https://gitlab.opengeosys.org/ogs/ogs.git
Raw File
Tip revision: 3d6fdd8f952a4af3ef0b8e0a6643b2c300388e01 authored by wenqing on 16 September 2020, 14:38:09 UTC
Merge branch 'Test_Wenqing_3BHEarray' into 'apply_the_known_solutions_to_init'
Tip revision: 3d6fdd8
MathTools.h
/**
 * \file
 * \copyright
 * Copyright (c) 2012-2020, OpenGeoSys Community (http://www.opengeosys.org)
 *            Distributed under a Modified BSD License.
 *              See accompanying file LICENSE.txt or
 *              http://www.opengeosys.org/project/license
 */

#pragma once

#include <cstddef>

#ifdef _OPENMP
#include <omp.h>
#endif

namespace MathLib
{
/**
 * standard inner product in R^N
 * \param v0 array of type T representing the vector
 * \param v1 array of type T representing the vector
 * */
template<typename T, int N> inline
T scalarProduct(T const * const v0, T const * const v1)
{
    T res (v0[0] * v1[0]);

#pragma omp parallel for reduction (+:res)
    for (int k = 1; k < N; k++)
    {
        res += v0[k] * v1[k];
    }
    return res;
}

template <> inline
double scalarProduct<double,3>(double const * const v0, double const * const v1)
{
    double res (v0[0] * v1[0]);
    for (std::size_t k(1); k < 3; k++)
    {
        res += v0[k] * v1[k];
    }
    return res;
}

template <typename T>
inline T scalarProduct(T const* const v0, T const* const v1, int const n)
{
    T res (v0[0] * v1[0]);

#pragma omp parallel for reduction (+:res)
    for (int k = 1; k < n; k++)
    {
        res += v0[k] * v1[k];
    }
    return res;
}

/**
 * calcProjPntToLineAndDists computes the orthogonal projection
 * of a point p to the line described by the points a and b,
 * \f$g(\lambda) = a + \lambda (b - a)\f$,
 * the distance between p and the projected point
 * and the distances between the projected point and the end
 * points a, b of the line
 * \param p the (mesh) point
 * \param a first point of line
 * \param b second point of line
 * \param lambda the projected point described by the line equation above
 * \param d0 distance to the line point a
 * \returns the distance between p and the orthogonal projection of p
 */
double calcProjPntToLineAndDists(const double p[3], const double a[3],
                                 const double b[3], double &lambda, double &d0);

/** squared dist between double arrays p0 and p1 (size of arrays is 3) */
inline
double sqrDist(const double* p0, const double* p1)
{
    const double v[3] = {p1[0] - p0[0], p1[1] - p0[1], p1[2] - p0[2]};
    return scalarProduct<double,3>(v,v);
}

/**
 * Let \f$p_0, p_1, p_2 \in R^3\f$. The function getAngle
 * computes the angle between the edges \f$(p_0,p_1)\f$ and \f$(p_1,p_2)\f$
 * @param p0 start point of edge 0
 * @param p1 end point of edge 0 and start point of edge 1
 * @param p2 end point of edge 1
 * @return the angle between the edges
 */
double getAngle (const double p0[3], const double p1[3], const double p2[3]);
}  // namespace MathLib
back to top