https://github.com/halide/Halide
Raw File
Tip revision: b5e8217dfbe905ef1f30f7bd584a83dfb9e2260e authored by Steven Johnson on 19 January 2023, 19:40:52 UTC
Remove the watchdog timer from generator_main(). It was intended to kill pathologically slow builds, but in the environment it was added for (Google build servers), it ended up being redundant to existing mechanisms, and removing it allows us to remove a dependency on threading libraries in libHalide.
Tip revision: b5e8217
lesson_09_update_definitions.cpp
// Halide tutorial lesson 9: Multi-pass Funcs, update definitions, and reductions

// On linux, you can compile and run it like so:
// g++ lesson_09*.cpp -g -std=c++17 -I <path/to/Halide.h> -I <path/to/tools/halide_image_io.h> -L <path/to/libHalide.so> -lHalide `libpng-config --cflags --ldflags` -ljpeg -lpthread -ldl -fopenmp -o lesson_09
// LD_LIBRARY_PATH=<path/to/libHalide.so> ./lesson_09

// On os x (will only work if you actually have g++, not Apple's pretend g++ which is actually clang):
// g++ lesson_09*.cpp -g -std=c++17 -I <path/to/Halide.h> -I <path/to/tools/halide_image_io.h> -L <path/to/libHalide.so> -lHalide `libpng-config --cflags --ldflags` -ljpeg -fopenmp -o lesson_09
// DYLD_LIBRARY_PATH=<path/to/libHalide.dylib> ./lesson_09

// If you have the entire Halide source tree, you can also build it by
// running:
//    make tutorial_lesson_09_update_definitions
// in a shell with the current directory at the top of the halide
// source tree.

#include "Halide.h"
#include <stdio.h>

// We're going to be using x86 SSE intrinsics later on in this lesson.
#ifdef __SSE2__
#include <emmintrin.h>
#endif

// We'll also need a clock to do performance testing at the end.
#include "clock.h"

using namespace Halide;

// Support code for loading pngs.
#include "halide_image_io.h"
using namespace Halide::Tools;

int main(int argc, char **argv) {
    // Declare some Vars to use below.
    Var x("x"), y("y");

    // Load a grayscale image to use as an input.
    Buffer<uint8_t> input = load_image("images/gray.png");

    // You can define a Func in multiple passes. Let's see a toy
    // example first.
    {
        // The first definition must be one like we have seen already
        // - a mapping from Vars to an Expr:
        Func f;
        f(x, y) = x + y;
        // We call this first definition the "pure" definition.

        // But the later definitions can include computed expressions on
        // both sides. The simplest example is modifying a single point:
        f(3, 7) = 42;

        // We call these extra definitions "update" definitions, or
        // "reduction" definitions. A reduction definition is an
        // update definition that recursively refers back to the
        // function's current value at the same site:
        f(x, y) = f(x, y) + 17;

        // If we confine our update to a single row, we can
        // recursively refer to values in the same column:
        f(x, 3) = f(x, 0) * f(x, 10);

        // Similarly, if we confine our update to a single column, we
        // can recursively refer to other values in the same row.
        f(0, y) = f(0, y) / f(3, y);

        // The general rule is: Each Var used in an update definition
        // must appear unadorned in the same position as in the pure
        // definition in all references to the function on the left-
        // and right-hand sides. So the following definitions are
        // legal updates:
        f(x, 17) = x + 8;
        f(0, y) = y * 8;
        f(x, x + 1) = x + 8;
        f(y / 2, y) = f(0, y) * 17;

        // But these ones would cause an error:

        // f(x, 0) = f(x + 1, 0);
        // First argument to f on the right-hand-side must be 'x', not 'x + 1'.

        // f(y, y + 1) = y + 8;
        // Second argument to f on the left-hand-side must be 'y', not 'y + 1'.

        // f(y, x) = y - x;
        // Arguments to f on the left-hand-side are in the wrong places.

        // f(3, 4) = x + y;
        // Free variables appear on the right-hand-side but not the left-hand-side.

        // We'll realize this one just to make sure it compiles. The
        // second-to-last definition forces us to realize over a
        // domain that is taller than it is wide.
        f.realize({100, 101});

        // For each realization of f, each step runs in its entirety
        // before the next one begins. Let's trace the loads and
        // stores for a simpler example:
        Func g("g");
        g(x, y) = x + y;    // Pure definition
        g(2, 1) = 42;       // First update definition
        g(x, 0) = g(x, 1);  // Second update definition

        g.trace_loads();
        g.trace_stores();

        g.realize({4, 4});

        // See figures/lesson_09_update.gif for a visualization.

        // Reading the log, we see that each pass is applied in
        // turn. The equivalent C is:
        int result[4][4];
        // Pure definition
        for (int y = 0; y < 4; y++) {
            for (int x = 0; x < 4; x++) {
                result[y][x] = x + y;
            }
        }
        // First update definition
        result[1][2] = 42;
        // Second update definition
        for (int x = 0; x < 4; x++) {
            result[0][x] = result[1][x];
        }
    }

    // Putting update passes inside loops.
    {
        // Starting with this pure definition:
        Func f;
        f(x, y) = (x + y) / 100.0f;

        // Say we want an update that squares the first fifty rows. We
        // could do this by adding 50 update definitions:

        // f(x, 0) = f(x, 0) * f(x, 0);
        // f(x, 1) = f(x, 1) * f(x, 1);
        // f(x, 2) = f(x, 2) * f(x, 2);
        // ...
        // f(x, 49) = f(x, 49) * f(x, 49);

        // Or equivalently using a compile-time loop in our C++:
        // for (int i = 0; i < 50; i++) {
        //   f(x, i) = f(x, i) * f(x, i);
        // }

        // But it's more manageable and more flexible to put the loop
        // in the generated code. We do this by defining a "reduction
        // domain" and using it inside an update definition:
        RDom r(0, 50);
        f(x, r) = f(x, r) * f(x, r);
        Buffer<float> halide_result = f.realize({100, 100});

        // See figures/lesson_09_update_rdom.mp4 for a visualization.

        // The equivalent C is:
        float c_result[100][100];
        for (int y = 0; y < 100; y++) {
            for (int x = 0; x < 100; x++) {
                c_result[y][x] = (x + y) / 100.0f;
            }
        }
        for (int x = 0; x < 100; x++) {
            for (int r = 0; r < 50; r++) {
                // The loop over the reduction domain occurs inside of
                // the loop over any pure variables used in the update
                // step:
                c_result[r][x] = c_result[r][x] * c_result[r][x];
            }
        }

        // Check the results match:
        for (int y = 0; y < 100; y++) {
            for (int x = 0; x < 100; x++) {
                if (fabs(halide_result(x, y) - c_result[y][x]) > 0.01f) {
                    printf("halide_result(%d, %d) = %f instead of %f\n",
                           x, y, halide_result(x, y), c_result[y][x]);
                    return -1;
                }
            }
        }
    }

    // Now we'll examine a real-world use for an update definition:
    // computing a histogram.
    {

        // Some operations on images can't be cleanly expressed as a pure
        // function from the output coordinates to the value stored
        // there. The classic example is computing a histogram. The
        // natural way to do it is to iterate over the input image,
        // updating histogram buckets. Here's how you do that in Halide:
        Func histogram("histogram");

        // Histogram buckets start as zero.
        histogram(x) = 0;

        // Define a multi-dimensional reduction domain over the input image:
        RDom r(0, input.width(), 0, input.height());

        // For every point in the reduction domain, increment the
        // histogram bucket corresponding to the intensity of the
        // input image at that point.
        histogram(input(r.x, r.y)) += 1;

        Buffer<int> halide_result = histogram.realize({256});

        // The equivalent C is:
        int c_result[256];
        for (int x = 0; x < 256; x++) {
            c_result[x] = 0;
        }
        for (int r_y = 0; r_y < input.height(); r_y++) {
            for (int r_x = 0; r_x < input.width(); r_x++) {
                c_result[input(r_x, r_y)] += 1;
            }
        }

        // Check the answers agree:
        for (int x = 0; x < 256; x++) {
            if (c_result[x] != halide_result(x)) {
                printf("halide_result(%d) = %d instead of %d\n",
                       x, halide_result(x), c_result[x]);
                return -1;
            }
        }
    }

    // Scheduling update steps
    {
        // The pure variables in an update step and can be
        // parallelized, vectorized, split, etc as usual.

        // Vectorizing, splitting, or parallelize the variables that
        // are part of the reduction domain is trickier. We'll cover
        // that in a later lesson.

        // Consider the definition:
        Func f;
        f(x, y) = x * y;
        // Set row zero to each row 8
        f(x, 0) = f(x, 8);
        // Set column zero equal to column 8 plus 2
        f(0, y) = f(8, y) + 2;

        // The pure variables in each stage can be scheduled
        // independently. To control the pure definition, we schedule
        // as we have done in the past. The following code vectorizes
        // and parallelizes the pure definition only.
        f.vectorize(x, 4).parallel(y);

        // We use Func::update(int) to get a handle to an update step
        // for the purposes of scheduling. The following line
        // vectorizes the first update step across x. We can't do
        // anything with y for this update step, because it doesn't
        // use y.
        f.update(0).vectorize(x, 4);

        // Now we parallelize the second update step in chunks of size
        // 4.
        Var yo, yi;
        f.update(1).split(y, yo, yi, 4).parallel(yo);

        Buffer<int> halide_result = f.realize({16, 16});

        // See figures/lesson_09_update_schedule.mp4 for a visualization.

        // Here's the equivalent (serial) C:
        int c_result[16][16];

        // Pure step. Vectorized in x and parallelized in y.
        for (int y = 0; y < 16; y++) {  // Should be a parallel for loop
            for (int x_vec = 0; x_vec < 4; x_vec++) {
                int x[] = {x_vec * 4, x_vec * 4 + 1, x_vec * 4 + 2, x_vec * 4 + 3};
                c_result[y][x[0]] = x[0] * y;
                c_result[y][x[1]] = x[1] * y;
                c_result[y][x[2]] = x[2] * y;
                c_result[y][x[3]] = x[3] * y;
            }
        }

        // First update. Vectorized in x.
        for (int x_vec = 0; x_vec < 4; x_vec++) {
            int x[] = {x_vec * 4, x_vec * 4 + 1, x_vec * 4 + 2, x_vec * 4 + 3};
            c_result[0][x[0]] = c_result[8][x[0]];
            c_result[0][x[1]] = c_result[8][x[1]];
            c_result[0][x[2]] = c_result[8][x[2]];
            c_result[0][x[3]] = c_result[8][x[3]];
        }

        // Second update. Parallelized in chunks of size 4 in y.
        for (int yo = 0; yo < 4; yo++) {  // Should be a parallel for loop
            for (int yi = 0; yi < 4; yi++) {
                int y = yo * 4 + yi;
                c_result[y][0] = c_result[y][8] + 2;
            }
        }

        // Check the C and Halide results match:
        for (int y = 0; y < 16; y++) {
            for (int x = 0; x < 16; x++) {
                if (halide_result(x, y) != c_result[y][x]) {
                    printf("halide_result(%d, %d) = %d instead of %d\n",
                           x, y, halide_result(x, y), c_result[y][x]);
                    return -1;
                }
            }
        }
    }

    // That covers how to schedule the variables within a Func that
    // uses update steps, but what about producer-consumer
    // relationships that involve compute_at and store_at? Let's
    // examine a reduction as a producer, in a producer-consumer pair.
    {
        // Because an update does multiple passes over a stored array,
        // it's not meaningful to inline them. So the default schedule
        // for them does the closest thing possible. It computes them
        // in the innermost loop of their consumer. Consider this
        // trivial example:
        Func producer, consumer;
        producer(x) = x * 2;
        producer(x) += 10;
        consumer(x) = 2 * producer(x);
        Buffer<int> halide_result = consumer.realize({10});

        // See figures/lesson_09_inline_reduction.gif for a visualization.

        // The equivalent C is:
        int c_result[10];
        for (int x = 0; x < 10; x++) {
            int producer_storage[1];
            // Pure step for producer
            producer_storage[0] = x * 2;
            // Update step for producer
            producer_storage[0] = producer_storage[0] + 10;
            // Pure step for consumer
            c_result[x] = 2 * producer_storage[0];
        }

        // Check the results match
        for (int x = 0; x < 10; x++) {
            if (halide_result(x) != c_result[x]) {
                printf("halide_result(%d) = %d instead of %d\n",
                       x, halide_result(x), c_result[x]);
                return -1;
            }
        }

        // For all other compute_at/store_at options, the reduction
        // gets placed where you would expect, somewhere in the loop
        // nest of the consumer.
    }

    // Now let's consider a reduction as a consumer in a
    // producer-consumer pair. This is a little more involved.
    // Case 1: The consumer references the producer in the pure step only.
    {
        Func producer, consumer;

        // The producer is pure.
        producer(x) = x * 17;
        consumer(x) = 2 * producer(x);
        consumer(x) += 50;

        // The valid schedules for the producer in this case are
        // the default schedule - inlined, and also:
        //
        // 1) producer.compute_at(x), which places the computation of
        // the producer inside the loop over x in the pure step of the
        // consumer.
        //
        // 2) producer.compute_root(), which computes all of the
        // producer ahead of time.
        //
        // 3) producer.store_root().compute_at(x), which allocates
        // space for the consumer outside the loop over x, but fills
        // it in as needed inside the loop.
        //
        // Let's use option 1.

        producer.compute_at(consumer, x);

        Buffer<int> halide_result = consumer.realize({10});

        // See figures/lesson_09_compute_at_pure.gif for a visualization.

        // The equivalent C is:
        int c_result[10];
        // Pure step for the consumer
        for (int x = 0; x < 10; x++) {
            // Pure step for producer
            int producer_storage[1];
            producer_storage[0] = x * 17;
            c_result[x] = 2 * producer_storage[0];
        }
        // Update step for the consumer
        for (int x = 0; x < 10; x++) {
            c_result[x] += 50;
        }

        // All of the pure step is evaluated before any of the
        // update step, so there are two separate loops over x.

        // Check the results match
        for (int x = 0; x < 10; x++) {
            if (halide_result(x) != c_result[x]) {
                printf("halide_result(%d) = %d instead of %d\n",
                       x, halide_result(x), c_result[x]);
                return -1;
            }
        }
    }

    {
        // Case 2: The consumer references the producer in the update step only
        Func producer, consumer;
        producer(x) = x * 17;
        consumer(x) = 100 - x * 10;
        consumer(x) += producer(x);

        // Again we compute the producer per x coordinate of the
        // consumer. This places producer code inside the update
        // step of the consumer, because that's the only step that
        // uses the producer.
        producer.compute_at(consumer, x);

        // Note however, that we didn't say:
        //
        // producer.compute_at(consumer.update(0), x).
        //
        // Scheduling is done with respect to Vars of a Func, and
        // the Vars of a Func are shared across the pure and
        // update steps.

        Buffer<int> halide_result = consumer.realize({10});

        // See figures/lesson_09_compute_at_update.gif for a visualization.

        // The equivalent C is:
        int c_result[10];
        // Pure step for the consumer
        for (int x = 0; x < 10; x++) {
            c_result[x] = 100 - x * 10;
        }
        // Update step for the consumer
        for (int x = 0; x < 10; x++) {
            // Pure step for producer
            int producer_storage[1];
            producer_storage[0] = x * 17;
            c_result[x] += producer_storage[0];
        }

        // Check the results match
        for (int x = 0; x < 10; x++) {
            if (halide_result(x) != c_result[x]) {
                printf("halide_result(%d) = %d instead of %d\n",
                       x, halide_result(x), c_result[x]);
                return -1;
            }
        }
    }

    {
        // Case 3: The consumer references the producer in
        // multiple steps that share common variables
        Func producer, consumer;
        producer(x) = x * 17;
        consumer(x) = 170 - producer(x);
        consumer(x) += producer(x) / 2;

        // Again we compute the producer per x coordinate of the
        // consumer. This places producer code inside both the
        // pure and the update step of the consumer. So there end
        // up being two separate realizations of the producer, and
        // redundant work occurs.
        producer.compute_at(consumer, x);

        Buffer<int> halide_result = consumer.realize({10});

        // See figures/lesson_09_compute_at_pure_and_update.gif for a visualization.

        // The equivalent C is:
        int c_result[10];
        // Pure step for the consumer
        for (int x = 0; x < 10; x++) {
            // Pure step for producer
            int producer_storage[1];
            producer_storage[0] = x * 17;
            c_result[x] = 170 - producer_storage[0];
        }
        // Update step for the consumer
        for (int x = 0; x < 10; x++) {
            // Another copy of the pure step for producer
            int producer_storage[1];
            producer_storage[0] = x * 17;
            c_result[x] += producer_storage[0] / 2;
        }

        // Check the results match
        for (int x = 0; x < 10; x++) {
            if (halide_result(x) != c_result[x]) {
                printf("halide_result(%d) = %d instead of %d\n",
                       x, halide_result(x), c_result[x]);
                return -1;
            }
        }
    }

    {
        // Case 4: The consumer references the producer in
        // multiple steps that do not share common variables
        Func producer, consumer;
        producer(x, y) = (x * y) / 10 + 8;
        consumer(x, y) = x + y;
        consumer(x, 0) += producer(x, x);
        consumer(0, y) += producer(y, 9 - y);

        // In this case neither producer.compute_at(consumer, x)
        // nor producer.compute_at(consumer, y) will work, because
        // either one fails to cover one of the uses of the
        // producer. So we'd have to inline producer, or use
        // producer.compute_root().

        // Let's say we really really want producer to be
        // compute_at the inner loops of both consumer update
        // steps. Halide doesn't allow multiple different
        // schedules for a single Func, but we can work around it
        // by making two wrappers around producer, and scheduling
        // those instead:

        // Attempt 2:
        Func producer_1, producer_2, consumer_2;
        producer_1(x, y) = producer(x, y);
        producer_2(x, y) = producer(x, y);

        consumer_2(x, y) = x + y;
        consumer_2(x, 0) += producer_1(x, x);
        consumer_2(0, y) += producer_2(y, 9 - y);

        // The wrapper functions give us two separate handles on
        // the producer, so we can schedule them differently.
        producer_1.compute_at(consumer_2, x);
        producer_2.compute_at(consumer_2, y);

        Buffer<int> halide_result = consumer_2.realize({10, 10});

        // See figures/lesson_09_compute_at_multiple_updates.mp4 for a visualization.

        // The equivalent C is:
        int c_result[10][10];
        // Pure step for the consumer
        for (int y = 0; y < 10; y++) {
            for (int x = 0; x < 10; x++) {
                c_result[y][x] = x + y;
            }
        }
        // First update step for consumer
        for (int x = 0; x < 10; x++) {
            int producer_1_storage[1];
            producer_1_storage[0] = (x * x) / 10 + 8;
            c_result[0][x] += producer_1_storage[0];
        }
        // Second update step for consumer
        for (int y = 0; y < 10; y++) {
            int producer_2_storage[1];
            producer_2_storage[0] = (y * (9 - y)) / 10 + 8;
            c_result[y][0] += producer_2_storage[0];
        }

        // Check the results match
        for (int y = 0; y < 10; y++) {
            for (int x = 0; x < 10; x++) {
                if (halide_result(x, y) != c_result[y][x]) {
                    printf("halide_result(%d, %d) = %d instead of %d\n",
                           x, y, halide_result(x, y), c_result[y][x]);
                    return -1;
                }
            }
        }
    }

    {
        // Case 5: Scheduling a producer under a reduction domain
        // variable of the consumer.

        // We are not just restricted to scheduling producers at
        // the loops over the pure variables of the consumer. If a
        // producer is only used within a loop over a reduction
        // domain (RDom) variable, we can also schedule the
        // producer there.

        Func producer, consumer;

        RDom r(0, 5);
        producer(x) = x % 8;
        consumer(x) = x + 10;
        consumer(x) += r + producer(x + r);

        producer.compute_at(consumer, r);

        Buffer<int> halide_result = consumer.realize({10});

        // See figures/lesson_09_compute_at_rvar.gif for a visualization.

        // The equivalent C is:
        int c_result[10];
        // Pure step for the consumer.
        for (int x = 0; x < 10; x++) {
            c_result[x] = x + 10;
        }
        // Update step for the consumer.
        for (int x = 0; x < 10; x++) {
            // The loop over the reduction domain is always the inner loop.
            for (int r = 0; r < 5; r++) {
                // We've schedule the storage and computation of
                // the producer here. We just need a single value.
                int producer_storage[1];
                // Pure step of the producer.
                producer_storage[0] = (x + r) % 8;

                // Now use it in the update step of the consumer.
                c_result[x] += r + producer_storage[0];
            }
        }

        // Check the results match
        for (int x = 0; x < 10; x++) {
            if (halide_result(x) != c_result[x]) {
                printf("halide_result(%d) = %d instead of %d\n",
                       x, halide_result(x), c_result[x]);
                return -1;
            }
        }
    }

    // A real-world example of a reduction inside a producer-consumer chain.
    {
        // The default schedule for a reduction is a good one for
        // convolution-like operations. For example, the following
        // computes a 5x5 box-blur of our grayscale test image with a
        // clamp-to-edge boundary condition:

        // First add the boundary condition.
        Func clamped = BoundaryConditions::repeat_edge(input);

        // Define a 5x5 box that starts at (-2, -2)
        RDom r(-2, 5, -2, 5);

        // Compute the 5x5 sum around each pixel.
        Func local_sum;
        local_sum(x, y) = 0;  // Compute the sum as a 32-bit integer
        local_sum(x, y) += clamped(x + r.x, y + r.y);

        // Divide the sum by 25 to make it an average
        Func blurry;
        blurry(x, y) = cast<uint8_t>(local_sum(x, y) / 25);

        Buffer<uint8_t> halide_result = blurry.realize({input.width(), input.height()});

        // The default schedule will inline 'clamped' into the update
        // step of 'local_sum', because clamped only has a pure
        // definition, and so its default schedule is fully-inlined.
        // We will then compute local_sum per x coordinate of blurry,
        // because the default schedule for reductions is
        // compute-innermost. Here's the equivalent C:

        Buffer<uint8_t> c_result(input.width(), input.height());
        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                int local_sum[1];
                // Pure step of local_sum
                local_sum[0] = 0;
                // Update step of local_sum
                for (int r_y = -2; r_y <= 2; r_y++) {
                    for (int r_x = -2; r_x <= 2; r_x++) {
                        // The clamping has been inlined into the update step.
                        int clamped_x = std::min(std::max(x + r_x, 0), input.width() - 1);
                        int clamped_y = std::min(std::max(y + r_y, 0), input.height() - 1);
                        local_sum[0] += input(clamped_x, clamped_y);
                    }
                }
                // Pure step of blurry
                c_result(x, y) = (uint8_t)(local_sum[0] / 25);
            }
        }

        // Check the results match
        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                if (halide_result(x, y) != c_result(x, y)) {
                    printf("halide_result(%d, %d) = %d instead of %d\n",
                           x, y, halide_result(x, y), c_result(x, y));
                    return -1;
                }
            }
        }
    }

    // Reduction helpers.
    {
        // There are several reduction helper functions provided in
        // Halide.h, which compute small reductions and schedule them
        // innermost into their consumer. The most useful one is
        // "sum".
        Func f1;
        RDom r(0, 100);
        f1(x) = sum(r + x) * 7;

        // Sum creates a small anonymous Func to do the reduction. It's equivalent to:
        Func f2;
        Func anon;
        anon(x) = 0;
        anon(x) += r + x;
        f2(x) = anon(x) * 7;

        // So even though f1 references a reduction domain, it is a
        // pure function. The reduction domain has been swallowed to
        // define the inner anonymous reduction.

        Buffer<int> halide_result_1 = f1.realize({10});
        Buffer<int> halide_result_2 = f2.realize({10});

        // The equivalent C is:
        int c_result[10];
        for (int x = 0; x < 10; x++) {
            int anon[1];
            anon[0] = 0;
            for (int r = 0; r < 100; r++) {
                anon[0] += r + x;
            }
            c_result[x] = anon[0] * 7;
        }

        // Check they all match.
        for (int x = 0; x < 10; x++) {
            if (halide_result_1(x) != c_result[x]) {
                printf("halide_result_1(%d) = %d instead of %d\n",
                       x, halide_result_1(x), c_result[x]);
                return -1;
            }
            if (halide_result_2(x) != c_result[x]) {
                printf("halide_result_2(%d) = %d instead of %d\n",
                       x, halide_result_2(x), c_result[x]);
                return -1;
            }
        }
    }

    // A complex example that uses reduction helpers.
    {
        // Other reduction helpers include "product", "minimum",
        // "maximum", "argmin", and "argmax". Using argmin and argmax
        // requires understanding tuples, which come in a later
        // lesson. Let's use minimum and maximum to compute the local
        // spread of our grayscale image.

        // First, add a boundary condition to the input.
        Func clamped;
        Expr x_clamped = clamp(x, 0, input.width() - 1);
        Expr y_clamped = clamp(y, 0, input.height() - 1);
        clamped(x, y) = input(x_clamped, y_clamped);

        RDom box(-2, 5, -2, 5);
        // Compute the local maximum minus the local minimum:
        Func spread;
        spread(x, y) = (maximum(clamped(x + box.x, y + box.y)) -
                        minimum(clamped(x + box.x, y + box.y)));

        // Compute the result in strips of 32 scanlines
        Var yo, yi;
        spread.split(y, yo, yi, 32).parallel(yo);

        // Vectorize across x within the strips. This implicitly
        // vectorizes stuff that is computed within the loop over x in
        // spread, which includes our minimum and maximum helpers, so
        // they get vectorized too.
        spread.vectorize(x, 16);

        // We'll apply the boundary condition by padding each scanline
        // as we need it in a circular buffer (see lesson 08).
        clamped.store_at(spread, yo).compute_at(spread, yi);

        Buffer<uint8_t> halide_result = spread.realize({input.width(), input.height()});

// The C equivalent is almost too horrible to contemplate (and
// took me a long time to debug). This time I want to time
// both the Halide version and the C version, so I'll use sse
// intrinsics for the vectorization, and openmp to do the
// parallel for loop (you'll need to compile with -fopenmp or
// similar to get correct timing).
#ifdef __SSE2__
        // Don't include the time required to allocate the output buffer.
        Buffer<uint8_t> c_result(input.width(), input.height());

#ifdef _OPENMP
        double t1 = current_time();
#endif

        // Run this one hundred times so we can average the timing results.
        for (int iters = 0; iters < 100; iters++) {

#pragma omp parallel for
            for (int yo = 0; yo < (input.height() + 31) / 32; yo++) {
                int y_base = std::min(yo * 32, input.height() - 32);

                // Compute clamped in a circular buffer of size 8
                // (smallest power of two greater than 5). Each thread
                // needs its own allocation, so it must occur here.

                int clamped_width = input.width() + 4;
                uint8_t *clamped_storage = (uint8_t *)malloc(clamped_width * 8);

                for (int yi = 0; yi < 32; yi++) {
                    int y = y_base + yi;

                    uint8_t *output_row = &c_result(0, y);

                    // Compute clamped for this scanline, skipping rows
                    // already computed within this slice.
                    int min_y_clamped = (yi == 0) ? (y - 2) : (y + 2);
                    int max_y_clamped = (y + 2);
                    for (int cy = min_y_clamped; cy <= max_y_clamped; cy++) {
                        // Figure out which row of the circular buffer
                        // we're filling in using bitmasking:
                        uint8_t *clamped_row =
                            clamped_storage + (cy & 7) * clamped_width;

                        // Figure out which row of the input we're reading
                        // from by clamping the y coordinate:
                        int clamped_y = std::min(std::max(cy, 0), input.height() - 1);
                        uint8_t *input_row = &input(0, clamped_y);

                        // Fill it in with the padding.
                        for (int x = -2; x < input.width() + 2; x++) {
                            int clamped_x = std::min(std::max(x, 0), input.width() - 1);
                            *clamped_row++ = input_row[clamped_x];
                        }
                    }

                    // Now iterate over vectors of x for the pure step of the output.
                    for (int x_vec = 0; x_vec < (input.width() + 15) / 16; x_vec++) {
                        int x_base = std::min(x_vec * 16, input.width() - 16);

                        // Allocate storage for the minimum and maximum
                        // helpers. One vector is enough.
                        __m128i minimum_storage, maximum_storage;

                        // The pure step for the maximum is a vector of zeros
                        maximum_storage = _mm_setzero_si128();

                        // The update step for maximum
                        for (int max_y = y - 2; max_y <= y + 2; max_y++) {
                            uint8_t *clamped_row =
                                clamped_storage + (max_y & 7) * clamped_width;
                            for (int max_x = x_base - 2; max_x <= x_base + 2; max_x++) {
                                __m128i v = _mm_loadu_si128(
                                    (__m128i const *)(clamped_row + max_x + 2));
                                maximum_storage = _mm_max_epu8(maximum_storage, v);
                            }
                        }

                        // The pure step for the minimum is a vector of
                        // ones. Create it by comparing something to
                        // itself.
                        minimum_storage = _mm_cmpeq_epi32(_mm_setzero_si128(),
                                                          _mm_setzero_si128());

                        // The update step for minimum.
                        for (int min_y = y - 2; min_y <= y + 2; min_y++) {
                            uint8_t *clamped_row =
                                clamped_storage + (min_y & 7) * clamped_width;
                            for (int min_x = x_base - 2; min_x <= x_base + 2; min_x++) {
                                __m128i v = _mm_loadu_si128(
                                    (__m128i const *)(clamped_row + min_x + 2));
                                minimum_storage = _mm_min_epu8(minimum_storage, v);
                            }
                        }

                        // Now compute the spread.
                        __m128i spread = _mm_sub_epi8(maximum_storage, minimum_storage);

                        // Store it.
                        _mm_storeu_si128((__m128i *)(output_row + x_base), spread);
                    }
                }

                free(clamped_storage);
            }
        }

// Skip the timing comparison if we don't have openmp
// enabled. Otherwise it's unfair to C.
#ifdef _OPENMP
        double t2 = current_time();

        // Now run the Halide version again without the
        // jit-compilation overhead. Also run it one hundred times.
        for (int iters = 0; iters < 100; iters++) {
            spread.realize(halide_result);
        }

        double t3 = current_time();

        // Report the timings. On my machine they both take about 3ms
        // for the 4-megapixel input (fast!), which makes sense,
        // because they're using the same vectorization and
        // parallelization strategy. However I find the Halide easier
        // to read, write, debug, modify, and port.
        printf("Halide spread took %f ms. C equivalent took %f ms\n",
               (t3 - t2) / 100, (t2 - t1) / 100);

#endif  // _OPENMP

        // Check the results match:
        for (int y = 0; y < input.height(); y++) {
            for (int x = 0; x < input.width(); x++) {
                if (halide_result(x, y) != c_result(x, y)) {
                    printf("halide_result(%d, %d) = %d instead of %d\n",
                           x, y, halide_result(x, y), c_result(x, y));
                    return -1;
                }
            }
        }

#endif  // __SSE2__
    }

    printf("Success!\n");
    return 0;
}
back to top