", 0);
          textUpdate.attr("x", -(Math.max(innerTickSize, 0) + tickPadding)).attr("y", 0);
          text.attr("dy", ".32em").style("text-anchor", "end");
          pathUpdate.attr("d", "M" + -outerTickSize + "," + range[0] + "H0V" + range[1] + "H" + -outerTickSize);
          break;
        }
        case "right": {
          tickTransform = d3_svg_axisY;
          lineEnter.attr("x2", innerTickSize);
          textEnter.attr("x", Math.max(innerTickSize, 0) + tickPadding);
          lineUpdate.attr("x2", innerTickSize).attr("y2", 0);
          textUpdate.attr("x", Math.max(innerTickSize, 0) + tickPadding).attr("y", 0);
          text.attr("dy", ".32em").style("text-anchor", "start");
          pathUpdate.attr("d", "M" + outerTickSize + "," + range[0] + "H0V" + range[1] + "H" + outerTickSize);
          break;
        }
      }

      // If either the new or old scale is ordinal,
      // entering ticks are undefined in the old scale,
      // and so can fade-in in the new scale’s position.
      // Exiting ticks are likewise undefined in the new scale,
      // and so can fade-out in the old scale’s position.
      if (scale1.rangeBand) {
        var x = scale1, dx = x.rangeBand() / 2;
        scale0 = scale1 = function(d) { return x(d) + dx; };
      } else if (scale0.rangeBand) {
        scale0 = scale1;
      } else {
        tickExit.call(tickTransform, scale1);
      }

      tickEnter.call(tickTransform, scale0);
      tickUpdate.call(tickTransform, scale1);
    });
  }

  axis.scale = function(x) {
    if (!arguments.length) return scale;
    scale = x;
    return axis;
  };

  axis.orient = function(x) {
    if (!arguments.length) return orient;
    orient = x in d3_svg_axisOrients ? x + "" : d3_svg_axisDefaultOrient;
    return axis;
  };

  axis.ticks = function() {
    if (!arguments.length) return tickArguments_;
    tickArguments_ = arguments;
    return axis;
  };

  axis.tickValues = function(x) {
    if (!arguments.length) return tickValues;
    tickValues = x;
    return axis;
  };

  axis.tickFormat = function(x) {
    if (!arguments.length) return tickFormat_;
    tickFormat_ = x;
    return axis;
  };

  axis.tickSize = function(x) {
    var n = arguments.length;
    if (!n) return innerTickSize;
    innerTickSize = +x;
    outerTickSize = +arguments[n - 1];
    return axis;
  };

  axis.innerTickSize = function(x) {
    if (!arguments.length) return innerTickSize;
    innerTickSize = +x;
    return axis;
  };

  axis.outerTickSize = function(x) {
    if (!arguments.length) return outerTickSize;
    outerTickSize = +x;
    return axis;
  };

  axis.tickPadding = function(x) {
    if (!arguments.length) return tickPadding;
    tickPadding = +x;
    return axis;
  };

  axis.tickSubdivide = function() {
    return arguments.length && axis;
  };

  return axis;
};

var d3_svg_axisDefaultOrient = "bottom",
    d3_svg_axisOrients = {top: 1, right: 1, bottom: 1, left: 1};

function d3_svg_axisX(selection, x) {
  selection.attr("transform", function(d) { return "translate(" + x(d) + ",0)"; });
}

function d3_svg_axisY(selection, y) {
  selection.attr("transform", function(d) { return "translate(0," + y(d) + ")"; });
}

d3.svg.brush = function() {
  var event = d3_eventDispatch(brush, "brushstart", "brush", "brushend"),
      x = null, // x-scale, optional
      y = null, // y-scale, optional
      xExtent = [0, 0], // [x0, x1] in integer pixels
      yExtent = [0, 0], // [y0, y1] in integer pixels
      xExtentDomain, // x-extent in data space
      yExtentDomain, // y-extent in data space
      xClamp = true, // whether to clamp the x-extent to the range
      yClamp = true, // whether to clamp the y-extent to the range
      resizes = d3_svg_brushResizes[0];

  function brush(g) {
    g.each(function() {

      // Prepare the brush container for events.
      var g = d3.select(this)
          .style("pointer-events", "all")
          .style("-webkit-tap-highlight-color", "rgba(0,0,0,0)")
          .on("mousedown.brush", brushstart)
          .on("touchstart.brush", brushstart);

      // An invisible, mouseable area for starting a new brush.
      var background = g.selectAll(".background")
          .data([0]);

      background.enter().append("rect")
          .attr("class", "background")
          .style("visibility", "hidden")
          .style("cursor", "crosshair");

      // The visible brush extent; style this as you like!
      g.selectAll(".extent")
          .data([0])
        .enter().append("rect")
          .attr("class", "extent")
          .style("cursor", "move");

      // More invisible rects for resizing the extent.
      var resize = g.selectAll(".resize")
          .data(resizes, d3_identity);

      // Remove any superfluous resizers.
      resize.exit().remove();

      resize.enter().append("g")
          .attr("class", function(d) { return "resize " + d; })
          .style("cursor", function(d) { return d3_svg_brushCursor[d]; })
        .append("rect")
          .attr("x", function(d) { return /[ew]$/.test(d) ? -3 : null; })
          .attr("y", function(d) { return /^[ns]/.test(d) ? -3 : null; })
          .attr("width", 6)
          .attr("height", 6)
          .style("visibility", "hidden");

      // Show or hide the resizers.
      resize.style("display", brush.empty() ? "none" : null);

      // When called on a transition, use a transition to update.
      var gUpdate = d3.transition(g),
          backgroundUpdate = d3.transition(background),
          range;

      // Initialize the background to fill the defined range.
      // If the range isn't defined, you can post-process.
      if (x) {
        range = d3_scaleRange(x);
        backgroundUpdate.attr("x", range[0]).attr("width", range[1] - range[0]);
        redrawX(gUpdate);
      }
      if (y) {
        range = d3_scaleRange(y);
        backgroundUpdate.attr("y", range[0]).attr("height", range[1] - range[0]);
        redrawY(gUpdate);
      }
      redraw(gUpdate);
    });
  }

  brush.event = function(g) {
    g.each(function() {
      var event_ = event.of(this, arguments),
          extent1 = {x: xExtent, y: yExtent, i: xExtentDomain, j: yExtentDomain},
          extent0 = this.__chart__ || extent1;
      this.__chart__ = extent1;
      if (d3_transitionInheritId) {
        d3.select(this).transition()
            .each("start.brush", function() {
              xExtentDomain = extent0.i; // pre-transition state
              yExtentDomain = extent0.j;
              xExtent = extent0.x;
              yExtent = extent0.y;
              event_({type: "brushstart"});
            })
            .tween("brush:brush", function() {
              var xi = d3_interpolateArray(xExtent, extent1.x),
                  yi = d3_interpolateArray(yExtent, extent1.y);
              xExtentDomain = yExtentDomain = null; // transition state
              return function(t) {
                xExtent = extent1.x = xi(t);
                yExtent = extent1.y = yi(t);
                event_({type: "brush", mode: "resize"});
              };
            })
            .each("end.brush", function() {
              xExtentDomain = extent1.i; // post-transition state
              yExtentDomain = extent1.j;
              event_({type: "brush", mode: "resize"});
              event_({type: "brushend"});
            });
      } else {
        event_({type: "brushstart"});
        event_({type: "brush", mode: "resize"});
        event_({type: "brushend"});
      }
    });
  };

  function redraw(g) {
    g.selectAll(".resize").attr("transform", function(d) {
      return "translate(" + xExtent[+/e$/.test(d)] + "," + yExtent[+/^s/.test(d)] + ")";
    });
  }

  function redrawX(g) {
    g.select(".extent").attr("x", xExtent[0]);
    g.selectAll(".extent,.n>rect,.s>rect").attr("width", xExtent[1] - xExtent[0]);
  }

  function redrawY(g) {
    g.select(".extent").attr("y", yExtent[0]);
    g.selectAll(".extent,.e>rect,.w>rect").attr("height", yExtent[1] - yExtent[0]);
  }

  function brushstart() {
    var target = this,
        eventTarget = d3.select(d3.event.target),
        event_ = event.of(target, arguments),
        g = d3.select(target),
        resizing = eventTarget.datum(),
        resizingX = !/^(n|s)$/.test(resizing) && x,
        resizingY = !/^(e|w)$/.test(resizing) && y,
        dragging = eventTarget.classed("extent"),
        dragRestore = d3_event_dragSuppress(),
        center,
        origin = d3.mouse(target),
        offset;

    var w = d3.select(d3_window)
        .on("keydown.brush", keydown)
        .on("keyup.brush", keyup);

    if (d3.event.changedTouches) {
      w.on("touchmove.brush", brushmove).on("touchend.brush", brushend);
    } else {
      w.on("mousemove.brush", brushmove).on("mouseup.brush", brushend);
    }

    // Interrupt the transition, if any.
    g.interrupt().selectAll("*").interrupt();

    // If the extent was clicked on, drag rather than brush;
    // store the point between the mouse and extent origin instead.
    if (dragging) {
      origin[0] = xExtent[0] - origin[0];
      origin[1] = yExtent[0] - origin[1];
    }

    // If a resizer was clicked on, record which side is to be resized.
    // Also, set the origin to the opposite side.
    else if (resizing) {
      var ex = +/w$/.test(resizing),
          ey = +/^n/.test(resizing);
      offset = [xExtent[1 - ex] - origin[0], yExtent[1 - ey] - origin[1]];
      origin[0] = xExtent[ex];
      origin[1] = yExtent[ey];
    }

    // If the ALT key is down when starting a brush, the center is at the mouse.
    else if (d3.event.altKey) center = origin.slice();

    // Propagate the active cursor to the body for the drag duration.
    g.style("pointer-events", "none").selectAll(".resize").style("display", null);
    d3.select("body").style("cursor", eventTarget.style("cursor"));

    // Notify listeners.
    event_({type: "brushstart"});
    brushmove();

    function keydown() {
      if (d3.event.keyCode == 32) {
        if (!dragging) {
          center = null;
          origin[0] -= xExtent[1];
          origin[1] -= yExtent[1];
          dragging = 2;
        }
        d3_eventPreventDefault();
      }
    }

    function keyup() {
      if (d3.event.keyCode == 32 && dragging == 2) {
        origin[0] += xExtent[1];
        origin[1] += yExtent[1];
        dragging = 0;
        d3_eventPreventDefault();
      }
    }

    function brushmove() {
      var point = d3.mouse(target),
          moved = false;

      // Preserve the offset for thick resizers.
      if (offset) {
        point[0] += offset[0];
        point[1] += offset[1];
      }

      if (!dragging) {

        // If needed, determine the center from the current extent.
        if (d3.event.altKey) {
          if (!center) center = [(xExtent[0] + xExtent[1]) / 2, (yExtent[0] + yExtent[1]) / 2];

          // Update the origin, for when the ALT key is released.
          origin[0] = xExtent[+(point[0] < center[0])];
          origin[1] = yExtent[+(point[1] < center[1])];
        }

        // When the ALT key is released, we clear the center.
        else center = null;
      }

      // Update the brush extent for each dimension.
      if (resizingX && move1(point, x, 0)) {
        redrawX(g);
        moved = true;
      }
      if (resizingY && move1(point, y, 1)) {
        redrawY(g);
        moved = true;
      }

      // Final redraw and notify listeners.
      if (moved) {
        redraw(g);
        event_({type: "brush", mode: dragging ? "move" : "resize"});
      }
    }

    function move1(point, scale, i) {
      var range = d3_scaleRange(scale),
          r0 = range[0],
          r1 = range[1],
          position = origin[i],
          extent = i ? yExtent : xExtent,
          size = extent[1] - extent[0],
          min,
          max;

      // When dragging, reduce the range by the extent size and position.
      if (dragging) {
        r0 -= position;
        r1 -= size + position;
      }

      // Clamp the point (unless clamp set to false) so that the extent fits within the range extent.
      min = (i ? yClamp : xClamp) ? Math.max(r0, Math.min(r1, point[i])) : point[i];

      // Compute the new extent bounds.
      if (dragging) {
        max = (min += position) + size;
      } else {

        // If the ALT key is pressed, then preserve the center of the extent.
        if (center) position = Math.max(r0, Math.min(r1, 2 * center[i] - min));

        // Compute the min and max of the position and point.
        if (position < min) {
          max = min;
          min = position;
        } else {
          max = position;
        }
      }

      // Update the stored bounds.
      if (extent[0] != min || extent[1] != max) {
        if (i) yExtentDomain = null;
        else xExtentDomain = null;
        extent[0] = min;
        extent[1] = max;
        return true;
      }
    }

    function brushend() {
      brushmove();

      // reset the cursor styles
      g.style("pointer-events", "all").selectAll(".resize").style("display", brush.empty() ? "none" : null);
      d3.select("body").style("cursor", null);

      w .on("mousemove.brush", null)
        .on("mouseup.brush", null)
        .on("touchmove.brush", null)
        .on("touchend.brush", null)
        .on("keydown.brush", null)
        .on("keyup.brush", null);

      dragRestore();
      event_({type: "brushend"});
    }
  }

  brush.x = function(z) {
    if (!arguments.length) return x;
    x = z;
    resizes = d3_svg_brushResizes[!x << 1 | !y]; // fore!
    return brush;
  };

  brush.y = function(z) {
    if (!arguments.length) return y;
    y = z;
    resizes = d3_svg_brushResizes[!x << 1 | !y]; // fore!
    return brush;
  };

  brush.clamp = function(z) {
    if (!arguments.length) return x && y ? [xClamp, yClamp] : x ? xClamp : y ? yClamp : null;
    if (x && y) xClamp = !!z[0], yClamp = !!z[1];
    else if (x) xClamp = !!z;
    else if (y) yClamp = !!z;
    return brush;
  };

  brush.extent = function(z) {
    var x0, x1, y0, y1, t;

    // Invert the pixel extent to data-space.
    if (!arguments.length) {
      if (x) {
        if (xExtentDomain) {
          x0 = xExtentDomain[0], x1 = xExtentDomain[1];
        } else {
          x0 = xExtent[0], x1 = xExtent[1];
          if (x.invert) x0 = x.invert(x0), x1 = x.invert(x1);
          if (x1 < x0) t = x0, x0 = x1, x1 = t;
        }
      }
      if (y) {
        if (yExtentDomain) {
          y0 = yExtentDomain[0], y1 = yExtentDomain[1];
        } else {
          y0 = yExtent[0], y1 = yExtent[1];
          if (y.invert) y0 = y.invert(y0), y1 = y.invert(y1);
          if (y1 < y0) t = y0, y0 = y1, y1 = t;
        }
      }
      return x && y ? [[x0, y0], [x1, y1]] : x ? [x0, x1] : y && [y0, y1];
    }

    // Scale the data-space extent to pixels.
    if (x) {
      x0 = z[0], x1 = z[1];
      if (y) x0 = x0[0], x1 = x1[0];
      xExtentDomain = [x0, x1];
      if (x.invert) x0 = x(x0), x1 = x(x1);
      if (x1 < x0) t = x0, x0 = x1, x1 = t;
      if (x0 != xExtent[0] || x1 != xExtent[1]) xExtent = [x0, x1]; // copy-on-write
    }
    if (y) {
      y0 = z[0], y1 = z[1];
      if (x) y0 = y0[1], y1 = y1[1];
      yExtentDomain = [y0, y1];
      if (y.invert) y0 = y(y0), y1 = y(y1);
      if (y1 < y0) t = y0, y0 = y1, y1 = t;
      if (y0 != yExtent[0] || y1 != yExtent[1]) yExtent = [y0, y1]; // copy-on-write
    }

    return brush;
  };

  brush.clear = function() {
    if (!brush.empty()) {
      xExtent = [0, 0], yExtent = [0, 0]; // copy-on-write
      xExtentDomain = yExtentDomain = null;
    }
    return brush;
  };

  brush.empty = function() {
    return !!x && xExtent[0] == xExtent[1]
        || !!y && yExtent[0] == yExtent[1];
  };

  return d3.rebind(brush, event, "on");
};

var d3_svg_brushCursor = {
  n: "ns-resize",
  e: "ew-resize",
  s: "ns-resize",
  w: "ew-resize",
  nw: "nwse-resize",
  ne: "nesw-resize",
  se: "nwse-resize",
  sw: "nesw-resize"
};

var d3_svg_brushResizes = [
  ["n", "e", "s", "w", "nw", "ne", "se", "sw"],
  ["e", "w"],
  ["n", "s"],
  []
];

var d3_time_format = d3_time.format = d3_locale_enUS.timeFormat;

var d3_time_formatUtc = d3_time_format.utc;

var d3_time_formatIso = d3_time_formatUtc("%Y-%m-%dT%H:%M:%S.%LZ");

d3_time_format.iso = Date.prototype.toISOString && +new Date("2000-01-01T00:00:00.000Z")
    ? d3_time_formatIsoNative
    : d3_time_formatIso;

function d3_time_formatIsoNative(date) {
  return date.toISOString();
}

d3_time_formatIsoNative.parse = function(string) {
  var date = new Date(string);
  return isNaN(date) ? null : date;
};

d3_time_formatIsoNative.toString = d3_time_formatIso.toString;

d3_time.second = d3_time_interval(function(date) {
  return new d3_date(Math.floor(date / 1e3) * 1e3);
}, function(date, offset) {
  date.setTime(date.getTime() + Math.floor(offset) * 1e3); // DST breaks setSeconds
}, function(date) {
  return date.getSeconds();
});

d3_time.seconds = d3_time.second.range;
d3_time.seconds.utc = d3_time.second.utc.range;

d3_time.minute = d3_time_interval(function(date) {
  return new d3_date(Math.floor(date / 6e4) * 6e4);
}, function(date, offset) {
  date.setTime(date.getTime() + Math.floor(offset) * 6e4); // DST breaks setMinutes
}, function(date) {
  return date.getMinutes();
});

d3_time.minutes = d3_time.minute.range;
d3_time.minutes.utc = d3_time.minute.utc.range;

d3_time.hour = d3_time_interval(function(date) {
  var timezone = date.getTimezoneOffset() / 60;
  return new d3_date((Math.floor(date / 36e5 - timezone) + timezone) * 36e5);
}, function(date, offset) {
  date.setTime(date.getTime() + Math.floor(offset) * 36e5); // DST breaks setHours
}, function(date) {
  return date.getHours();
});

d3_time.hours = d3_time.hour.range;
d3_time.hours.utc = d3_time.hour.utc.range;

d3_time.month = d3_time_interval(function(date) {
  date = d3_time.day(date);
  date.setDate(1);
  return date;
}, function(date, offset) {
  date.setMonth(date.getMonth() + offset);
}, function(date) {
  return date.getMonth();
});

d3_time.months = d3_time.month.range;
d3_time.months.utc = d3_time.month.utc.range;

function d3_time_scale(linear, methods, format) {

  function scale(x) {
    return linear(x);
  }

  scale.invert = function(x) {
    return d3_time_scaleDate(linear.invert(x));
  };

  scale.domain = function(x) {
    if (!arguments.length) return linear.domain().map(d3_time_scaleDate);
    linear.domain(x);
    return scale;
  };

  function tickMethod(extent, count) {
    var span = extent[1] - extent[0],
        target = span / count,
        i = d3.bisect(d3_time_scaleSteps, target);
    return i == d3_time_scaleSteps.length ? [methods.year, d3_scale_linearTickRange(extent.map(function(d) { return d / 31536e6; }), count)[2]]
        : !i ? [d3_time_scaleMilliseconds, d3_scale_linearTickRange(extent, count)[2]]
        : methods[target / d3_time_scaleSteps[i - 1] < d3_time_scaleSteps[i] / target ? i - 1 : i];
  }

  scale.nice = function(interval, skip) {
    var domain = scale.domain(),
        extent = d3_scaleExtent(domain),
        method = interval == null ? tickMethod(extent, 10)
          : typeof interval === "number" && tickMethod(extent, interval);

    if (method) interval = method[0], skip = method[1];

    function skipped(date) {
      return !isNaN(date) && !interval.range(date, d3_time_scaleDate(+date + 1), skip).length;
    }

    return scale.domain(d3_scale_nice(domain, skip > 1 ? {
      floor: function(date) {
        while (skipped(date = interval.floor(date))) date = d3_time_scaleDate(date - 1);
        return date;
      },
      ceil: function(date) {
        while (skipped(date = interval.ceil(date))) date = d3_time_scaleDate(+date + 1);
        return date;
      }
    } : interval));
  };

  scale.ticks = function(interval, skip) {
    var extent = d3_scaleExtent(scale.domain()),
        method = interval == null ? tickMethod(extent, 10)
          : typeof interval === "number" ? tickMethod(extent, interval)
          : !interval.range && [{range: interval}, skip]; // assume deprecated range function

    if (method) interval = method[0], skip = method[1];

    return interval.range(extent[0], d3_time_scaleDate(+extent[1] + 1), skip < 1 ? 1 : skip); // inclusive upper bound
  };

  scale.tickFormat = function() {
    return format;
  };

  scale.copy = function() {
    return d3_time_scale(linear.copy(), methods, format);
  };

  return d3_scale_linearRebind(scale, linear);
}

function d3_time_scaleDate(t) {
  return new Date(t);
}

var d3_time_scaleSteps = [
  1e3,    // 1-second
  5e3,    // 5-second
  15e3,   // 15-second
  3e4,    // 30-second
  6e4,    // 1-minute
  3e5,    // 5-minute
  9e5,    // 15-minute
  18e5,   // 30-minute
  36e5,   // 1-hour
  108e5,  // 3-hour
  216e5,  // 6-hour
  432e5,  // 12-hour
  864e5,  // 1-day
  1728e5, // 2-day
  6048e5, // 1-week
  2592e6, // 1-month
  7776e6, // 3-month
  31536e6 // 1-year
];

var d3_time_scaleLocalMethods = [
  [d3_time.second, 1],
  [d3_time.second, 5],
  [d3_time.second, 15],
  [d3_time.second, 30],
  [d3_time.minute, 1],
  [d3_time.minute, 5],
  [d3_time.minute, 15],
  [d3_time.minute, 30],
  [d3_time.hour, 1],
  [d3_time.hour, 3],
  [d3_time.hour, 6],
  [d3_time.hour, 12],
  [d3_time.day, 1],
  [d3_time.day, 2],
  [d3_time.week, 1],
  [d3_time.month, 1],
  [d3_time.month, 3],
  [d3_time.year, 1]
];

var d3_time_scaleLocalFormat = d3_time_format.multi([
  [".%L", function(d) { return d.getMilliseconds(); }],
  [":%S", function(d) { return d.getSeconds(); }],
  ["%I:%M", function(d) { return d.getMinutes(); }],
  ["%I %p", function(d) { return d.getHours(); }],
  ["%a %d", function(d) { return d.getDay() && d.getDate() != 1; }],
  ["%b %d", function(d) { return d.getDate() != 1; }],
  ["%B", function(d) { return d.getMonth(); }],
  ["%Y", d3_true]
]);

var d3_time_scaleMilliseconds = {
  range: function(start, stop, step) { return d3.range(Math.ceil(start / step) * step, +stop, step).map(d3_time_scaleDate); },
  floor: d3_identity,
  ceil: d3_identity
};

d3_time_scaleLocalMethods.year = d3_time.year;

d3_time.scale = function() {
  return d3_time_scale(d3.scale.linear(), d3_time_scaleLocalMethods, d3_time_scaleLocalFormat);
};

var d3_time_scaleUtcMethods = d3_time_scaleLocalMethods.map(function(m) {
  return [m[0].utc, m[1]];
});

var d3_time_scaleUtcFormat = d3_time_formatUtc.multi([
  [".%L", function(d) { return d.getUTCMilliseconds(); }],
  [":%S", function(d) { return d.getUTCSeconds(); }],
  ["%I:%M", function(d) { return d.getUTCMinutes(); }],
  ["%I %p", function(d) { return d.getUTCHours(); }],
  ["%a %d", function(d) { return d.getUTCDay() && d.getUTCDate() != 1; }],
  ["%b %d", function(d) { return d.getUTCDate() != 1; }],
  ["%B", function(d) { return d.getUTCMonth(); }],
  ["%Y", d3_true]
]);

d3_time_scaleUtcMethods.year = d3_time.year.utc;

d3_time.scale.utc = function() {
  return d3_time_scale(d3.scale.linear(), d3_time_scaleUtcMethods, d3_time_scaleUtcFormat);
};

d3.text = d3_xhrType(function(request) {
  return request.responseText;
});

d3.json = function(url, callback) {
  return d3_xhr(url, "application/json", d3_json, callback);
};

function d3_json(request) {
  return JSON.parse(request.responseText);
}

d3.html = function(url, callback) {
  return d3_xhr(url, "text/html", d3_html, callback);
};

function d3_html(request) {
  var range = d3_document.createRange();
  range.selectNode(d3_document.body);
  return range.createContextualFragment(request.responseText);
}

d3.xml = d3_xhrType(function(request) {
  return request.responseXML;
});

  if (typeof define === "function" && define.amd) define(d3);
  else if (typeof module === "object" && module.exports) module.exports = d3;
  this.d3 = d3;
}();
back to top