https://github.com/GPflow/GPflow
Raw File
Tip revision: 4f1faf11ce53037efcdd3ed60be52646c3206222 authored by Sergio Diaz on 10 September 2019, 15:11:24 UTC
SGPR and FITC updated
Tip revision: 4f1faf1
gpr.py
# Copyright 2016 James Hensman, Valentine Svensson, alexggmatthews, fujiisoup
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Tuple

import gpflow
import tensorflow as tf
import tensorflow_probability as tfp

from ..kernels import Kernel
from ..mean_functions import MeanFunction
from .model import GPModel

Data = Tuple[tf.Tensor, tf.Tensor]


class GPR(GPModel):
    r"""
    Gaussian Process Regression.

    This is a vanilla implementation of GP regression with a Gaussian
    likelihood.  Multiple columns of Y are treated independently.

    The log likelihood of this models is sometimes referred to as the 'marginal log likelihood',
    and is given by

    .. math::
       \\log p(\\mathbf y \\,|\\, \\mathbf f) =
            \\mathcal N\\left(\\mathbf y\,|\, 0, \\mathbf K + \\sigma_n \\mathbf I\\right)
    """

    def __init__(self, data: Data, kernel: Kernel, mean_function: Optional[MeanFunction] = None):
        likelihood = gpflow.likelihoods.Gaussian()
        super().__init__(kernel, likelihood, mean_function)

        self.data = data

    def log_likelihood(self):
        """
        Computes the log likelihood.

        .. math::
            \log p(Y | \theta).

        """
        x, y = self.data
        K = self.kernel(x)
        num_data = x.shape[0]
        k_diag = tf.linalg.diag_part(K)
        s_diag = tf.fill([num_data], self.likelihood.variance)
        ks = tf.linalg.set_diag(K, k_diag + s_diag)
        L = tf.linalg.cholesky(ks)
        m = self.mean_function(x)

        # [R,] log-likelihoods for each independent dimension of Y
        distr = tfp.distributions.MultivariateNormalTriL(loc=m, scale_tril=L)
        log_prob = distr.log_prob(tf.linalg.adjoint(y))
        return tf.reduce_sum(log_prob)

    def predict_f(self, predict_at: tf.Tensor, full_cov: bool = False, full_output_cov: bool = False):
        r"""
        This method computes predictions at X \in R^{N \x D} input points

        .. math::
            p(F* | Y)

        where F* are points on the GP at new data points, Y are noisy observations at training data points.
        """
        x_data, y_data = self.data
        err = y_data - self.mean_function(x_data)

        kmm = self.kernel(x_data)
        knn = self.kernel(predict_at, full=full_cov)
        kmn = self.kernel(x_data, predict_at)

        num_data = x_data.shape[0]
        s = tf.linalg.diag(tf.fill([num_data], self.likelihood.variance))

        conditional = gpflow.conditionals.base_conditional
        f_mean_zero, f_var = conditional(kmn, kmm + s, knn, err, full_cov=full_cov,
                                         white=False)  # [N, P], [N, P] or [P, N, N]
        f_mean = f_mean_zero + self.mean_function(predict_at)
        return f_mean, f_var
back to top