https://github.com/lmfit/lmfit-py
Raw File
Tip revision: 10afd0039aff6f91b985668a72c15eff7eeca47b authored by Matt Newville on 23 August 2019, 01:02:44 UTC
Merge pull request #582 from lmfit/asteval_maxtime
Tip revision: 10afd00
minimizer.py
"""Simple minimizer is a wrapper around scipy.leastsq, allowing a user to build
a fitting model as a function of general purpose Fit Parameters that can be
fixed or varied, bounded, and written as a simple expression of other Fit
Parameters.

The user sets up a model in terms of instance of Parameters and writes a
function-to-be-minimized (residual function) in terms of these Parameters.

Original copyright:
   Copyright (c) 2011 Matthew Newville, The University of Chicago

See LICENSE for more complete authorship information and license.

"""
from collections import namedtuple
from copy import deepcopy
import multiprocessing
import numbers
import warnings

import numpy as np
from numpy import ndarray, ones_like, sqrt
from numpy.dual import inv
from numpy.linalg import LinAlgError
from scipy.optimize import basinhopping as scipy_basinhopping
from scipy.optimize import brute as scipy_brute
from scipy.optimize import differential_evolution, least_squares
from scipy.optimize import leastsq as scipy_leastsq
from scipy.optimize import minimize as scipy_minimize
from scipy.stats import cauchy as cauchy_dist
from scipy.stats import norm as norm_dist
from scipy.version import version as scipy_version
import six
import uncertainties

from ._ampgo import ampgo
from .parameter import Parameter, Parameters
from .printfuncs import fitreport_html_table

# check for SHGO and dual_annealing algorithms
try:
    from scipy.optimize import shgo as scipy_shgo
    from scipy.optimize import dual_annealing as scipy_dual_annealing
    HAS_SHGO = True
    HAS_DUAL_ANNEALING = True
except ImportError:
    HAS_SHGO = False
    HAS_DUAL_ANNEALING = False

# check for EMCEE
try:
    import emcee
    HAS_EMCEE = True
    EMCEE_VERSION = int(emcee.__version__[0])
except ImportError:
    HAS_EMCEE = False

# check for pandas
try:
    import pandas as pd
    from pandas import isnull
    HAS_PANDAS = True
except ImportError:
    HAS_PANDAS = False
    isnull = np.isnan

# check for numdifftools
try:
    import numdifftools as ndt
    HAS_NUMDIFFTOOLS = True
except ImportError:
    HAS_NUMDIFFTOOLS = False

# define the namedtuple here so pickle will work with the MinimizerResult
Candidate = namedtuple('Candidate', ['params', 'score'])


def asteval_with_uncertainties(*vals, **kwargs):
    """Calculate object value, given values for variables.

    This is used by the uncertainties package to calculate the
    uncertainty in an object even with a complicated expression.

    """
    _obj = kwargs.get('_obj', None)
    _pars = kwargs.get('_pars', None)
    _names = kwargs.get('_names', None)
    _asteval = _pars._asteval
    if (_obj is None or _pars is None or _names is None or
            _asteval is None or _obj._expr_ast is None):
        return 0
    for val, name in zip(vals, _names):
        _asteval.symtable[name] = val
    return _asteval.eval(_obj._expr_ast)


wrap_ueval = uncertainties.wrap(asteval_with_uncertainties)


def eval_stderr(obj, uvars, _names, _pars):
    """Evaluate uncertainty and set .stderr for a parameter `obj`.

    Given the uncertain values `uvars` (a list of uncertainties.ufloats), a
    list of parameter names that matches uvars, and a dict of param objects,
    keyed by name.

    This uses the uncertainties package wrapped function to evaluate the
    uncertainty for an arbitrary expression (in obj._expr_ast) of parameters.

    """
    if not isinstance(obj, Parameter) or getattr(obj, '_expr_ast', None) is None:
        return
    uval = wrap_ueval(*uvars, _obj=obj, _names=_names, _pars=_pars)
    try:
        obj.stderr = uval.std_dev
    except Exception:
        obj.stderr = 0


class MinimizerException(Exception):
    """General Purpose Exception."""

    def __init__(self, msg):
        Exception.__init__(self)
        self.msg = msg

    def __str__(self):
        return "{}".format(self.msg)


class AbortFitException(MinimizerException):
    """Raised when a fit is aborted by the user."""

    pass


SCALAR_METHODS = {'nelder': 'Nelder-Mead',
                  'powell': 'Powell',
                  'cg': 'CG',
                  'bfgs': 'BFGS',
                  'newton': 'Newton-CG',
                  'lbfgsb': 'L-BFGS-B',
                  'l-bfgsb': 'L-BFGS-B',
                  'tnc': 'TNC',
                  'cobyla': 'COBYLA',
                  'slsqp': 'SLSQP',
                  'dogleg': 'dogleg',
                  'trust-ncg': 'trust-ncg',
                  'differential_evolution': 'differential_evolution'}

# FIXME: update this when incresing the minimum scipy version
major, minor, micro = scipy_version.split('.', 2)
if (int(major) >= 1 and int(minor) >= 1):
    SCALAR_METHODS.update({'trust-constr': 'trust-constr'})
if int(major) >= 1:
    SCALAR_METHODS.update({'trust-exact': 'trust-exact',
                           'trust-krylov': 'trust-krylov'})


def reduce_chisquare(r):
    """Reduce residual array to scalar (chi-square).

    Calculate the chi-square value from the residual array `r`: (r*r).sum()

    Parameters
    ----------
    r : numpy.ndarray
        Residual array.

    Returns
    -------
    float
        Chi-square calculated from the residual array

    """
    return (r*r).sum()


def reduce_negentropy(r):
    """Reduce residual array to scalar (negentropy).

    Reduce residual array `r` to scalar using negative entropy and the normal
    (Gaussian) probability distribution of `r` as pdf:

       (norm.pdf(r)*norm.logpdf(r)).sum()

    since pdf(r) = exp(-r*r/2)/sqrt(2*pi), this is
       ((r*r/2 - log(sqrt(2*pi))) * exp(-r*r/2)).sum()

    Parameters
    ----------
    r : numpy.ndarray
        Residual array.

    Returns
    -------
    float
        Negative entropy value calculated from the residual array

    """
    return (norm_dist.pdf(r)*norm_dist.logpdf(r)).sum()


def reduce_cauchylogpdf(r):
    """Reduce residual array to scalar (cauchylogpdf).

    Reduce residual array `r` to scalar using negative log-likelihood and a
    Cauchy (Lorentzian) distribution of `r`:

       -scipy.stats.cauchy.logpdf(r)

    (where the Cauchy pdf = 1/(pi*(1+r*r))). This gives greater
    suppression of outliers compared to normal sum-of-squares.

    Parameters
    ----------
    r : numpy.ndarray
        Residual array.

    Returns
    -------
    float
        Negative entropy value calculated from the residual array

    """
    return -cauchy_dist.logpdf(r).sum()


class MinimizerResult(object):
    r"""The results of a minimization.

    Minimization results include data such as status and error messages,
    fit statistics, and the updated (i.e., best-fit) parameters themselves
    in the :attr:`params` attribute.

    The list of (possible) `MinimizerResult` attributes is given below:

    Attributes
    ----------
    params : :class:`~lmfit.parameter.Parameters`
        The best-fit parameters resulting from the fit.
    status : int
        Termination status of the optimizer. Its value depends on the
        underlying solver. Refer to `message` for details.
    var_names : list
        Ordered list of variable parameter names used in optimization, and
        useful for understanding the values in :attr:`init_vals` and
        :attr:`covar`.
    covar : numpy.ndarray
        Covariance matrix from minimization, with rows and columns
        corresponding to :attr:`var_names`.
    init_vals : list
        List of initial values for variable parameters using :attr:`var_names`.
    init_values : dict
        Dictionary of initial values for variable parameters.
    nfev : int
        Number of function evaluations.
    success : bool
        True if the fit succeeded, otherwise False.
    errorbars : bool
        True if uncertainties were estimated, otherwise False.
    message : str
        Message about fit success.
    ier : int
        Integer error value from :scipydoc:`optimize.leastsq` (`leastsq` only).
    lmdif_message : str
        Message from :scipydoc:`optimize.leastsq` (`leastsq` only).
    nvarys : int
        Number of variables in fit: :math:`N_{\rm varys}`.
    ndata : int
        Number of data points: :math:`N`.
    nfree : int
        Degrees of freedom in fit: :math:`N - N_{\rm varys}`.
    residual : numpy.ndarray
        Residual array :math:`{\rm Resid_i}`. Return value of the objective
        function when using the best-fit values of the parameters.
    chisqr : float
        Chi-square: :math:`\chi^2 = \sum_i^N [{\rm Resid}_i]^2`.
    redchi : float
        Reduced chi-square:
        :math:`\chi^2_{\nu}= {\chi^2} / {(N - N_{\rm varys})}`.
    aic : float
        Akaike Information Criterion statistic:
        :math:`N \ln(\chi^2/N) + 2 N_{\rm varys}`.
    bic : float
        Bayesian Information Criterion statistic:
        :math:`N \ln(\chi^2/N) + \ln(N) N_{\rm varys}`.
    flatchain : pandas.DataFrame
        A flatchain view of the sampling chain from the `emcee` method.

    Methods
    -------
    show_candidates
        Pretty_print() representation of candidates from the `brute` method.

    """

    def __init__(self, **kws):
        for key, val in kws.items():
            setattr(self, key, val)

    @property
    def flatchain(self):
        """Show flatchain view of the sampling chain from `emcee` method."""
        if hasattr(self, 'chain'):
            if HAS_PANDAS:
                if len(self.chain.shape) == 4:
                    return pd.DataFrame(self.chain[0, ...].reshape((-1, self.nvarys)),
                                        columns=self.var_names)
                elif len(self.chain.shape) == 3:
                    return pd.DataFrame(self.chain.reshape((-1, self.nvarys)),
                                        columns=self.var_names)
            else:
                raise NotImplementedError('Please install Pandas to see the '
                                          'flattened chain')
        else:
            return None

    def show_candidates(self, candidate_nmb='all'):
        """Show pretty_print() representation of candidates from `brute` method.

        Showing all stored candidates (default) or the specified candidate-#
        from the `brute` method.

        Parameters
        ----------
        candidate_nmb : int or 'all'
            The candidate-number to show using the :meth:`pretty_print` method.

        """
        if hasattr(self, 'candidates'):
            if candidate_nmb == 'all':
                for i, candidate in enumerate(self.candidates):
                    print("\nCandidate #{}, chisqr = "
                          "{:.3f}".format(i+1, candidate.score))
                    candidate.params.pretty_print()
            elif (candidate_nmb < 1 or candidate_nmb > len(self.candidates)):
                raise ValueError("'candidate_nmb' should be between 1 and {}."
                                 .format(len(self.candidates)))
            else:
                candidate = self.candidates[candidate_nmb-1]
                print("\nCandidate #{}, chisqr = "
                      "{:.3f}".format(candidate_nmb, candidate.score))
                candidate.params.pretty_print()

    def _calculate_statistics(self):
        """Calculate the fitting statistics."""
        self.nvarys = len(self.init_vals)
        if isinstance(self.residual, ndarray):
            self.chisqr = (self.residual**2).sum()
            self.ndata = len(self.residual)
            self.nfree = self.ndata - self.nvarys
        else:
            self.chisqr = self.residual
            self.ndata = 1
            self.nfree = 1
        self.redchi = self.chisqr / max(1, self.nfree)
        # this is -2*loglikelihood
        _neg2_log_likel = self.ndata * np.log(self.chisqr / self.ndata)
        self.aic = _neg2_log_likel + 2 * self.nvarys
        self.bic = _neg2_log_likel + np.log(self.ndata) * self.nvarys

    def _repr_html_(self, show_correl=True, min_correl=0.1):
        """Returns a HTML representation of parameters data."""
        return fitreport_html_table(self, show_correl=show_correl,
                                    min_correl=min_correl)


class Minimizer(object):
    """A general minimizer for curve fitting and optimization."""

    _err_nonparam = ("params must be a minimizer.Parameters() instance or list "
                     "of Parameters()")
    _err_maxfev = ("Too many function calls (max set to %i)!  Use:"
                   " minimize(func, params, ..., maxfev=NNN)"
                   "or set leastsq_kws['maxfev']  to increase this maximum.")

    def __init__(self, userfcn, params, fcn_args=None, fcn_kws=None,
                 iter_cb=None, scale_covar=True, nan_policy='raise',
                 reduce_fcn=None, calc_covar=True, **kws):
        """
        Parameters
        ----------
        userfcn : callable
            Objective function that returns the residual (difference between
            model and data) to be minimized in a least-squares sense.  This
            function must have the signature::

                userfcn(params, *fcn_args, **fcn_kws)

        params : :class:`~lmfit.parameter.Parameters`
            Contains the Parameters for the model.
        fcn_args : tuple, optional
            Positional arguments to pass to `userfcn`.
        fcn_kws : dict, optional
            Keyword arguments to pass to `userfcn`.
        iter_cb : callable, optional
            Function to be called at each fit iteration. This function should
            have the signature::

                iter_cb(params, iter, resid, *fcn_args, **fcn_kws)

            where `params` will have the current parameter values, `iter`
            the iteration number, `resid` the current residual array, and `*fcn_args`
            and `**fcn_kws` are passed to the objective function.
        scale_covar : bool, optional
            Whether to automatically scale the covariance matrix (default is True).
        nan_policy : str, optional
            Specifies action if `userfcn` (or a Jacobian) returns NaN
            values. One of:

            - 'raise' : a `ValueError` is raised
            - 'propagate' : the values returned from `userfcn` are un-altered
            - 'omit' : non-finite values are filtered

        reduce_fcn : str or callable, optional
            Function to convert a residual array to a scalar value for the scalar
            minimizers. Optional values are (where `r` is the residual array):

            - None : sum of squares of residual [default]

               = (r*r).sum()

            - 'negentropy' : neg entropy, using normal distribution

               = rho*log(rho).sum()`, where  rho = exp(-r*r/2)/(sqrt(2*pi))

            - 'neglogcauchy': neg log likelihood, using Cauchy distribution

               = -log(1/(pi*(1+r*r))).sum()

            - callable : must take one argument (`r`) and return a float.

        calc_covar : bool, optional
            Whether to calculate the covariance matrix (default is True) for
            solvers other than `leastsq` and `least_squares`. Requires the
            `numdifftools` package to be installed.
        **kws : dict, optional
            Options to pass to the minimizer being used.

        Notes
        -----
        The objective function should return the value to be minimized. For
        the Levenberg-Marquardt algorithm from :meth:`leastsq` or
        :meth:`least_squares`, this returned value must be an array, with a
        length greater than or equal to the number of fitting variables in
        the model. For the other methods, the return value can either be a
        scalar or an array. If an array is returned, the sum of squares of
        the array will be sent to the underlying fitting method, effectively
        doing a least-squares optimization of the return values. If the
        objective function returns non-finite values then a `ValueError`
        will be raised because the underlying solvers cannot deal with them.

        A common use for the `fcn_args` and `fcn_kws` would be to pass in
        other data needed to calculate the residual, including such things
        as the data array, dependent variable, uncertainties in the data,
        and other data structures for the model calculation.

        """
        self.userfcn = userfcn
        self.userargs = fcn_args
        if self.userargs is None:
            self.userargs = []

        self.userkws = fcn_kws
        if self.userkws is None:
            self.userkws = {}
        self.kws = kws
        self.iter_cb = iter_cb
        self.calc_covar = calc_covar
        self.scale_covar = scale_covar
        self.nfev = 0
        self.nfree = 0
        self.ndata = 0
        self.ier = 0
        self._abort = False
        self.success = True
        self.errorbars = False
        self.message = None
        self.lmdif_message = None
        self.chisqr = None
        self.redchi = None
        self.covar = None
        self.residual = None
        self.reduce_fcn = reduce_fcn
        self.params = params
        self.jacfcn = None
        self.nan_policy = nan_policy

    @property
    def values(self):
        """Return Parameter values in a simple dictionary."""
        return {name: p.value for name, p in self.result.params.items()}

    def __residual(self, fvars, apply_bounds_transformation=True):
        """Residual function used for least-squares fit.

        With the new, candidate values of `fvars` (the fitting variables),
        this evaluates all parameters, including setting bounds and
        evaluating constraints, and then passes those to the user-supplied
        function to calculate the residual.

        Parameters
        ----------
        fvars : numpy.ndarray
            Array of new parameter values suggested by the minimizer.
        apply_bounds_transformation : bool, optional
            Whether to apply lmfits parameter transformation to constrain
            parameters (default is True). This is needed for solvers without
            inbuilt support for bounds.

        Returns
        -------
        residual : numpy.ndarray
             The evaluated function values for given `fvars`.

        """
        params = self.result.params

        if fvars.shape == ():
            fvars = fvars.reshape((1,))

        if apply_bounds_transformation:
            for name, val in zip(self.result.var_names, fvars):
                params[name].value = params[name].from_internal(val)
        else:
            for name, val in zip(self.result.var_names, fvars):
                params[name].value = val
        params.update_constraints()

        self.result.nfev += 1

        out = self.userfcn(params, *self.userargs, **self.userkws)

        if callable(self.iter_cb):
            abort = self.iter_cb(params, self.result.nfev, out,
                                 *self.userargs, **self.userkws)
            self._abort = self._abort or abort

        if self._abort:
            self.result.residual = out
            self.result.aborted = True
            self.result.message = "Fit aborted by user callback. Could not estimate error-bars."
            self.result.success = False
            raise AbortFitException("fit aborted by user.")
        else:
            return _nan_policy(np.asarray(out).ravel(),
                               nan_policy=self.nan_policy)

    def __jacobian(self, fvars):
        """Return analytical jacobian to be used with Levenberg-Marquardt.

        modified 02-01-2012 by Glenn Jones, Aberystwyth University
        modified 06-29-2015 M Newville to apply gradient scaling for
        bounded variables (thanks to JJ Helmus, N Mayorov)

        """
        pars = self.result.params
        grad_scale = ones_like(fvars)
        for ivar, name in enumerate(self.result.var_names):
            val = fvars[ivar]
            pars[name].value = pars[name].from_internal(val)
            grad_scale[ivar] = pars[name].scale_gradient(val)

        pars.update_constraints()

        # compute the jacobian for "internal" unbounded variables,
        # then rescale for bounded "external" variables.
        jac = self.jacfcn(pars, *self.userargs, **self.userkws)
        jac = _nan_policy(jac, nan_policy=self.nan_policy)

        if self.col_deriv:
            jac = (jac.transpose()*grad_scale).transpose()
        else:
            jac *= grad_scale
        return jac

    def penalty(self, fvars):
        """Penalty function for scalar minimizers.

        Parameters
        ----------
        fvars : numpy.ndarray
            Array of values for the variable parameters.

        Returns
        -------
        r : float
            The evaluated user-supplied objective function.

            If the objective function is an array of size greater than 1,
            use the scalar returned by `self.reduce_fcn`.  This defaults
            to sum-of-squares, but can be replaced by other options.

        """
        if self.result.method in ['brute', 'shgo', 'dual_annealing']:
            apply_bounds_transformation = False
        else:
            apply_bounds_transformation = True

        r = self.__residual(fvars, apply_bounds_transformation)
        if isinstance(r, ndarray) and r.size > 1:
            r = self.reduce_fcn(r)
            if isinstance(r, ndarray) and r.size > 1:
                r = r.sum()
        return r

    def prepare_fit(self, params=None):
        """Prepare parameters for fitting.

        Prepares and initializes model and Parameters for subsequent
        fitting. This routine prepares the conversion of :class:`Parameters`
        into fit variables, organizes parameter bounds, and parses, "compiles"
        and checks constrain expressions.   The method also creates and returns
        a new instance of a :class:`MinimizerResult` object that contains the
        copy of the Parameters that will actually be varied in the fit.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model; if None, then the
            Parameters used to initialize the Minimizer object are used.

        Returns
        -------
        :class:`MinimizerResult`

        Notes
        -----
        This method is called directly by the fitting methods, and it is
        generally not necessary to call this function explicitly.

        .. versionchanged:: 0.9.0
            Return value changed to :class:`MinimizerResult`.

        """
        # determine which parameters are actually variables
        # and which are defined expressions.
        self.result = MinimizerResult()
        result = self.result
        if params is not None:
            self.params = params
        if isinstance(self.params, Parameters):
            result.params = deepcopy(self.params)
        elif isinstance(self.params, (list, tuple)):
            result.params = Parameters()
            for par in self.params:
                if not isinstance(par, Parameter):
                    raise MinimizerException(self._err_nonparam)
                else:
                    result.params[par.name] = par
        elif self.params is None:
            raise MinimizerException(self._err_nonparam)

        # determine which parameters are actually variables
        # and which are defined expressions.
        result.var_names = []  # note that this *does* belong to self...
        result.init_vals = []
        result.params.update_constraints()
        result.nfev = 0
        result.errorbars = False
        result.aborted = False
        for name, par in self.result.params.items():
            par.stderr = None
            par.correl = None
            if par.expr is not None:
                par.vary = False
            if par.vary:
                result.var_names.append(name)
                result.init_vals.append(par.setup_bounds())

            par.init_value = par.value
            if par.name is None:
                par.name = name
        result.nvarys = len(result.var_names)
        result.init_values = {n: v for n, v in zip(result.var_names,
                                                   result.init_vals)}

        # set up reduce function for scalar minimizers
        #    1. user supplied callable
        #    2. string starting with 'neglogc' or 'negent'
        #    3. sum of squares
        if not callable(self.reduce_fcn):
            if isinstance(self.reduce_fcn, six.string_types):
                if self.reduce_fcn.lower().startswith('neglogc'):
                    self.reduce_fcn = reduce_cauchylogpdf
                elif self.reduce_fcn.lower().startswith('negent'):
                    self.reduce_fcn = reduce_negentropy
            if self.reduce_fcn is None:
                self.reduce_fcn = reduce_chisquare
        return result

    def unprepare_fit(self):
        """Clean fit state, so that subsequent fits need to call prepare_fit().

        removes AST compilations of constraint expressions.

        """
        pass

    def _calculate_covariance_matrix(self, fvars):
        """Calculate the covariance matrix.

        The `numdiftoools` package is used to estimate the Hessian matrix, and
        the covariance matrix is calculated as:

        .. math::

            cov_x = inverse(Hessian) * 2.0

        Parameters
        ----------
        fvars : numpy.ndarray
            Array of the optimal internal, freely variable parameters.

        Returns
        -------
        cov_x : numpy.ndarray or None
            Covariance matrix if successful, otherwise None.

        """
        warnings.filterwarnings(action="ignore", module="scipy",
                                message="^internal gelsd")

        nfev = deepcopy(self.result.nfev)
        try:
            Hfun = ndt.Hessian(self.penalty)
            hessian_ndt = Hfun(fvars)
            cov_x = inv(hessian_ndt) * 2.0
        except (LinAlgError, ValueError):
            return None
        finally:
            self.result.nfev = nfev

        return cov_x

    def _int2ext_cov_x(self, cov_int, fvars):
        """Transform covariance matrix to external parameter space.

        It makes use of the gradient scaling according to the MINUIT recipe:

            cov_ext = np.dot(grad.T, grad) * cov_int

        Parameters
        ----------
        cov_int : numpy.ndarray
            Covariance matrix in the internal parameter space.
        fvars : numpy.ndarray
            Array of the optimal internal, freely variable, parameter values.

        Returns
        -------
        cov_ext : numpy.ndarray
            Covariance matrix, transformed to external parameter space.

        """
        g = [self.result.params[name].scale_gradient(fvars[i]) for i, name in
             enumerate(self.result.var_names)]
        grad2d = np.atleast_2d(g)
        grad = np.dot(grad2d.T, grad2d)

        cov_ext = cov_int * grad
        return cov_ext

    def _calculate_uncertainties_correlations(self):
        """Calculate parameter uncertainties and correlations."""
        self.result.errorbars = True

        if self.scale_covar:
            self.result.covar *= self.result.redchi

        vbest = np.atleast_1d([self.result.params[name].value for name in
                               self.result.var_names])

        has_expr = False
        for par in self.result.params.values():
            par.stderr, par.correl = 0, None
            has_expr = has_expr or par.expr is not None

        for ivar, name in enumerate(self.result.var_names):
            par = self.result.params[name]
            par.stderr = sqrt(self.result.covar[ivar, ivar])
            par.correl = {}
            try:
                self.result.errorbars = self.result.errorbars and (par.stderr > 0.0)
                for jvar, varn2 in enumerate(self.result.var_names):
                    if jvar != ivar:
                        par.correl[varn2] = (self.result.covar[ivar, jvar] /
                                             (par.stderr * sqrt(self.result.covar[jvar, jvar])))
            except ZeroDivisionError:
                self.result.errorbars = False

        if has_expr:
            try:
                uvars = uncertainties.correlated_values(vbest, self.result.covar)
            except (LinAlgError, ValueError):
                uvars = None

            # for uncertainties on constrained parameters, use the calculated
            # "correlated_values", evaluate the uncertainties on the constrained
            # parameters and reset the Parameters to best-fit value
            if uvars is not None:
                for par in self.result.params.values():
                    eval_stderr(par, uvars, self.result.var_names, self.result.params)
                # restore nominal values
                for v, nam in zip(uvars, self.result.var_names):
                    self.result.params[nam].value = v.nominal_value

    def scalar_minimize(self, method='Nelder-Mead', params=None, **kws):
        """Scalar minimization using :scipydoc:`optimize.minimize`.

        Perform fit with any of the scalar minimization algorithms supported by
        :scipydoc:`optimize.minimize`. Default argument values are:

        +-------------------------+-----------------+-----------------------------------------------------+
        | :meth:`scalar_minimize` | Default Value   | Description                                         |
        | arg                     |                 |                                                     |
        +=========================+=================+=====================================================+
        |   method                | ``Nelder-Mead`` | fitting method                                      |
        +-------------------------+-----------------+-----------------------------------------------------+
        |   tol                   | 1.e-7           | fitting and parameter tolerance                     |
        +-------------------------+-----------------+-----------------------------------------------------+
        |   hess                  | None            | Hessian of objective function                       |
        +-------------------------+-----------------+-----------------------------------------------------+


        Parameters
        ----------
        method : str, optional
            Name of the fitting method to use. One of:

            - 'Nelder-Mead' (default)
            - 'L-BFGS-B'
            - 'Powell'
            - 'CG'
            - 'Newton-CG'
            - 'COBYLA'
            - 'BFGS'
            - 'TNC'
            - 'trust-ncg'
            - 'trust-exact' (SciPy >= 1.0)
            - 'trust-krylov' (SciPy >= 1.0)
            - 'trust-constr' (SciPy >= 1.1)
            - 'dogleg'
            - 'SLSQP'
            - 'differential_evolution'

        params : :class:`~lmfit.parameter.Parameters`, optional
           Parameters to use as starting point.
        **kws : dict, optional
            Minimizer options pass to :scipydoc:`optimize.minimize`.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter and several
            goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        Notes
        -----
        If the objective function returns a NumPy array instead
        of the expected scalar, the sum of squares of the array
        will be used.

        Note that bounds and constraints can be set on Parameters
        for any of these methods, so are not supported separately
        for those designed to use bounds. However, if you use the
        differential_evolution method you must specify finite
        (min, max) for each varying Parameter.

        """
        result = self.prepare_fit(params=params)
        result.method = method
        variables = result.init_vals
        params = result.params

        fmin_kws = dict(method=method,
                        options={'maxiter': 1000 * (len(variables) + 1)})
        fmin_kws.update(self.kws)
        fmin_kws.update(kws)

        # hess supported only in some methods
        if 'hess' in fmin_kws and method not in ('Newton-CG', 'dogleg',
                                                 'trust-constr', 'trust-ncg',
                                                 'trust-krylov', 'trust-exact'):
            fmin_kws.pop('hess')

        # jac supported only in some methods (and Dfun could be used...)
        if 'jac' not in fmin_kws and fmin_kws.get('Dfun', None) is not None:
            self.jacfcn = fmin_kws.pop('jac')
            fmin_kws['jac'] = self.__jacobian

        if 'jac' in fmin_kws and method not in ('CG', 'BFGS', 'Newton-CG',
                                                'L-BFGS-B', 'TNC', 'SLSQP',
                                                'dogleg', 'trust-ncg',
                                                'trust-krylov', 'trust-exact'):
            self.jacfcn = None
            fmin_kws.pop('jac')

        # workers / updating keywords only supported in differential_evolution
        for kwd in ('workers', 'updating'):
            if kwd in fmin_kws and method != 'differential_evolution':
                fmin_kws.pop(kwd)

        if method == 'differential_evolution':
            for par in params.values():
                if (par.vary and
                        not (np.isfinite(par.min) and np.isfinite(par.max))):
                    raise ValueError('differential_evolution requires finite '
                                     'bound for all varying parameters')

            _bounds = [(-np.pi / 2., np.pi / 2.)] * len(variables)
            kwargs = dict(args=(), strategy='best1bin', maxiter=None,
                          popsize=15, tol=0.01, mutation=(0.5, 1),
                          recombination=0.7, seed=None, callback=None,
                          disp=False, polish=True, init='latinhypercube',
                          atol=0, updating='immediate', workers=1)

            for k, v in fmin_kws.items():
                if k in kwargs:
                    kwargs[k] = v

            # keywords 'updating' and 'workers' are introduced in SciPy v1.2
            # FIXME: remove after updating the requirement >= 1.2
            if int(major) == 0 or (int(major) == 1 and int(minor) < 2):
                kwargs.pop('updating')
                kwargs.pop('workers')

            try:
                ret = differential_evolution(self.penalty, _bounds, **kwargs)
            except AbortFitException:
                pass

        else:
            try:
                ret = scipy_minimize(self.penalty, variables, **fmin_kws)
            except AbortFitException:
                pass

        if not result.aborted:
            if isinstance(ret, dict):
                for attr, value in ret.items():
                    setattr(result, attr, value)
            else:
                for attr in dir(ret):
                    if not attr.startswith('_'):
                        setattr(result, attr, getattr(ret, attr))

            result.x = np.atleast_1d(result.x)
            result.residual = self.__residual(result.x)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            _covar_ndt = self._calculate_covariance_matrix(result.x)
            if _covar_ndt is not None:
                result.covar = self._int2ext_cov_x(_covar_ndt, result.x)
                self._calculate_uncertainties_correlations()

        return result

    def emcee(self, params=None, steps=1000, nwalkers=100, burn=0, thin=1,
              ntemps=1, pos=None, reuse_sampler=False, workers=1,
              float_behavior='posterior', is_weighted=True, seed=None, progress=True):
        r"""Bayesian sampling of the posterior distribution using `emcee`.

        Bayesian sampling of the posterior distribution for the parameters
        using the `emcee` Markov Chain Monte Carlo package. The method assumes
        that the prior is Uniform. You need to have `emcee` installed to use
        this method.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Parameters to use as starting point. If this is not specified
            then the Parameters used to initialize the Minimizer object are
            used.
        steps : int, optional
            How many samples you would like to draw from the posterior
            distribution for each of the walkers?
        nwalkers : int, optional
            Should be set so :math:`nwalkers >> nvarys`, where `nvarys` are
            the number of parameters being varied during the fit.
            "Walkers are the members of the ensemble. They are almost like
            separate Metropolis-Hastings chains but, of course, the proposal
            distribution for a given walker depends on the positions of all
            the other walkers in the ensemble." - from the `emcee` webpage.
        burn : int, optional
            Discard this many samples from the start of the sampling regime.
        thin : int, optional
            Only accept 1 in every `thin` samples.
        ntemps : int, optional
            If `ntemps > 1` perform a Parallel Tempering.
        pos : numpy.ndarray, optional
            Specify the initial positions for the sampler.  If `ntemps == 1`
            then `pos.shape` should be `(nwalkers, nvarys)`. Otherwise,
            `(ntemps, nwalkers, nvarys)`. You can also initialise using a
            previous chain that had the same `ntemps`, `nwalkers` and
            `nvarys`. Note that `nvarys` may be one larger than you expect it
            to be if your `userfcn` returns an array and `is_weighted is
            False`.
        reuse_sampler : bool, optional
            If you have already run `emcee` on a given `Minimizer` object then
            it possesses an internal ``sampler`` attribute. You can continue to
            draw from the same sampler (retaining the chain history) if you set
            this option to True. Otherwise a new sampler is created. The
            `nwalkers`, `ntemps`, `pos`, and `params` keywords are ignored with
            this option.
            **Important**: the Parameters used to create the sampler must not
            change in-between calls to `emcee`. Alteration of Parameters
            would include changed ``min``, ``max``, ``vary`` and ``expr``
            attributes. This may happen, for example, if you use an altered
            Parameters object and call the `minimize` method in-between calls
            to `emcee`.
        workers : Pool-like or int, optional
            For parallelization of sampling.  It can be any Pool-like object
            with a map method that follows the same calling sequence as the
            built-in `map` function. If int is given as the argument, then a
            multiprocessing-based pool is spawned internally with the
            corresponding number of parallel processes. 'mpi4py'-based
            parallelization and 'joblib'-based parallelization pools can also
            be used here. **Note**: because of multiprocessing overhead it may
            only be worth parallelising if the objective function is expensive
            to calculate, or if there are a large number of objective
            evaluations per step (`ntemps * nwalkers * nvarys`).
        float_behavior : str, optional
            Specifies meaning of the objective function output if it returns a
            float. One of:

            - 'posterior' - objective function returns a log-posterior
              probability
            - 'chi2' - objective function returns :math:`\chi^2`

            See Notes for further details.
        is_weighted : bool, optional
            Has your objective function been weighted by measurement
            uncertainties? If `is_weighted is True` then your objective
            function is assumed to return residuals that have been divided by
            the true measurement uncertainty `(data - model) / sigma`. If
            `is_weighted is False` then the objective function is assumed to
            return unweighted residuals, `data - model`. In this case `emcee`
            will employ a positive measurement uncertainty during the sampling.
            This measurement uncertainty will be present in the output params
            and output chain with the name `__lnsigma`. A side effect of this
            is that you cannot use this parameter name yourself.
            **Important** this parameter only has any effect if your objective
            function returns an array. If your objective function returns a
            float, then this parameter is ignored. See Notes for more details.
        seed : int or `numpy.random.RandomState`, optional
            If `seed` is an int, a new `numpy.random.RandomState` instance is
            used, seeded with `seed`.
            If `seed` is already a `numpy.random.RandomState` instance, then
            that `numpy.random.RandomState` instance is used.
            Specify `seed` for repeatable minimizations.

        Returns
        -------
        :class:`MinimizerResult`
            MinimizerResult object containing updated params, statistics,
            etc. The updated params represent the median (50th percentile) of
            all the samples, whilst the parameter uncertainties are half of the
            difference between the 15.87 and 84.13 percentiles.
            The `MinimizerResult` also contains the ``chain``, ``flatchain``
            and ``lnprob`` attributes. The ``chain`` and ``flatchain``
            attributes contain the samples and have the shape
            `(nwalkers, (steps - burn) // thin, nvarys)` or
            `(ntemps, nwalkers, (steps - burn) // thin, nvarys)`,
            depending on whether Parallel tempering was used or not.
            `nvarys` is the number of parameters that are allowed to vary.
            The ``flatchain`` attribute is a `pandas.DataFrame` of the
            flattened chain, `chain.reshape(-1, nvarys)`. To access flattened
            chain values for a particular parameter use
            `result.flatchain[parname]`. The ``lnprob`` attribute contains the
            log probability for each sample in ``chain``. The sample with the
            highest probability corresponds to the maximum likelihood estimate.


        Notes
        -----
        This method samples the posterior distribution of the parameters using
        Markov Chain Monte Carlo.  To do so it needs to calculate the
        log-posterior probability of the model parameters, `F`, given the data,
        `D`, :math:`\ln p(F_{true} | D)`. This 'posterior probability' is
        calculated as:

        .. math::

            \ln p(F_{true} | D) \propto \ln p(D | F_{true}) + \ln p(F_{true})

        where :math:`\ln p(D | F_{true})` is the 'log-likelihood' and
        :math:`\ln p(F_{true})` is the 'log-prior'. The default log-prior
        encodes prior information already known about the model. This method
        assumes that the log-prior probability is `-numpy.inf` (impossible) if
        the one of the parameters is outside its limits. The log-prior probability
        term is zero if all the parameters are inside their bounds (known as a
        uniform prior). The log-likelihood function is given by [1]_:

        .. math::

            \ln p(D|F_{true}) = -\frac{1}{2}\sum_n \left[\frac{(g_n(F_{true}) - D_n)^2}{s_n^2}+\ln (2\pi s_n^2)\right]

        The first summand in the square brackets represents the residual for a
        given datapoint (:math:`g` being the generative model, :math:`D_n` the
        data and :math:`s_n` the standard deviation, or measurement
        uncertainty, of the datapoint). This term represents :math:`\chi^2`
        when summed over all data points.
        Ideally the objective function used to create `lmfit.Minimizer` should
        return the log-posterior probability, :math:`\ln p(F_{true} | D)`.
        However, since the in-built log-prior term is zero, the objective
        function can also just return the log-likelihood, unless you wish to
        create a non-uniform prior.

        If a float value is returned by the objective function then this value
        is assumed by default to be the log-posterior probability, i.e.
        `float_behavior is 'posterior'`. If your objective function returns
        :math:`\chi^2`, then you should use a value of `'chi2'` for
        `float_behavior`. `emcee` will then multiply your :math:`\chi^2` value
        by -0.5 to obtain the posterior probability.

        However, the default behaviour of many objective functions is to return
        a vector of (possibly weighted) residuals. Therefore, if your objective
        function returns a vector, `res`, then the vector is assumed to contain
        the residuals. If `is_weighted is True` then your residuals are assumed
        to be correctly weighted by the standard deviation (measurement
        uncertainty) of the data points (`res = (data - model) / sigma`) and
        the log-likelihood (and log-posterior probability) is calculated as:
        `-0.5 * numpy.sum(res**2)`.
        This ignores the second summand in the square brackets. Consequently,
        in order to calculate a fully correct log-posterior probability value
        your objective function should return a single value. If
        `is_weighted is False` then the data uncertainty, `s_n`, will be
        treated as a nuisance parameter and will be marginalized out. This is
        achieved by employing a strictly positive uncertainty
        (homoscedasticity) for each data point, :math:`s_n = \exp(\_\_lnsigma)`.
        `__lnsigma` will be present in `MinimizerResult.params`, as well as
        `Minimizer.chain`, `nvarys` will also be increased by one.

        References
        ----------
        .. [1] http://dan.iel.fm/emcee/current/user/line/

        """
        if not HAS_EMCEE:
            raise NotImplementedError('You must have emcee to use'
                                      ' the emcee method')
        tparams = params
        # if you're reusing the sampler then ntemps, nwalkers have to be
        # determined from the previous sampling
        if reuse_sampler:
            if not hasattr(self, 'sampler') or not hasattr(self, '_lastpos'):
                raise ValueError("You wanted to use an existing sampler, but"
                                 "it hasn't been created yet")
            if len(self._lastpos.shape) == 2:
                ntemps = 1
                nwalkers = self._lastpos.shape[0]
            elif len(self._lastpos.shape) == 3:
                ntemps = self._lastpos.shape[0]
                nwalkers = self._lastpos.shape[1]
            tparams = None

        result = self.prepare_fit(params=tparams)
        params = result.params

        # check if the userfcn returns a vector of residuals
        out = self.userfcn(params, *self.userargs, **self.userkws)
        out = np.asarray(out).ravel()
        if out.size > 1 and is_weighted is False:
            # we need to marginalise over a constant data uncertainty
            if '__lnsigma' not in params:
                # __lnsigma should already be in params if is_weighted was
                # previously set to True.
                params.add('__lnsigma', value=0.01, min=-np.inf, max=np.inf, vary=True)
                # have to re-prepare the fit
                result = self.prepare_fit(params)
                params = result.params

        result.method = 'emcee'

        # Removing internal parameter scaling. We could possibly keep it,
        # but I don't know how this affects the emcee sampling.
        bounds = []
        var_arr = np.zeros(len(result.var_names))
        i = 0
        for par in params:
            param = params[par]
            if param.expr is not None:
                param.vary = False
            if param.vary:
                var_arr[i] = param.value
                i += 1
            else:
                # don't want to append bounds if they're not being varied.
                continue

            param.from_internal = lambda val: val
            lb, ub = param.min, param.max
            if lb is None or lb is np.nan:
                lb = -np.inf
            if ub is None or ub is np.nan:
                ub = np.inf
            bounds.append((lb, ub))
        bounds = np.array(bounds)

        self.nvarys = len(result.var_names)

        # set up multiprocessing options for the samplers
        auto_pool = None
        sampler_kwargs = {}
        if isinstance(workers, int) and workers > 1:
            auto_pool = multiprocessing.Pool(workers)
            sampler_kwargs['pool'] = auto_pool
        elif hasattr(workers, 'map'):
            sampler_kwargs['pool'] = workers

        # function arguments for the log-probability functions
        # these values are sent to the log-probability functions by the sampler.
        lnprob_args = (self.userfcn, params, result.var_names, bounds)
        lnprob_kwargs = {'is_weighted': is_weighted,
                         'float_behavior': float_behavior,
                         'userargs': self.userargs,
                         'userkws': self.userkws,
                         'nan_policy': self.nan_policy}

        if ntemps > 1:
            # the prior and likelihood function args and kwargs are the same
            sampler_kwargs['loglargs'] = lnprob_args
            sampler_kwargs['loglkwargs'] = lnprob_kwargs
            sampler_kwargs['logpargs'] = (bounds,)
        else:
            sampler_kwargs['args'] = lnprob_args
            sampler_kwargs['kwargs'] = lnprob_kwargs

        # set up the random number generator
        rng = _make_random_gen(seed)

        # now initialise the samplers
        if reuse_sampler:
            if auto_pool is not None:
                self.sampler.pool = auto_pool

            p0 = self._lastpos
            if p0.shape[-1] != self.nvarys:
                raise ValueError("You cannot reuse the sampler if the number"
                                 "of varying parameters has changed")
        elif ntemps > 1:
            # Parallel Tempering
            # jitter the starting position by scaled Gaussian noise
            p0 = 1 + rng.randn(ntemps, nwalkers, self.nvarys) * 1.e-4
            p0 *= var_arr
            self.sampler = emcee.PTSampler(ntemps, nwalkers, self.nvarys,
                                           _lnpost, _lnprior, **sampler_kwargs)
        else:
            p0 = 1 + rng.randn(nwalkers, self.nvarys) * 1.e-4
            p0 *= var_arr
            self.sampler = emcee.EnsembleSampler(nwalkers, self.nvarys,
                                                 _lnpost, **sampler_kwargs)

        # user supplies an initialisation position for the chain
        # If you try to run the sampler with p0 of a wrong size then you'll get
        # a ValueError. Note, you can't initialise with a position if you are
        # reusing the sampler.
        if pos is not None and not reuse_sampler:
            tpos = np.asfarray(pos)
            if p0.shape == tpos.shape:
                pass
            # trying to initialise with a previous chain
            elif tpos.shape[0::2] == (nwalkers, self.nvarys):
                tpos = tpos[:, -1, :]
            # initialising with a PTsampler chain.
            elif ntemps > 1 and tpos.ndim == 4:
                tpos_shape = list(tpos.shape)
                tpos_shape.pop(2)
                if tpos_shape == (ntemps, nwalkers, self.nvarys):
                    tpos = tpos[..., -1, :]
            else:
                raise ValueError('pos should have shape (nwalkers, nvarys)'
                                 'or (ntemps, nwalkers, nvarys) if ntemps > 1')
            p0 = tpos

        # if you specified a seed then you also need to seed the sampler
        if seed is not None:
            self.sampler.random_state = rng.get_state()

        # now do a production run, sampling all the time
        if EMCEE_VERSION >= 3:
            output = self.sampler.run_mcmc(p0, steps, progress=progress)
            self._lastpos = output.coords
        else:
            output = self.sampler.run_mcmc(p0, steps)
            self._lastpos = output[0]

        # discard the burn samples and thin
        chain = self.sampler.chain[..., burn::thin, :]
        lnprobability = self.sampler.lnprobability[..., burn::thin]

        # take the zero'th PTsampler temperature for the parameter estimators
        if ntemps > 1:
            flatchain = chain[0, ...].reshape((-1, self.nvarys))
        else:
            flatchain = chain.reshape((-1, self.nvarys))

        quantiles = np.percentile(flatchain, [15.87, 50, 84.13], axis=0)

        for i, var_name in enumerate(result.var_names):
            std_l, median, std_u = quantiles[:, i]
            params[var_name].value = median
            params[var_name].stderr = 0.5 * (std_u - std_l)
            params[var_name].correl = {}

        params.update_constraints()

        # work out correlation coefficients
        corrcoefs = np.corrcoef(flatchain.T)

        for i, var_name in enumerate(result.var_names):
            for j, var_name2 in enumerate(result.var_names):
                if i != j:
                    result.params[var_name].correl[var_name2] = corrcoefs[i, j]

        result.chain = np.copy(chain)
        result.lnprob = np.copy(lnprobability)
        result.errorbars = True
        result.nvarys = len(result.var_names)
        result.nfev = ntemps*nwalkers*steps

        # Calculate the residual with the "best fit" parameters
        out = self.userfcn(params, *self.userargs, **self.userkws)
        result.residual = _nan_policy(out, nan_policy=self.nan_policy, handle_inf=False)

        # If uncertainty was automatically estimated, weight the residual properly
        if (not is_weighted) and (result.residual.size > 1):
            if '__lnsigma' in params:
                result.residual = result.residual/np.exp(params['__lnsigma'].value)

        # Calculate statistics for the two standard cases:
        if isinstance(result.residual, ndarray) or (float_behavior == 'chi2'):
            result._calculate_statistics()

        # Handle special case unique to emcee:
        # This should eventually be moved into result._calculate_statistics.
        elif float_behavior == 'posterior':
            result.ndata = 1
            result.nfree = 1

            # assuming prior prob = 1, this is true
            _neg2_log_likel = -2*result.residual

            # assumes that residual is properly weighted
            result.chisqr = np.exp(_neg2_log_likel)

            result.redchi = result.chisqr / result.nfree
            result.aic = _neg2_log_likel + 2 * result.nvarys
            result.bic = _neg2_log_likel + np.log(result.ndata) * result.nvarys

        if auto_pool is not None:
            auto_pool.terminate()

        return result

    def least_squares(self, params=None, **kws):
        """Least-squares minimization using :scipydoc:`optimize.least_squares`.

        This method wraps :scipydoc:`optimize.least_squares`, which has inbuilt
        support for bounds and robust loss functions. By default it uses the
        Trust Region Reflective algorithm with a linear loss function (i.e.,
        the standard least-squares problem).

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
           Parameters to use as starting point.
        **kws : dict, optional
            Minimizer options to pass to :scipydoc:`optimize.least_squares`.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter and several
            goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        """
        result = self.prepare_fit(params)
        result.method = 'least_squares'

        replace_none = lambda x, sign: sign*np.inf if x is None else x

        start_vals, lower_bounds, upper_bounds = [], [], []
        for vname in result.var_names:
            par = self.params[vname]
            start_vals.append(par.value)
            lower_bounds.append(replace_none(par.min, -1))
            upper_bounds.append(replace_none(par.max, 1))

        try:
            ret = least_squares(self.__residual, start_vals,
                                bounds=(lower_bounds, upper_bounds),
                                kwargs=dict(apply_bounds_transformation=False),
                                **kws)
            result.residual = ret.fun
        except AbortFitException:
            pass

        # note: upstream least_squares is actually returning
        # "last evaluation", not "best result", but we do this
        # here for consistency, and assuming it will be fixed.
        if not result.aborted:
            result.residual = self.__residual(ret.x, False)
            result.nfev -= 1
        result._calculate_statistics()

        if not result.aborted:
            for attr in ret:
                setattr(result, attr, ret[attr])

            result.x = np.atleast_1d(result.x)

            # calculate the cov_x and estimate uncertainties/correlations
            try:
                hess = np.matmul(ret.jac.T, ret.jac)
                result.covar = np.linalg.inv(hess)
                self._calculate_uncertainties_correlations()
            except LinAlgError:
                pass

        return result

    def leastsq(self, params=None, **kws):
        """Use Levenberg-Marquardt minimization to perform a fit.

        It assumes that the input Parameters have been initialized, and
        a function to minimize has been properly set up.
        When possible, this calculates the estimated uncertainties and
        variable correlations from the covariance matrix.

        This method calls :scipydoc:`optimize.leastsq`.
        By default, numerical derivatives are used, and the following
        arguments are set:

        +------------------+----------------+------------------------------------------------------------+
        | :meth:`leastsq`  |  Default Value | Description                                                |
        | arg              |                |                                                            |
        +==================+================+============================================================+
        |   xtol           |  1.e-7         | Relative error in the approximate solution                 |
        +------------------+----------------+------------------------------------------------------------+
        |   ftol           |  1.e-7         | Relative error in the desired sum of squares               |
        +------------------+----------------+------------------------------------------------------------+
        |   maxfev         | 2000*(nvar+1)  | Maximum number of function calls (nvar= # of variables)    |
        +------------------+----------------+------------------------------------------------------------+
        |   Dfun           | None           | Function to call for Jacobian calculation                  |
        +------------------+----------------+------------------------------------------------------------+

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
           Parameters to use as starting point.
        **kws : dict, optional
            Minimizer options to pass to :scipydoc:`optimize.leastsq`.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter
            and several goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        """
        result = self.prepare_fit(params=params)
        result.method = 'leastsq'
        result.nfev -= 2  # correct for "pre-fit" initialization/checks
        variables = result.init_vals
        nvars = len(variables)
        lskws = dict(full_output=1, xtol=1.e-7, ftol=1.e-7, col_deriv=False,
                     gtol=1.e-7, maxfev=2000*(nvars+1), Dfun=None)

        lskws.update(self.kws)
        lskws.update(kws)

        self.col_deriv = False
        if lskws['Dfun'] is not None:
            self.jacfcn = lskws['Dfun']
            self.col_deriv = lskws['col_deriv']
            lskws['Dfun'] = self.__jacobian

        # suppress runtime warnings during fit and error analysis
        orig_warn_settings = np.geterr()
        np.seterr(all='ignore')

        try:
            lsout = scipy_leastsq(self.__residual, variables, **lskws)
        except AbortFitException:
            pass

        if not result.aborted:
            _best, _cov, infodict, errmsg, ier = lsout
            result.residual = self.__residual(_best)
            result.nfev -= 1
        result._calculate_statistics()

        if result.aborted:
            return result

        result.ier = ier
        result.lmdif_message = errmsg
        result.success = ier in [1, 2, 3, 4]
        if ier in {1, 2, 3}:
            result.message = 'Fit succeeded.'
        elif ier == 0:
            result.message = ('Invalid Input Parameters. I.e. more variables '
                              'than data points given, tolerance < 0.0, or '
                              'no data provided.')
        elif ier == 4:
            result.message = 'One or more variable did not affect the fit.'
        elif ier == 5:
            result.message = self._err_maxfev % lskws['maxfev']
        else:
            result.message = 'Tolerance seems to be too small.'

        # self.errorbars = error bars were successfully estimated
        result.errorbars = (_cov is not None)
        if result.errorbars:
            # transform the covariance matrix to "external" parameter space
            result.covar = self._int2ext_cov_x(_cov, _best)
            # calculate parameter uncertainties and correlations
            self._calculate_uncertainties_correlations()
        else:
            result.message = '%s Could not estimate error-bars.' % result.message

        np.seterr(**orig_warn_settings)

        return result

    def basinhopping(self, params=None, **kws):
        """Use the `basinhopping` algorithm to find the global minimum of a function.

        This method calls :scipydoc:`optimize.basinhopping` using the default
        arguments. The default minimizer is `BFGS`, but since lmfit supports
        parameter bounds for all minimizers, the user can choose any of the
        solvers present in :scipydoc:`optimize.minimize`.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters` object, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimization results from the basinhopping
            algorithm.


        .. versionadded:: 0.9.10

        """
        result = self.prepare_fit(params=params)
        result.method = 'basinhopping'

        basinhopping_kws = dict(niter=100, T=1.0, stepsize=0.5,
                                minimizer_kwargs={}, take_step=None,
                                accept_test=None, callback=None, interval=50,
                                disp=False, niter_success=None, seed=None)

        basinhopping_kws.update(self.kws)
        basinhopping_kws.update(kws)

        x0 = result.init_vals

        try:
            ret = scipy_basinhopping(self.penalty, x0, **basinhopping_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            result.message = ret.message
            result.residual = self.__residual(ret.x)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            _covar_ndt = self._calculate_covariance_matrix(ret.x)
            if _covar_ndt is not None:
                result.covar = self._int2ext_cov_x(_covar_ndt, ret.x)
                self._calculate_uncertainties_correlations()

        return result

    def brute(self, params=None, Ns=20, keep=50, workers=1):
        """Use the `brute` method to find the global minimum of a function.

        The following parameters are passed to :scipydoc:`optimize.brute`
        and cannot be changed:

        +-------------------+-------+----------------------------------------+
        | :meth:`brute` arg | Value | Description                            |
        +===================+=======+========================================+
        |   full_output     | 1     | Return the evaluation grid and         |
        |                   |       | the objective function's values on it. |
        +-------------------+-------+----------------------------------------+
        |   finish          | None  | No "polishing" function is to be used  |
        |                   |       | after the grid search.                 |
        +-------------------+-------+----------------------------------------+
        |   disp            | False | Do not print convergence messages      |
        |                   |       | (when finish is not None).             |
        +-------------------+-------+----------------------------------------+

        It assumes that the input Parameters have been initialized, and a
        function to minimize has been properly set up.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        Ns : int, optional
            Number of grid points along the axes, if not otherwise specified
            (see Notes).
        keep : int, optional
            Number of best candidates from the brute force method that are
            stored in the :attr:`candidates` attribute. If 'all', then all grid
            points from :scipydoc:`optimize.brute` are stored as candidates.
        workers : int or map-like callable, optional
            For parallel evaluation of the grid, added in SciPy v1.3 (see
            :scipydoc:`optimize.brute` for more details).

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the brute force method.
            The return values (`x0`, `fval`, `grid`, `Jout`) from
            :scipydoc:`optimize.brute` are stored as `brute_<parname>` attributes.
            The `MinimizerResult` also contains the `candidates` attribute and
            `show_candidates()` method. The `candidates` attribute contains the
            parameters and chisqr from the brute force method as a namedtuple,
            ('Candidate', ['params', 'score']), sorted on the (lowest) chisqr
            value. To access the values for a particular candidate one can use
            `result.candidate[#].params` or `result.candidate[#].score`, where
            a lower # represents a better candidate. The `show_candidates(#)`
            uses the :meth:`pretty_print` method to show a specific candidate-#
            or all candidates when no number is specified.


        .. versionadded:: 0.9.6


        Notes
        -----
        The :meth:`brute` method evalutes the function at each point of a
        multidimensional grid of points. The grid points are generated from the
        parameter ranges using `Ns` and (optional) `brute_step`.
        The implementation in :scipydoc:`optimize.brute` requires finite bounds
        and the `range` is specified as a two-tuple `(min, max)` or slice-object
        `(min, max, brute_step)`. A slice-object is used directly, whereas a
        two-tuple is converted to a slice object that interpolates `Ns` points
        from `min` to `max`, inclusive.

        In addition, the :meth:`brute` method in lmfit, handles three other
        scenarios given below with their respective slice-object:

            - lower bound (:attr:`min`) and :attr:`brute_step` are specified:
                range = (`min`, `min` + `Ns` * `brute_step`, `brute_step`).
            - upper bound (:attr:`max`) and :attr:`brute_step` are specified:
                range = (`max` - `Ns` * `brute_step`, `max`, `brute_step`).
            - numerical value (:attr:`value`) and :attr:`brute_step` are specified:
                range = (`value` - (`Ns`//2) * `brute_step`, `value` +
                (`Ns`//2) * `brute_step`, `brute_step`).

        """
        result = self.prepare_fit(params=params)
        result.method = 'brute'

        brute_kws = dict(full_output=1, finish=None, disp=False)
        # keyword 'workers' is introduced in SciPy v1.3
        # FIXME: remove this check after updating the requirement >= 1.3
        if int(major) == 1 and int(minor) >= 3:
            brute_kws.update({'workers': workers})

        varying = np.asarray([par.vary for par in self.params.values()])
        replace_none = lambda x, sign: sign*np.inf if x is None else x
        lower_bounds = np.asarray([replace_none(i.min, -1) for i in
                                   self.params.values()])[varying]
        upper_bounds = np.asarray([replace_none(i.max, 1) for i in
                                   self.params.values()])[varying]
        value = np.asarray([i.value for i in self.params.values()])[varying]
        stepsize = np.asarray([i.brute_step for i in self.params.values()])[varying]

        ranges = []
        for i, step in enumerate(stepsize):
            if np.all(np.isfinite([lower_bounds[i], upper_bounds[i]])):
                # lower AND upper bounds are specified (brute_step optional)
                par_range = ((lower_bounds[i], upper_bounds[i], step)
                             if step else (lower_bounds[i], upper_bounds[i]))
            elif np.isfinite(lower_bounds[i]) and step:
                # lower bound AND brute_step are specified
                par_range = (lower_bounds[i], lower_bounds[i] + Ns*step, step)
            elif np.isfinite(upper_bounds[i]) and step:
                # upper bound AND brute_step are specified
                par_range = (upper_bounds[i] - Ns*step, upper_bounds[i], step)
            elif np.isfinite(value[i]) and step:
                # no bounds, but an initial value is specified
                par_range = (value[i] - (Ns//2)*step, value[i] + (Ns//2)*step,
                             step)
            else:
                raise ValueError('Not enough information provided for the brute '
                                 'force method. Please specify bounds or at '
                                 'least an initial value and brute_step for '
                                 'parameter "{}".'.format(result.var_names[i]))
            ranges.append(par_range)

        try:
            ret = scipy_brute(self.penalty, tuple(ranges), Ns=Ns, **brute_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            result.brute_x0 = ret[0]
            result.brute_fval = ret[1]
            result.brute_grid = ret[2]
            result.brute_Jout = ret[3]

            # sort the results of brute and populate .candidates attribute
            grid_score = ret[3].ravel()  # chisqr
            grid_points = [par.ravel() for par in ret[2]]

            if len(result.var_names) == 1:
                grid_result = np.array([res for res in zip(zip(grid_points), grid_score)],
                                       dtype=[('par', 'O'), ('score', 'float64')])
            else:
                grid_result = np.array([res for res in zip(zip(*grid_points), grid_score)],
                                       dtype=[('par', 'O'), ('score', 'float64')])
            grid_result_sorted = grid_result[grid_result.argsort(order='score')]

            result.candidates = []

            if keep == 'all':
                keep_candidates = len(grid_result_sorted)
            else:
                keep_candidates = min(len(grid_result_sorted), keep)

            for data in grid_result_sorted[:keep_candidates]:
                pars = deepcopy(self.params)
                for i, par in enumerate(result.var_names):
                    pars[par].value = data[0][i]
                result.candidates.append(Candidate(params=pars, score=data[1]))

            result.params = result.candidates[0].params
            result.residual = self.__residual(result.brute_x0, apply_bounds_transformation=False)
            result.nfev = len(result.brute_Jout.ravel())

        result._calculate_statistics()

        return result

    def ampgo(self, params=None, **kws):
        """Find the global minimum of a multivariate function using AMPGO.

        AMPGO stands for 'Adaptive Memory Programming for Global Optimization'
        and is an efficient algorithm to find the global minimum.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        **kws : dict, optional
            Minimizer options to pass to the ampgo algorithm, the options are
            listed below::

                local: str (default is 'L-BFGS-B')
                    Name of the local minimization method. Valid options are:
                    - 'L-BFGS-B'
                    - 'Nelder-Mead'
                    - 'Powell'
                    - 'TNC'
                    - 'SLSQP'
                local_opts: dict (default is None)
                    Options to pass to the local minimizer.
                maxfunevals: int (default is None)
                    Maximum number of function evaluations. If None, the optimization will stop
                    after `totaliter` number of iterations.
                totaliter: int (default is 20)
                    Maximum number of global iterations.
                maxiter: int (default is 5)
                    Maximum number of `Tabu Tunneling` iterations during each global iteration.
                glbtol: float (default is 1e-5)
                    Tolerance whether or not to accept a solution after a tunneling phase.
                eps1: float (default is 0.02)
                    Constant used to define an aspiration value for the objective function during
                    the Tunneling phase.
                eps2: float (default is 0.1)
                    Perturbation factor used to move away from the latest local minimum at the
                    start of a Tunneling phase.
                tabulistsize: int (default is 5)
                    Size of the (circular) tabu search list.
                tabustrategy: str (default is 'farthest')
                    Strategy to use when the size of the tabu list exceeds `tabulistsize`. It
                    can be 'oldest' to drop the oldest point from the tabu list or 'farthest'
                    to drop the element farthest from the last local minimum found.
                disp: bool (default is False)
                    Set to True to print convergence messages.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the ampgo method, with fit
            parameters, statistics and such. The return values (`x0`, `fval`,
            `eval`, `msg`, `tunnel`) are stored as `ampgo_<parname>` attributes.


        .. versionadded:: 0.9.10


        Notes
        ----
        The Python implementation was written by Andrea Gavana in 2014
        (http://infinity77.net/global_optimization/index.html).

        The details of the AMPGO algorithm are described in the paper
        "Adaptive Memory Programming for Constrained Global Optimization"
        located here:

        http://leeds-faculty.colorado.edu/glover/fred%20pubs/416%20-%20AMP%20(TS)%20for%20Constrained%20Global%20Opt%20w%20Lasdon%20et%20al%20.pdf

        """
        result = self.prepare_fit(params=params)

        ampgo_kws = dict(local='L-BFGS-B', local_opts=None, maxfunevals=None,
                         totaliter=20, maxiter=5, glbtol=1e-5, eps1=0.02,
                         eps2=0.1, tabulistsize=5, tabustrategy='farthest',
                         disp=False)
        ampgo_kws.update(self.kws)
        ampgo_kws.update(kws)

        values = result.init_vals
        result.method = "ampgo, with {} as local solver".format(ampgo_kws['local'])

        try:
            ret = ampgo(self.penalty, values, **ampgo_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            result.ampgo_x0 = ret[0]
            result.ampgo_fval = ret[1]
            result.ampgo_eval = ret[2]
            result.ampgo_msg = ret[3]
            result.ampgo_tunnel = ret[4]

            for i, par in enumerate(result.var_names):
                result.params[par].value = result.ampgo_x0[i]

            result.residual = self.__residual(result.ampgo_x0)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            _covar_ndt = self._calculate_covariance_matrix(result.ampgo_x0)
            if _covar_ndt is not None:
                result.covar = self._int2ext_cov_x(_covar_ndt, result.ampgo_x0)
                self._calculate_uncertainties_correlations()

        return result

    def shgo(self, params=None, **kws):
        """Use the `SHGO` algorithm to find the global minimum.

        SHGO stands for "simplicial homology global optimization" and calls
        :scipydoc:`optimize.shgo` using its default arguments.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        **kws : dict, optional
            Minimizer options to pass to the SHGO algorithm.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the SHGO method.
            The return values specific to :scipydoc:`optimize.shgo` (`x`,
            `xl`, `fun`, `funl`, `nfev`, `nit`, `nlfev`, `nlhev`, and
            `nljev`) are stored as `shgo_<parname>` attributes.


        .. versionadded:: 0.9.14

        """
        if not HAS_SHGO:
            raise NotImplementedError('You must have SciPy >= 1.2 to use the '
                                      'shgo method.')

        result = self.prepare_fit(params=params)
        result.method = 'shgo'

        shgo_kws = dict(constraints=None, n=100, iters=1, callback=None,
                        minimizer_kwargs=None, options=None,
                        sampling_method='simplicial')

        shgo_kws.update(self.kws)
        shgo_kws.update(kws)

        varying = np.asarray([par.vary for par in self.params.values()])
        bounds = np.asarray([(par.min, par.max) for par in
                             self.params.values()])[varying]

        try:
            ret = scipy_shgo(self.penalty, bounds, **shgo_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            for attr, value in ret.items():
                if attr in ['success', 'message']:
                    setattr(result, attr, value)
                else:
                    setattr(result, 'shgo_{}'.format(attr), value)

            result.residual = self.__residual(result.shgo_x, False)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            result.covar = self._calculate_covariance_matrix(result.shgo_x)
            if result.covar is not None:
                self._calculate_uncertainties_correlations()

        return result

    def dual_annealing(self, params=None, **kws):
        """Use the `dual_annealing` algorithm to find the global minimum.

        This method calls :scipydoc:`optimize.dual_annealing` using its
        default arguments.

        Parameters
        ----------
        params : :class:`~lmfit.parameter.Parameters`, optional
            Contains the Parameters for the model. If None, then the
            Parameters used to initialize the Minimizer object are used.
        **kws : dict, optional
            Minimizer options to pass to the dual_annealing algorithm.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the parameters from the dual_annealing method.
            The return values specific to :scipydoc:`optimize.dual_annealing`
            (`x`, `fun`, `nfev`, `nhev`, `njev`, and `nit`) are stored as
            `da_<parname>` attributes.


        .. versionadded:: 0.9.14

        """
        if not HAS_DUAL_ANNEALING:
            raise NotImplementedError('You must have SciPy >= 1.2 to use the'
                                      ' dual_annealing method')

        result = self.prepare_fit(params=params)
        result.method = 'dual_annealing'

        da_kws = dict(maxiter=1000, local_search_options={},
                      initial_temp=5230.0, restart_temp_ratio=2e-05,
                      visit=2.62, accept=-5.0, maxfun=10000000.0, seed=None,
                      no_local_search=False, callback=None, x0=None)

        da_kws.update(self.kws)
        da_kws.update(kws)

        varying = np.asarray([par.vary for par in self.params.values()])
        bounds = np.asarray([(par.min, par.max) for par in
                             self.params.values()])[varying]

        if not np.all(np.isfinite(bounds)):
            raise ValueError('dual_annealing requires finite bounds for all'
                             ' varying parameters')

        try:
            ret = scipy_dual_annealing(self.penalty, bounds, **da_kws)
        except AbortFitException:
            pass

        if not result.aborted:
            for attr, value in ret.items():
                if attr in ['success', 'message']:
                    setattr(result, attr, value)
                else:
                    setattr(result, 'da_{}'.format(attr), value)

            result.residual = self.__residual(result.da_x, False)
            result.nfev -= 1

        result._calculate_statistics()

        # calculate the cov_x and estimate uncertanties/correlations
        if (not result.aborted and self.calc_covar and HAS_NUMDIFFTOOLS and
                len(result.residual) > len(result.var_names)):
            result.covar = self._calculate_covariance_matrix(result.da_x)
            if result.covar is not None:
                self._calculate_uncertainties_correlations()

        return result

    def minimize(self, method='leastsq', params=None, **kws):
        """Perform the minimization.

        Parameters
        ----------
        method : str, optional
            Name of the fitting method to use. Valid values are:

            - `'leastsq'`: Levenberg-Marquardt (default)
            - `'least_squares'`: Least-Squares minimization, using Trust Region Reflective method
            - `'differential_evolution'`: differential evolution
            - `'brute'`: brute force method
            - `'basinhopping'`: basinhopping
            - `'ampgo'`: Adaptive Memory Programming for Global Optimization
            - '`nelder`': Nelder-Mead
            - `'lbfgsb'`: L-BFGS-B
            - `'powell'`: Powell
            - `'cg'`: Conjugate-Gradient
            - `'newton'`: Newton-CG
            - `'cobyla'`: Cobyla
            - `'bfgs'`: BFGS
            - `'tnc'`: Truncated Newton
            - `'trust-ncg'`: Newton-CG trust-region
            - `'trust-exact'`: nearly exact trust-region (SciPy >= 1.0)
            - `'trust-krylov'`: Newton GLTR trust-region (SciPy >= 1.0)
            - `'trust-constr'`: trust-region for constrained optimization (SciPy >= 1.1)
            - `'dogleg'`: Dog-leg trust-region
            - `'slsqp'`: Sequential Linear Squares Programming
            - `'emcee'`: Maximum likelihood via Monte-Carlo Markov Chain
            - `'shgo'`: Simplicial Homology Global Optimization (SciPy >= 1.2)
            - `'dual_annealing'`: Dual Annealing optimization (SciPy >= 1.2)

            In most cases, these methods wrap and use the method with the
            same name from `scipy.optimize`, or use
            `scipy.optimize.minimize` with the same `method` argument.
            Thus '`leastsq`' will use `scipy.optimize.leastsq`, while
            '`powell`' will use `scipy.optimize.minimizer(...,
            method='powell')`

            For more details on the fitting methods please refer to the
            `SciPy docs <https://docs.scipy.org/doc/scipy/reference/optimize.html>`__.

        params : :class:`~lmfit.parameter.Parameters`, optional
            Parameters of the model to use as starting values.

        **kws : optional
            Additional arguments are passed to the underlying minimization
            method.

        Returns
        -------
        :class:`MinimizerResult`
            Object containing the optimized parameter and several
            goodness-of-fit statistics.


        .. versionchanged:: 0.9.0
           Return value changed to :class:`MinimizerResult`.

        """
        function = self.leastsq
        kwargs = {'params': params}
        kwargs.update(self.kws)
        kwargs.update(kws)

        user_method = method.lower()
        if user_method.startswith('leasts'):
            function = self.leastsq
        elif user_method.startswith('least_s'):
            function = self.least_squares
        elif user_method == 'brute':
            function = self.brute
        elif user_method == 'basinhopping':
            function = self.basinhopping
        elif user_method == 'ampgo':
            function = self.ampgo
        elif user_method == 'emcee':
            function = self.emcee
        elif user_method == 'shgo':
            function = self.shgo
        elif user_method == 'dual_annealing':
            function = self.dual_annealing
        else:
            function = self.scalar_minimize
            for key, val in SCALAR_METHODS.items():
                if (key.lower().startswith(user_method) or
                        val.lower().startswith(user_method)):
                    kwargs['method'] = val
        return function(**kwargs)


def _lnprior(theta, bounds):
    """Calculate an improper uniform log-prior probability.

    Parameters
    ----------
    theta : sequence
        Float parameter values (only those being varied).
    bounds : np.ndarray
        Lower and upper bounds of parameters that are varying.
        Has shape (nvarys, 2).

    Returns
    -------
    lnprob : float
        Log prior probability.

    """
    if np.any(theta > bounds[:, 1]) or np.any(theta < bounds[:, 0]):
        return -np.inf
    return 0


def _lnpost(theta, userfcn, params, var_names, bounds, userargs=(),
            userkws=None, float_behavior='posterior', is_weighted=True,
            nan_policy='raise'):
    """Calculate the log-posterior probability.

    See the `Minimizer.emcee` method for more details.

    Parameters
    ----------
    theta : sequence
        Float parameter values (only those being varied).
    userfcn : callable
        User objective function.
    params : :class:`~lmfit.parameters.Parameters`
        The entire set of Parameters.
    var_names : list
        The names of the parameters that are varying.
    bounds : numpy.ndarray
        Lower and upper bounds of parameters. Has shape (nvarys, 2).
    userargs : tuple, optional
        Extra positional arguments required for user objective function.
    userkws : dict, optional
        Extra keyword arguments required for user objective function.
    float_behavior : str, optional
        Specifies meaning of objective when it returns a float. One of:

        'posterior' - objective function returnins a log-posterior
                      probability
        'chi2' - objective function returns a chi2 value

    is_weighted : bool
        If `userfcn` returns a vector of residuals then `is_weighted`
        specifies if the residuals have been weighted by data uncertainties.
    nan_policy : str, optional
        Specifies action if `userfcn` returns NaN values. One of:

            'raise' - a `ValueError` is raised
            'propagate' - the values returned from `userfcn` are un-altered
            'omit' - the non-finite values are filtered


    Returns
    -------
    lnprob : float
        Log posterior probability.

    """
    # the comparison has to be done on theta and bounds. DO NOT inject theta
    # values into Parameters, then compare Parameters values to the bounds.
    # Parameters values are clipped to stay within bounds.
    if np.any(theta > bounds[:, 1]) or np.any(theta < bounds[:, 0]):
        return -np.inf

    for name, val in zip(var_names, theta):
        params[name].value = val

    userkwargs = {}
    if userkws is not None:
        userkwargs = userkws

    # update the constraints
    params.update_constraints()

    # now calculate the log-likelihood
    out = userfcn(params, *userargs, **userkwargs)
    out = _nan_policy(out, nan_policy=nan_policy, handle_inf=False)

    lnprob = np.asarray(out).ravel()

    if lnprob.size > 1:
        # objective function returns a vector of residuals
        if '__lnsigma' in params and not is_weighted:
            # marginalise over a constant data uncertainty
            __lnsigma = params['__lnsigma'].value
            c = np.log(2 * np.pi) + 2 * __lnsigma
            lnprob = -0.5 * np.sum((lnprob / np.exp(__lnsigma)) ** 2 + c)
        else:
            lnprob = -0.5 * (lnprob * lnprob).sum()
    else:
        # objective function returns a single value.
        # use float_behaviour to figure out if the value is posterior or chi2
        if float_behavior == 'posterior':
            pass
        elif float_behavior == 'chi2':
            lnprob *= -0.5
        else:
            raise ValueError("float_behaviour must be either 'posterior' or"
                             " 'chi2' " + float_behavior)

    return lnprob


def _make_random_gen(seed):
    """Turn seed into a numpy.random.RandomState instance.

    If seed is None, return the RandomState singleton used by
    numpy.random. If seed is an int, return a new RandomState instance
    seeded with seed. If seed is already a RandomState instance, return
    it. Otherwise raise ValueError.

    """
    if seed is None or seed is np.random:
        return np.random.mtrand._rand
    if isinstance(seed, (numbers.Integral, np.integer)):
        return np.random.RandomState(seed)
    if isinstance(seed, np.random.RandomState):
        return seed
    raise ValueError('%r cannot be used to seed a numpy.random.RandomState'
                     ' instance' % seed)


def _nan_policy(arr, nan_policy='raise', handle_inf=True):
    """Specify behaviour when an array contains numpy.nan or numpy.inf.

    Parameters
    ----------
    arr : array_like
        Input array to consider.
    nan_policy : str, optional
        One of:

        'raise' - raise a `ValueError` if `arr` contains NaN (default)
        'propagate' - propagate NaN
        'omit' - filter NaN from input array
    handle_inf : bool, optional
        As well as NaN consider +/- inf.

    Returns
    -------
    filtered_array : array_like

    Note
    ----
    This function is copied, then modified, from
    scipy/stats/stats.py/_contains_nan

    """
    if nan_policy not in ('propagate', 'omit', 'raise'):
        raise ValueError("nan_policy must be 'propagate', 'omit', or 'raise'.")

    if handle_inf:
        handler_func = lambda x: ~np.isfinite(x)
    else:
        handler_func = isnull

    if nan_policy == 'omit':
        # mask locates any values to remove
        mask = ~handler_func(arr)
        if not np.all(mask):  # there are some NaNs/infs/missing values
            return arr[mask]

    if nan_policy == 'raise':
        try:
            # Calling np.sum to avoid creating a huge array into memory
            # e.g. np.isnan(a).any()
            with np.errstate(invalid='ignore'):
                contains_nan = handler_func(np.sum(arr))
        except TypeError:
            # If the check cannot be properly performed we fallback to omiting
            # nan values and raising a warning. This can happen when attempting to
            # sum things that are not numbers (e.g. as in the function `mode`).
            contains_nan = False
            warnings.warn("The input array could not be checked for NaNs. "
                          "NaNs will be ignored.", RuntimeWarning)

        if contains_nan:
            raise ValueError("The input contains nan values")
    return arr


def minimize(fcn, params, method='leastsq', args=None, kws=None, iter_cb=None,
             scale_covar=True, nan_policy='raise', reduce_fcn=None,
             calc_covar=True, **fit_kws):
    """Perform a fit of a set of parameters by minimizing an objective (or
    cost) function using one of the several available methods.

    The minimize function takes an objective function to be minimized,
    a dictionary (:class:`~lmfit.parameter.Parameters`) containing the model
    parameters, and several optional arguments.

    Parameters
    ----------
    fcn : callable
        Objective function to be minimized. When method is `leastsq` or
        `least_squares`, the objective function should return an array
        of residuals (difference between model and data) to be minimized
        in a least-squares sense. With the scalar methods the objective
        function can either return the residuals array or a single scalar
        value. The function must have the signature:
        `fcn(params, *args, **kws)`
    params : :class:`~lmfit.parameter.Parameters`
        Contains the Parameters for the model.
    method : str, optional
        Name of the fitting method to use. Valid values are:

        - `'leastsq'`: Levenberg-Marquardt (default)
        - `'least_squares'`: Least-Squares minimization, using Trust Region Reflective method
        - `'differential_evolution'`: differential evolution
        - `'brute'`: brute force method
        - `'basinhopping'`: basinhopping
        - `'ampgo'`: Adaptive Memory Programming for Global Optimization
        - '`nelder`': Nelder-Mead
        - `'lbfgsb'`: L-BFGS-B
        - `'powell'`: Powell
        - `'cg'`: Conjugate-Gradient
        - `'newton'`: Newton-CG
        - `'cobyla'`: Cobyla
        - `'bfgs'`: BFGS
        - `'tnc'`: Truncated Newton
        - `'trust-ncg'`: Newton-CG trust-region
        - `'trust-exact'`: nearly exact trust-region (SciPy >= 1.0)
        - `'trust-krylov'`: Newton GLTR trust-region (SciPy >= 1.0)
        - `'trust-constr'`: trust-region for constrained optimization (SciPy >= 1.1)
        - `'dogleg'`: Dog-leg trust-region
        - `'slsqp'`: Sequential Linear Squares Programming
        - `'emcee'`: Maximum likelihood via Monte-Carlo Markov Chain
        - `'shgo'`: Simplicial Homology Global Optimization (SciPy >= 1.2)
        - `'dual_annealing'`: Dual Annealing optimization (SciPy >= 1.2)

        In most cases, these methods wrap and use the method of the same
        name from `scipy.optimize`, or use `scipy.optimize.minimize` with
        the same `method` argument.  Thus '`leastsq`' will use
        `scipy.optimize.leastsq`, while '`powell`' will use
        `scipy.optimize.minimizer(..., method='powell')`

        For more details on the fitting methods please refer to the
        `SciPy docs <https://docs.scipy.org/doc/scipy/reference/optimize.html>`__.

    args : tuple, optional
        Positional arguments to pass to `fcn`.
    kws : dict, optional
        Keyword arguments to pass to `fcn`.
    iter_cb : callable, optional
        Function to be called at each fit iteration. This function should
        have the signature `iter_cb(params, iter, resid, *args, **kws)`,
        where `params` will have the current parameter values, `iter`
        the iteration number, `resid` the current residual array, and `*args`
        and `**kws` as passed to the objective function.
    scale_covar : bool, optional
        Whether to automatically scale the covariance matrix (default is True).
    nan_policy : str, optional
        Specifies action if `userfcn` (or a Jacobian) returns NaN
        values. One of:

        - 'raise' : a `ValueError` is raised
        - 'propagate' : the values returned from `userfcn` are un-altered
        - 'omit' : non-finite values are filtered

    reduce_fcn : str or callable, optional
        Function to convert a residual array to a scalar value for the scalar
        minimizers. See notes in `Minimizer`.
    calc_covar : bool, optional
        Whether to calculate the covariance matrix (default is True) for
        solvers other than `leastsq` and `least_squares`. Requires the
        `numdifftools` package to be installed.
    **fit_kws : dict, optional
        Options to pass to the minimizer being used.

    Returns
    -------
    :class:`MinimizerResult`
        Object containing the optimized parameter and several
        goodness-of-fit statistics.


    .. versionchanged:: 0.9.0
        Return value changed to :class:`MinimizerResult`.

    Notes
    -----
    The objective function should return the value to be minimized. For the
    Levenberg-Marquardt algorithm from leastsq(), this returned value must
    be an array, with a length greater than or equal to the number of
    fitting variables in the model. For the other methods, the return value
    can either be a scalar or an array. If an array is returned, the sum of
    squares of the array will be sent to the underlying fitting method,
    effectively doing a least-squares optimization of the return values.

    A common use for `args` and `kws` would be to pass in other
    data needed to calculate the residual, including such things as the
    data array, dependent variable, uncertainties in the data, and other
    data structures for the model calculation.

    On output, `params` will be unchanged.  The best-fit values and, where
    appropriate, estimated uncertainties and correlations, will all be
    contained in the returned :class:`MinimizerResult`.  See
    :ref:`fit-results-label` for further details.

    This function is simply a wrapper around :class:`Minimizer`
    and is equivalent to::

        fitter = Minimizer(fcn, params, fcn_args=args, fcn_kws=kws,
                           iter_cb=iter_cb, scale_covar=scale_covar,
                           nan_policy=nan_policy, reduce_fcn=reduce_fcn,
                           calc_covar=calc_covar, **fit_kws)
        fitter.minimize(method=method)

    """
    fitter = Minimizer(fcn, params, fcn_args=args, fcn_kws=kws,
                       iter_cb=iter_cb, scale_covar=scale_covar,
                       nan_policy=nan_policy, reduce_fcn=reduce_fcn,
                       calc_covar=calc_covar, **fit_kws)
    return fitter.minimize(method=method)
back to top