https://github.com/robertmartin8/PyPortfolioOpt
Raw File
Tip revision: 7b19f1d10a15e5049ca592b8fe34be0176c62ae9 authored by Robert Martin on 12 March 2024, 11:32:10 UTC
Update README.md
Tip revision: 7b19f1d
cla.py
"""
The ``cla`` module houses the CLA class, which
generates optimal portfolios using the Critical Line Algorithm as implemented
by Marcos Lopez de Prado and David Bailey.
"""

import numpy as np
import pandas as pd

from . import base_optimizer


class CLA(base_optimizer.BaseOptimizer):

    """
    Instance variables:

    - Inputs:

        - ``n_assets`` - int
        - ``tickers`` - str list
        - ``mean`` - np.ndarray
        - ``cov_matrix`` - np.ndarray
        - ``expected_returns`` - np.ndarray
        - ``lb`` - np.ndarray
        - ``ub`` - np.ndarray

    - Optimization parameters:

        - ``w`` - np.ndarray list
        - ``ls`` - float list
        - ``g`` - float list
        - ``f`` - float list list

    - Outputs:

        - ``weights`` - np.ndarray
        - ``frontier_values`` - (float list, float list, np.ndarray list)

    Public methods:

    - ``max_sharpe()`` optimizes for maximal Sharpe ratio (a.k.a the tangency portfolio)
    - ``min_volatility()`` optimizes for minimum volatility
    - ``efficient_frontier()`` computes the entire efficient frontier
    - ``portfolio_performance()`` calculates the expected return, volatility and Sharpe ratio for
      the optimized portfolio.
    - ``clean_weights()`` rounds the weights and clips near-zeros.
    - ``save_weights_to_file()`` saves the weights to csv, json, or txt.
    """

    def __init__(self, expected_returns, cov_matrix, weight_bounds=(0, 1)):
        """
        :param expected_returns: expected returns for each asset. Set to None if
                                 optimising for volatility only.
        :type expected_returns: pd.Series, list, np.ndarray
        :param cov_matrix: covariance of returns for each asset
        :type cov_matrix: pd.DataFrame or np.array
        :param weight_bounds: minimum and maximum weight of an asset, defaults to (0, 1).
                              Must be changed to (-1, 1) for portfolios with shorting.
        :type weight_bounds: tuple (float, float) or (list/ndarray, list/ndarray) or list(tuple(float, float))
        :raises TypeError: if ``expected_returns`` is not a series, list or array
        :raises TypeError: if ``cov_matrix`` is not a dataframe or array
        """
        # Initialize the class
        self.mean = np.array(expected_returns).reshape((len(expected_returns), 1))
        # if (self.mean == np.ones(self.mean.shape) * self.mean.mean()).all():
        #     self.mean[-1, 0] += 1e-5
        self.expected_returns = self.mean.reshape((len(self.mean),))
        self.cov_matrix = np.asarray(cov_matrix)

        # Bounds
        if len(weight_bounds) == len(self.mean) and not isinstance(
            weight_bounds[0], (float, int)
        ):
            self.lB = np.array([b[0] for b in weight_bounds]).reshape(-1, 1)
            self.uB = np.array([b[1] for b in weight_bounds]).reshape(-1, 1)
        else:
            if isinstance(weight_bounds[0], (float, int)):
                self.lB = np.ones(self.mean.shape) * weight_bounds[0]
            else:
                self.lB = np.array(weight_bounds[0]).reshape(self.mean.shape)
            if isinstance(weight_bounds[0], (float, int)):
                self.uB = np.ones(self.mean.shape) * weight_bounds[1]
            else:
                self.uB = np.array(weight_bounds[1]).reshape(self.mean.shape)

        self.w = []  # solution
        self.ls = []  # lambdas
        self.g = []  # gammas
        self.f = []  # free weights

        self.frontier_values = None  # result of computing efficient frontier

        if isinstance(expected_returns, pd.Series):
            tickers = list(expected_returns.index)
        else:
            tickers = list(range(len(self.mean)))
        super().__init__(len(tickers), tickers)

    @staticmethod
    def _infnone(x):
        """
        Helper method to map None to float infinity.

        :param x: argument
        :type x: float
        :return: infinity if the argument was None otherwise x
        :rtype: float
        """
        return float("-inf") if x is None else x

    def _init_algo(self):
        # Initialize the algo
        # 1) Form structured array
        a = np.zeros((self.mean.shape[0]), dtype=[("id", int), ("mu", float)])
        b = [self.mean[i][0] for i in range(self.mean.shape[0])]  # dump array into list
        # fill structured array
        a[:] = list(zip(list(range(self.mean.shape[0])), b))
        # 2) Sort structured array
        b = np.sort(a, order="mu")
        # 3) First free weight
        i, w = b.shape[0], np.copy(self.lB)
        while sum(w) < 1:
            i -= 1
            w[b[i][0]] = self.uB[b[i][0]]
        w[b[i][0]] += 1 - sum(w)
        return [b[i][0]], w

    def _compute_bi(self, c, bi):
        if c > 0:
            bi = bi[1][0]
        if c < 0:
            bi = bi[0][0]
        return bi

    def _compute_w(self, covarF_inv, covarFB, meanF, wB):
        # 1) compute gamma
        onesF = np.ones(meanF.shape)
        g1 = np.dot(np.dot(onesF.T, covarF_inv), meanF)
        g2 = np.dot(np.dot(onesF.T, covarF_inv), onesF)
        if wB is None:
            g, w1 = float(-self.ls[-1] * g1 / g2 + 1 / g2), 0
        else:
            onesB = np.ones(wB.shape)
            g3 = np.dot(onesB.T, wB)
            g4 = np.dot(covarF_inv, covarFB)
            w1 = np.dot(g4, wB)
            g4 = np.dot(onesF.T, w1)
            g = float(-self.ls[-1] * g1 / g2 + (1 - g3 + g4) / g2)
        # 2) compute weights
        w2 = np.dot(covarF_inv, onesF)
        w3 = np.dot(covarF_inv, meanF)
        return -w1 + g * w2 + self.ls[-1] * w3, g

    def _compute_lambda(self, covarF_inv, covarFB, meanF, wB, i, bi):
        # 1) C
        onesF = np.ones(meanF.shape)
        c1 = np.dot(np.dot(onesF.T, covarF_inv), onesF)
        c2 = np.dot(covarF_inv, meanF)
        c3 = np.dot(np.dot(onesF.T, covarF_inv), meanF)
        c4 = np.dot(covarF_inv, onesF)
        c = -c1 * c2[i] + c3 * c4[i]
        if c == 0:  # pragma: no cover
            return None, None
        # 2) bi
        if isinstance(bi, list):
            bi = self._compute_bi(c, bi)
        # 3) Lambda
        if wB is None:
            # All free assets
            return float((c4[i] - c1 * bi) / c), bi
        else:
            onesB = np.ones(wB.shape)
            l1 = np.dot(onesB.T, wB)
            l2 = np.dot(covarF_inv, covarFB)
            l3 = np.dot(l2, wB)
            l2 = np.dot(onesF.T, l3)
            return float(((1 - l1 + l2) * c4[i] - c1 * (bi + l3[i])) / c), bi

    def _get_matrices(self, f):
        # Slice covarF,covarFB,covarB,meanF,meanB,wF,wB
        covarF = self._reduce_matrix(self.cov_matrix, f, f)
        meanF = self._reduce_matrix(self.mean, f, [0])
        b = self._get_b(f)
        covarFB = self._reduce_matrix(self.cov_matrix, f, b)
        wB = self._reduce_matrix(self.w[-1], b, [0])
        return covarF, covarFB, meanF, wB

    def _get_b(self, f):
        return self._diff_lists(list(range(self.mean.shape[0])), f)

    @staticmethod
    def _diff_lists(list1, list2):
        return list(set(list1) - set(list2))

    @staticmethod
    def _reduce_matrix(matrix, listX, listY):
        # Reduce a matrix to the provided list of rows and columns
        if len(listX) == 0 or len(listY) == 0:
            return
        matrix_ = matrix[:, listY[0] : listY[0] + 1]
        for i in listY[1:]:
            a = matrix[:, i : i + 1]
            matrix_ = np.append(matrix_, a, 1)
        matrix__ = matrix_[listX[0] : listX[0] + 1, :]
        for i in listX[1:]:
            a = matrix_[i : i + 1, :]
            matrix__ = np.append(matrix__, a, 0)
        return matrix__

    def _purge_num_err(self, tol):
        # Purge violations of inequality constraints (associated with ill-conditioned cov matrix)
        i = 0
        while True:
            flag = False
            if i == len(self.w):
                break
            if abs(sum(self.w[i]) - 1) > tol:
                flag = True
            else:
                for j in range(self.w[i].shape[0]):
                    if (
                        self.w[i][j] - self.lB[j] < -tol
                        or self.w[i][j] - self.uB[j] > tol
                    ):  # pragma: no cover
                        flag = True
                        break
            if flag is True:
                del self.w[i]
                del self.ls[i]
                del self.g[i]
                del self.f[i]
            else:
                i += 1

    def _purge_excess(self):
        # Remove violations of the convex hull
        i, repeat = 0, False
        while True:
            if repeat is False:
                i += 1
            if i == len(self.w) - 1:
                break
            w = self.w[i]
            mu = np.dot(w.T, self.mean)[0, 0]
            j, repeat = i + 1, False
            while True:
                if j == len(self.w):
                    break
                w = self.w[j]
                mu_ = np.dot(w.T, self.mean)[0, 0]
                if mu < mu_:
                    del self.w[i]
                    del self.ls[i]
                    del self.g[i]
                    del self.f[i]
                    repeat = True
                    break
                else:
                    j += 1

    def _golden_section(self, obj, a, b, **kargs):
        # Golden section method. Maximum if kargs['minimum']==False is passed
        tol, sign, args = 1.0e-9, 1, None
        if "minimum" in kargs and kargs["minimum"] is False:
            sign = -1
        if "args" in kargs:
            args = kargs["args"]
        numIter = int(np.ceil(-2.078087 * np.log(tol / abs(b - a))))
        r = 0.618033989
        c = 1.0 - r
        # Initialize
        x1 = r * a + c * b
        x2 = c * a + r * b
        f1 = sign * obj(x1, *args)
        f2 = sign * obj(x2, *args)
        # Loop
        for i in range(numIter):
            if f1 > f2:
                a = x1
                x1 = x2
                f1 = f2
                x2 = c * a + r * b
                f2 = sign * obj(x2, *args)
            else:
                b = x2
                x2 = x1
                f2 = f1
                x1 = r * a + c * b
                f1 = sign * obj(x1, *args)
        if f1 < f2:
            return x1, sign * f1
        else:
            return x2, sign * f2

    def _eval_sr(self, a, w0, w1):
        # Evaluate SR of the portfolio within the convex combination
        w = a * w0 + (1 - a) * w1
        b = np.dot(w.T, self.mean)[0, 0]
        c = np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5
        return b / c

    def _solve(self):
        # Compute the turning points,free sets and weights
        f, w = self._init_algo()
        self.w.append(np.copy(w))  # store solution
        self.ls.append(None)
        self.g.append(None)
        self.f.append(f[:])
        while True:
            # 1) case a): Bound one free weight
            l_in = None
            if len(f) > 1:
                covarF, covarFB, meanF, wB = self._get_matrices(f)
                covarF_inv = np.linalg.inv(covarF)
                j = 0
                for i in f:
                    l, bi = self._compute_lambda(
                        covarF_inv, covarFB, meanF, wB, j, [self.lB[i], self.uB[i]]
                    )
                    if CLA._infnone(l) > CLA._infnone(l_in):
                        l_in, i_in, bi_in = l, i, bi
                    j += 1
            # 2) case b): Free one bounded weight
            l_out = None
            if len(f) < self.mean.shape[0]:
                b = self._get_b(f)
                for i in b:
                    covarF, covarFB, meanF, wB = self._get_matrices(f + [i])
                    covarF_inv = np.linalg.inv(covarF)
                    l, bi = self._compute_lambda(
                        covarF_inv,
                        covarFB,
                        meanF,
                        wB,
                        meanF.shape[0] - 1,
                        self.w[-1][i],
                    )
                    if (self.ls[-1] is None or l < self.ls[-1]) and l > CLA._infnone(
                        l_out
                    ):
                        l_out, i_out = l, i
            if (l_in is None or l_in < 0) and (l_out is None or l_out < 0):
                # 3) compute minimum variance solution
                self.ls.append(0)
                covarF, covarFB, meanF, wB = self._get_matrices(f)
                covarF_inv = np.linalg.inv(covarF)
                meanF = np.zeros(meanF.shape)
            else:
                # 4) decide lambda
                if CLA._infnone(l_in) > CLA._infnone(l_out):
                    self.ls.append(l_in)
                    f.remove(i_in)
                    w[i_in] = bi_in  # set value at the correct boundary
                else:
                    self.ls.append(l_out)
                    f.append(i_out)
                covarF, covarFB, meanF, wB = self._get_matrices(f)
                covarF_inv = np.linalg.inv(covarF)
            # 5) compute solution vector
            wF, g = self._compute_w(covarF_inv, covarFB, meanF, wB)
            for i in range(len(f)):
                w[f[i]] = wF[i]
            self.w.append(np.copy(w))  # store solution
            self.g.append(g)
            self.f.append(f[:])
            if self.ls[-1] == 0:
                break
        # 6) Purge turning points
        self._purge_num_err(10e-10)
        self._purge_excess()

    def max_sharpe(self):
        """
        Maximise the Sharpe ratio.

        :return: asset weights for the max-sharpe portfolio
        :rtype: OrderedDict
        """
        if not self.w:
            self._solve()
        # 1) Compute the local max SR portfolio between any two neighbor turning points
        w_sr, sr = [], []
        for i in range(len(self.w) - 1):
            w0 = np.copy(self.w[i])
            w1 = np.copy(self.w[i + 1])
            kargs = {"minimum": False, "args": (w0, w1)}
            a, b = self._golden_section(self._eval_sr, 0, 1, **kargs)
            w_sr.append(a * w0 + (1 - a) * w1)
            sr.append(b)

        self.weights = w_sr[sr.index(max(sr))].reshape((self.n_assets,))
        return self._make_output_weights()

    def min_volatility(self):
        """
        Minimise volatility.

        :return: asset weights for the volatility-minimising portfolio
        :rtype: OrderedDict
        """
        if not self.w:
            self._solve()
        var = []
        for w in self.w:
            a = np.dot(np.dot(w.T, self.cov_matrix), w)
            var.append(a)
        # return min(var)**.5, self.w[var.index(min(var))]
        self.weights = self.w[var.index(min(var))].reshape((self.n_assets,))
        return self._make_output_weights()

    def efficient_frontier(self, points=100):
        """
        Efficiently compute the entire efficient frontier

        :param points: rough number of points to evaluate, defaults to 100
        :type points: int, optional
        :raises ValueError: if weights have not been computed
        :return: return list, std list, weight list
        :rtype: (float list, float list, np.ndarray list)
        """
        if not self.w:
            self._solve()

        mu, sigma, weights = [], [], []
        # remove the 1, to avoid duplications
        a = np.linspace(0, 1, points // len(self.w))[:-1]
        b = list(range(len(self.w) - 1))
        for i in b:
            w0, w1 = self.w[i], self.w[i + 1]
            if i == b[-1]:
                # include the 1 in the last iteration
                a = np.linspace(0, 1, points // len(self.w))
            for j in a:
                w = w1 * j + (1 - j) * w0
                weights.append(np.copy(w))
                mu.append(np.dot(w.T, self.mean)[0, 0])
                sigma.append(np.dot(np.dot(w.T, self.cov_matrix), w)[0, 0] ** 0.5)

        self.frontier_values = (mu, sigma, weights)
        return mu, sigma, weights

    def set_weights(self, _):
        # Overrides parent method since set_weights does nothing.
        raise NotImplementedError("set_weights does nothing for CLA")

    def portfolio_performance(self, verbose=False, risk_free_rate=0.02):
        """
        After optimising, calculate (and optionally print) the performance of the optimal
        portfolio. Currently calculates expected return, volatility, and the Sharpe ratio.

        :param verbose: whether performance should be printed, defaults to False
        :type verbose: bool, optional
        :param risk_free_rate: risk-free rate of borrowing/lending, defaults to 0.02
        :type risk_free_rate: float, optional
        :raises ValueError: if weights have not been calculated yet
        :return: expected return, volatility, Sharpe ratio.
        :rtype: (float, float, float)
        """
        return base_optimizer.portfolio_performance(
            self.weights,
            self.expected_returns,
            self.cov_matrix,
            verbose,
            risk_free_rate,
        )
back to top