https://github.com/JuliaLang/julia
Raw File
Tip revision: bbb2fe4ba468b15658dfb524ffb0a91dbd805762 authored by Tim Besard on 03 August 2016, 20:16:15 UTC
Fix keywordargs test.
Tip revision: bbb2fe4
statistics.jl
# This file is a part of Julia. License is MIT: http://julialang.org/license

##### mean #####

"""
    mean(f::Function, v)

Apply the function `f` to each element of `v` and take the mean.
"""
function mean(f::Callable, iterable)
    state = start(iterable)
    if done(iterable, state)
        throw(ArgumentError("mean of empty collection undefined: $(repr(iterable))"))
    end
    count = 1
    value, state = next(iterable, state)
    f_value = f(value)
    total = f_value + zero(f_value)
    while !done(iterable, state)
        value, state = next(iterable, state)
        total += f(value)
        count += 1
    end
    return total/count
end
mean(iterable) = mean(identity, iterable)
mean(f::Callable, A::AbstractArray) = sum(f, A) / length(A)
mean(A::AbstractArray) = sum(A) / length(A)

function mean!{T}(R::AbstractArray{T}, A::AbstractArray)
    sum!(R, A; init=true)
    scale!(R, length(R) / length(A))
    return R
end

momenttype{T}(::Type{T}) = typeof((zero(T) + zero(T)) / 2)
momenttype(::Type{Float32}) = Float32
momenttype{T<:Union{Float64,Int32,Int64,UInt32,UInt64}}(::Type{T}) = Float64

mean{T}(A::AbstractArray{T}, region) =
    mean!(reducedim_initarray(A, region, 0, momenttype(T)), A)


##### variances #####

# faster computation of real(conj(x)*y)
realXcY(x::Real, y::Real) = x*y
realXcY(x::Complex, y::Complex) = real(x)*real(y) + imag(x)*imag(y)

function var(iterable; corrected::Bool=true, mean=nothing)
    state = start(iterable)
    if done(iterable, state)
        throw(ArgumentError("variance of empty collection undefined: $(repr(iterable))"))
    end
    count = 1
    value, state = next(iterable, state)
    if mean === nothing
        # Use Welford algorithm as seen in (among other places)
        # Knuth's TAOCP, Vol 2, page 232, 3rd edition.
        M = value / 1
        S = real(zero(M))
        while !done(iterable, state)
            value, state = next(iterable, state)
            count += 1
            new_M = M + (value - M) / count
            S = S + realXcY(value - M, value - new_M)
            M = new_M
        end
        return S / (count - Int(corrected))
    elseif isa(mean, Number) # mean provided
        # Cannot use a compensated version, e.g. the one from
        # "Updating Formulae and a Pairwise Algorithm for Computing Sample Variances."
        # by Chan, Golub, and LeVeque, Technical Report STAN-CS-79-773,
        # Department of Computer Science, Stanford University,
        # because user can provide mean value that is different to mean(iterable)
        sum2 = abs2(value - mean::Number)
        while !done(iterable, state)
            value, state = next(iterable, state)
            count += 1
            sum2 += abs2(value - mean)
        end
        return sum2 / (count - Int(corrected))
    else
        throw(ArgumentError("invalid value of mean, $(mean)::$(typeof(mean))"))
    end
end

centralizedabs2fun(m::Number) = x -> abs2(x - m)
centralize_sumabs2(A::AbstractArray, m::Number) =
    mapreduce(centralizedabs2fun(m), +, A)
centralize_sumabs2(A::AbstractArray, m::Number, ifirst::Int, ilast::Int) =
    mapreduce_impl(centralizedabs2fun(m), +, A, ifirst, ilast)

function centralize_sumabs2!{S,T,N}(R::AbstractArray{S}, A::AbstractArray{T,N}, means::AbstractArray)
    # following the implementation of _mapreducedim! at base/reducedim.jl
    lsiz = check_reducedims(R,A)
    isempty(R) || fill!(R, zero(S))
    isempty(A) && return R

    if has_fast_linear_indexing(A) && lsiz > 16
        nslices = div(_length(A), lsiz)
        ibase = first(linearindices(A))-1
        for i = 1:nslices
            @inbounds R[i] = centralize_sumabs2(A, means[i], ibase+1, ibase+lsiz)
            ibase += lsiz
        end
        return R
    end
    indsAt, indsRt = safe_tail(indices(A)), safe_tail(indices(R)) # handle d=1 manually
    keep, Idefault = Broadcast.newindexer(indsAt, indsRt)
    if reducedim1(R, A)
        i1 = first(indices1(R))
        @inbounds for IA in CartesianRange(indsAt)
            IR = Broadcast.newindex(IA, keep, Idefault)
            r = R[i1,IR]
            m = means[i1,IR]
            @simd for i in indices(A, 1)
                r += abs2(A[i,IA] - m)
            end
            R[i1,IR] = r
        end
    else
        @inbounds for IA in CartesianRange(indsAt)
            IR = Broadcast.newindex(IA, keep, Idefault)
            @simd for i in indices(A, 1)
                R[i,IR] += abs2(A[i,IA] - means[i,IR])
            end
        end
    end
    return R
end

function varm{T}(A::AbstractArray{T}, m::Number; corrected::Bool=true)
    n = length(A)
    n == 0 && return convert(real(momenttype(T)), NaN)
    n == 1 && return convert(real(momenttype(T)), abs2(A[1] - m)/(1 - Int(corrected)))
    return centralize_sumabs2(A, m) / (n - Int(corrected))
end

function varm!{S}(R::AbstractArray{S}, A::AbstractArray, m::AbstractArray; corrected::Bool=true)
    if isempty(A)
        fill!(R, convert(S, NaN))
    else
        rn = div(length(A), length(R)) - Int(corrected)
        scale!(centralize_sumabs2!(R, A, m), convert(S, 1/rn))
    end
    return R
end

varm{T}(A::AbstractArray{T}, m::AbstractArray, region; corrected::Bool=true) =
    varm!(reducedim_initarray(A, region, 0, real(momenttype(T))), A, m; corrected=corrected)


var{T}(A::AbstractArray{T}; corrected::Bool=true, mean=nothing) =
    convert(real(momenttype(T)),
            varm(A, mean === nothing ? Base.mean(A) : mean; corrected=corrected))

var(A::AbstractArray, region; corrected::Bool=true, mean=nothing) =
    varm(A, mean === nothing ? Base.mean(A, region) : mean, region; corrected=corrected)

varm(iterable, m::Number; corrected::Bool=true) =
    var(iterable, corrected=corrected, mean=m)

## variances over ranges

function varm(v::Range, m::Number)
    f = first(v) - m
    s = step(v)
    l = length(v)
    if l == 0 || l == 1
           return NaN
    end
    return f^2 * l / (l - 1) + f * s * l + s^2 * l * (2 * l - 1) / 6
end

function var(v::Range)
    s = step(v)
    l = length(v)
    if l == 0 || l == 1
        return NaN
    end
    return abs2(s) * (l + 1) * l / 12
end


##### standard deviation #####

function sqrt!(A::AbstractArray)
    for i in eachindex(A)
        @inbounds A[i] = sqrt(A[i])
    end
    A
end

stdm(A::AbstractArray, m::Number; corrected::Bool=true) =
    sqrt(varm(A, m; corrected=corrected))

std(A::AbstractArray; corrected::Bool=true, mean=nothing) =
    sqrt(var(A; corrected=corrected, mean=mean))

std(A::AbstractArray, region; corrected::Bool=true, mean=nothing) =
    sqrt!(var(A, region; corrected=corrected, mean=mean))

std(iterable; corrected::Bool=true, mean=nothing) =
    sqrt(var(iterable, corrected=corrected, mean=mean))

stdm(iterable, m::Number; corrected::Bool=true) =
    std(iterable, corrected=corrected, mean=m)


###### covariance ######

# auxiliary functions

_conj{T<:Real}(x::AbstractArray{T}) = x
_conj(x::AbstractArray) = conj(x)

_getnobs(x::AbstractVector, vardim::Int) = length(x)
_getnobs(x::AbstractMatrix, vardim::Int) = size(x, vardim)

function _getnobs(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int)
    n = _getnobs(x, vardim)
    _getnobs(y, vardim) == n || throw(DimensionMismatch("dimensions of x and y mismatch"))
    return n
end

_vmean(x::AbstractVector, vardim::Int) = mean(x)
_vmean(x::AbstractMatrix, vardim::Int) = mean(x, vardim)

# core functions

unscaled_covzm(x::AbstractVector) = sumabs2(x)
unscaled_covzm(x::AbstractMatrix, vardim::Int) = (vardim == 1 ? _conj(x'x) : x * x')

unscaled_covzm(x::AbstractVector, y::AbstractVector) = dot(x, y)
unscaled_covzm(x::AbstractVector, y::AbstractMatrix, vardim::Int) =
    (vardim == 1 ? At_mul_B(x, _conj(y)) : At_mul_Bt(x, _conj(y)))
unscaled_covzm(x::AbstractMatrix, y::AbstractVector, vardim::Int) =
    (c = vardim == 1 ? At_mul_B(x, _conj(y)) :  x * _conj(y); reshape(c, length(c), 1))
unscaled_covzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int) =
    (vardim == 1 ? At_mul_B(x, _conj(y)) : A_mul_Bc(x, y))

# covzm (with centered data)

covzm(x::AbstractVector, corrected::Bool=true) = unscaled_covzm(x) / (length(x) - Int(corrected))
covzm(x::AbstractMatrix, vardim::Int=1, corrected::Bool=true) =
    scale!(unscaled_covzm(x, vardim), inv(size(x,vardim) - Int(corrected)))
covzm(x::AbstractVector, y::AbstractVector, corrected::Bool=true) =
    unscaled_covzm(x, y) / (length(x) - Int(corrected))
covzm(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int=1, corrected::Bool=true) =
    scale!(unscaled_covzm(x, y, vardim), inv(_getnobs(x, y, vardim) - Int(corrected)))

# covm (with provided mean)

covm(x::AbstractVector, xmean, corrected::Bool=true) =
    covzm(x .- xmean, corrected)
covm(x::AbstractMatrix, xmean, vardim::Int=1, corrected::Bool=true) =
    covzm(x .- xmean, vardim, corrected)
covm(x::AbstractVector, xmean, y::AbstractVector, ymean, corrected::Bool=true) =
    covzm(x .- xmean, y .- ymean, corrected)
covm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1, corrected::Bool=true) =
    covzm(x .- xmean, y .- ymean, vardim, corrected)

# cov (API)
"""
    cov(x[, corrected=true])

Compute the variance of the vector `x`. If `corrected` is `true` (the default) then the sum
is scaled with `n-1` wheares the sum is scaled with `n` if `corrected` is `false` where `n = length(x)`.
"""
cov(x::AbstractVector, corrected::Bool) = covm(x, Base.mean(x), corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cov{T<:AbstractVector}(x::T) = covm(x, Base.mean(x), true)

"""
    cov(X[, vardim=1, corrected=true])

Compute the covariance matrix of the matrix `X` along the dimension `vardim`. If `corrected`
is `true` (the default) then the sum is scaled with `n-1` wheares the sum is scaled with `n`
if `corrected` is `false` where `n = size(X, vardim)`.
"""
cov(X::AbstractMatrix, vardim::Int, corrected::Bool=true) =
    covm(X, _vmean(X, vardim), vardim, corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cov{T<:AbstractMatrix}(X::T) = cov(X, 1, true)

"""
    cov(x, y[, corrected=true])

Compute the covariance between the vectors `x` and `y`. If `corrected` is `true` (the default)
then the sum is scaled with `n-1` wheares the sum is scaled with `n` if `corrected` is `false`
where `n = length(x) = length(y)`.
"""
cov(x::AbstractVector, y::AbstractVector, corrected::Bool) =
    covm(x, Base.mean(x), y, Base.mean(y), corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cov{T<:AbstractVector,S<:AbstractVector}(x::T, y::S) =
    covm(x, Base.mean(x), y, Base.mean(y), true)

"""
    cov(X, Y[, vardim=1, corrected=true])

Compute the covariance between the vectors or matrices `X` and `Y` along the dimension
`vardim`. If `corrected` is `true` (the default) then the sum is scaled with `n-1` wheares
the sum is scaled with `n` if `corrected` is `false` where `n = size(X, vardim) = size(Y, vardim)`.
"""
cov(X::AbstractVecOrMat, Y::AbstractVecOrMat, vardim::Int, corrected::Bool=true) =
    covm(X, _vmean(X, vardim), Y, _vmean(Y, vardim), vardim, corrected)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these methods can be merged
cov(x::AbstractVector, Y::AbstractMatrix) = cov(x, Y, 1, true)
cov(X::AbstractMatrix, y::AbstractVector) = cov(X, y, 1, true)
cov(X::AbstractMatrix, Y::AbstractMatrix) = cov(X, Y, 1, true)

##### correlation #####

# cov2cor!

function cov2cor!{T}(C::AbstractMatrix{T}, xsd::AbstractArray)
    nx = length(xsd)
    size(C) == (nx, nx) || throw(DimensionMismatch("inconsistent dimensions"))
    for j = 1:nx
        for i = 1:j-1
            C[i,j] = C[j,i]
        end
        C[j,j] = one(T)
        for i = j+1:nx
            C[i,j] = clamp(C[i,j] / (xsd[i] * xsd[j]), -1, 1)
        end
    end
    return C
end
function cov2cor!(C::AbstractMatrix, xsd::Number, ysd::AbstractArray)
    nx, ny = size(C)
    length(ysd) == ny || throw(DimensionMismatch("inconsistent dimensions"))
    for (j, y) in enumerate(ysd)   # fixme (iter): here and in all `cov2cor!` we assume that `C` is efficiently indexed by integers
        for i in 1:nx
            C[i,j] = clamp(C[i, j] / (xsd * y), -1, 1)
        end
    end
    return C
end
function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd::Number)
    nx, ny = size(C)
    length(xsd) == nx || throw(DimensionMismatch("inconsistent dimensions"))
    for j in 1:ny
        for (i, x) in enumerate(xsd)
            C[i,j] = clamp(C[i,j] / (x * ysd), -1, 1)
        end
    end
    return C
end
function cov2cor!(C::AbstractMatrix, xsd::AbstractArray, ysd::AbstractArray)
    nx, ny = size(C)
    (length(xsd) == nx && length(ysd) == ny) ||
        throw(DimensionMismatch("inconsistent dimensions"))
    for (i, x) in enumerate(xsd)
        for (j, y) in enumerate(ysd)
            C[i,j] = clamp(C[i,j] / (x * y), -1, 1)
        end
    end
    return C
end

# corzm (non-exported, with centered data)

corzm{T}(x::AbstractVector{T}) = one(real(T))
function corzm(x::AbstractMatrix, vardim::Int=1)
    c = unscaled_covzm(x, vardim)
    return cov2cor!(c, sqrt!(diag(c)))
end
corzm(x::AbstractVector, y::AbstractMatrix, vardim::Int=1) =
    cov2cor!(unscaled_covzm(x, y, vardim), sqrt(sumabs2(x)), sqrt!(sumabs2(y, vardim)))
corzm(x::AbstractMatrix, y::AbstractVector, vardim::Int=1) =
    cov2cor!(unscaled_covzm(x, y, vardim), sqrt!(sumabs2(x, vardim)), sqrt(sumabs2(y)))
corzm(x::AbstractMatrix, y::AbstractMatrix, vardim::Int=1) =
    cov2cor!(unscaled_covzm(x, y, vardim), sqrt!(sumabs2(x, vardim)), sqrt!(sumabs2(y, vardim)))

# corm

corm{T}(x::AbstractVector{T}, xmean) = one(real(T))
corm(x::AbstractMatrix, xmean, vardim::Int=1) = corzm(x .- xmean, vardim)
function corm(x::AbstractVector, mx::Number, y::AbstractVector, my::Number)
    n = length(x)
    length(y) == n || throw(DimensionMismatch("inconsistent lengths"))
    n > 0 || throw(ArgumentError("correlation only defined for non-empty vectors"))

    @inbounds begin
        # Initialize the accumulators
        xx = zero(sqrt(x[1] * x[1]))
        yy = zero(sqrt(y[1] * y[1]))
        xy = zero(xx * yy)

        @simd for i = 1:n
            xi = x[i] - mx
            yi = y[i] - my
            xx += abs2(xi)
            yy += abs2(yi)
            xy += xi * yi'
        end
    end
    return clamp(xy / max(xx, yy) / sqrt(min(xx, yy) / max(xx, yy)), -1, 1)
end
corm(x::AbstractVecOrMat, xmean, y::AbstractVecOrMat, ymean, vardim::Int=1) =
    corzm(x .- xmean, y .- ymean, vardim)

# cor
"""
    cor(x)

Return the number one.
"""
cor{T<:AbstractVector}(x::T) = one(real(eltype(x)))
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged

"""
    cor(X[, vardim=1])

Compute the Pearson correlation matrix of the matrix `X` along the dimension `vardim`.
"""
cor(X::AbstractMatrix, vardim::Int) = corm(X, _vmean(X, vardim), vardim)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged
cor{T<:AbstractMatrix}(X::T) = cor(X, 1)

"""
    cor(x, y)

Compute the Pearson correlation between the vectors `x` and `y`.
"""
cor{T<:AbstractVector,S<:AbstractVector}(x::T, y::S) = corm(x, Base.mean(x), y, Base.mean(y))
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these two methods can be merged

"""
    cor(X, Y[, vardim=1])

Compute the Pearson correlation between the vectors or matrices `X` and `Y` along the dimension `vardim`.
"""
cor(x::AbstractVecOrMat, y::AbstractVecOrMat, vardim::Int) =
    corm(x, _vmean(x, vardim), y, _vmean(y, vardim), vardim)
# This ugly hack is necessary to make the method below considered more specific than the deprecated method. When the old keyword version has been completely deprecated, these methods can be merged
cor(x::AbstractVector, Y::AbstractMatrix) = cor(x, Y, 1)
cor(X::AbstractMatrix, y::AbstractVector) = cor(X, y, 1)
cor(X::AbstractMatrix, Y::AbstractMatrix) = cor(X, Y, 1)

##### median & quantiles #####

"""
    middle(x)

Compute the middle of a scalar value, which is equivalent to `x` itself, but of the type of `middle(x, x)` for consistency.
"""
# Specialized functions for real types allow for improved performance
middle(x::Union{Bool,Int8,Int16,Int32,Int64,Int128,UInt8,UInt16,UInt32,UInt64,UInt128}) = Float64(x)
middle(x::AbstractFloat) = x
middle(x::Float16) = Float32(x)
middle(x::Real) = (x + zero(x)) / 1

"""
    middle(x, y)

Compute the middle of two reals `x` and `y`, which is equivalent in both value and type to computing their mean (`(x + y) / 2`).
"""
middle(x::Real, y::Real) = x/2 + y/2

"""
    middle(range)

Compute the middle of a range, which consists in computing the mean of its extrema. Since a range is sorted, the mean is performed with the first and last element.
"""
middle(a::Range) = middle(a[1], a[end])

"""
    middle(array)

Compute the middle of an array, which consists in finding its extrema and then computing their mean.
"""
middle(a::AbstractArray) = ((v1, v2) = extrema(a); middle(v1, v2))

function median!{T}(v::AbstractVector{T})
    isempty(v) && throw(ArgumentError("median of an empty array is undefined, $(repr(v))"))
    if T<:AbstractFloat
        @inbounds for x in v
            isnan(x) && return x
        end
    end
    n = length(v)
    if isodd(n)
        return middle(select!(v,div(n+1,2)))
    else
        m = select!(v, div(n,2):div(n,2)+1)
        return middle(m[1], m[2])
    end
end
median!{T}(v::AbstractArray{T}) = median!(vec(v))
median{T}(v::AbstractArray{T}) = median!(copy!(Array{T,1}(length(v)), v))

median{T}(v::AbstractArray{T}, region) = mapslices(median!, v, region)

# for now, use the R/S definition of quantile; may want variants later
# see ?quantile in R -- this is type 7
"""
    quantile!([q, ] v, p; sorted=false)

Compute the quantile(s) of a vector `v` at the probabilities `p`, with optional output into
array `q` (if not provided, a new output array is created). The keyword argument `sorted`
indicates whether `v` can be assumed to be sorted; if `false` (the default), then the
elements of `v` may be partially sorted.

The elements of `p` should be on the interval [0,1], and `v` should not have any `NaN`
values.

Quantiles are computed via linear interpolation between the points `((k-1)/(n-1), v[k])`,
for `k = 1:n` where `n = length(v)`. This corresponds to Definition 7 of Hyndman and Fan
(1996), and is the same as the R default.

* Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages",
  *The American Statistician*, Vol. 50, No. 4, pp. 361-365
"""
function quantile!(q::AbstractArray, v::AbstractVector, p::AbstractArray;
                   sorted::Bool=false)
    size(p) == size(q) || throw(DimensionMismatch())

    isempty(v) && throw(ArgumentError("empty data vector"))

    lv = length(v)
    if !sorted
        minp, maxp = extrema(p)
        lo = floor(Int,1+minp*(lv-1))
        hi = ceil(Int,1+maxp*(lv-1))

        # only need to perform partial sort
        sort!(v, 1, lv, PartialQuickSort(lo:hi), Base.Sort.Forward)
    end
    isnan(v[end]) && throw(ArgumentError("quantiles are undefined in presence of NaNs"))

    for (i, j) in zip(eachindex(p), eachindex(q))
        @inbounds q[j] = _quantile(v,p[i])
    end
    return q
end

quantile!(v::AbstractVector, p::AbstractArray; sorted::Bool=false) =
    quantile!(similar(p,float(eltype(v))), v, p; sorted=sorted)

function quantile!(v::AbstractVector, p::Real;
                   sorted::Bool=false)
    isempty(v) && throw(ArgumentError("empty data vector"))

    lv = length(v)
    if !sorted
        lo = floor(Int,1+p*(lv-1))
        hi = ceil(Int,1+p*(lv-1))

        # only need to perform partial sort
        sort!(v, 1, lv, PartialQuickSort(lo:hi), Base.Sort.Forward)
    end
    isnan(v[end]) && throw(ArgumentError("quantiles are undefined in presence of NaNs"))

    return _quantile(v,p)
end

# Core quantile lookup function: assumes `v` sorted
@inline function _quantile(v::AbstractVector, p::Real)
    T = float(eltype(v))
    isnan(p) && return T(NaN)
    0 <= p <= 1 || throw(ArgumentError("input probability out of [0,1] range"))

    lv = length(v)
    f0 = (lv-1)*p # 0-based interpolated index
    t0 = trunc(f0)
    h = f0 - t0

    i = trunc(Int,t0) + 1

    if h == 0
        return T(v[i])
    else
        a = T(v[i])
        b = T(v[i+1])
        return a + h*(b-a)
    end
end


"""
    quantile(v, p; sorted=false)

Compute the quantile(s) of a vector `v` at a specified probability or vector `p`. The
keyword argument `sorted` indicates whether `v` can be assumed to be sorted.

The `p` should be on the interval [0,1], and `v` should not have any `NaN` values.

Quantiles are computed via linear interpolation between the points `((k-1)/(n-1), v[k])`,
for `k = 1:n` where `n = length(v)`. This corresponds to Definition 7 of Hyndman and Fan
(1996), and is the same as the R default.

* Hyndman, R.J and Fan, Y. (1996) "Sample Quantiles in Statistical Packages",
  *The American Statistician*, Vol. 50, No. 4, pp. 361-365
"""
quantile(v::AbstractVector, p; sorted::Bool=false) =
    quantile!(sorted ? v : copymutable(v), p; sorted=sorted)
back to top