https://github.com/mozilla/gecko-dev
Raw File
Tip revision: 5b86cb847fb9988650d7b74accd00295af0517ea authored by Ryan VanderMeulen on 01 April 2014, 14:44:12 UTC
Merge b2g18 to v1.1hd. a=merge
Tip revision: 5b86cb8
nsFlexContainerFrame.cpp
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=2 et sw=2 tw=80: */

/* This Source Code is subject to the terms of the Mozilla Public License
 * version 2.0 (the "License"). You can obtain a copy of the License at
 * http://mozilla.org/MPL/2.0/. */

/* rendering object for CSS display: -moz-flex */

#include "nsFlexContainerFrame.h"
#include "nsLayoutUtils.h"
#include "nsPresContext.h"
#include "nsStyleContext.h"
#include "prlog.h"

using namespace mozilla::css;

#ifdef PR_LOGGING
static PRLogModuleInfo* nsFlexContainerFrameLM = PR_NewLogModule("nsFlexContainerFrame");
#endif /* PR_LOGGING */

// XXXdholbert Some of this helper-stuff should be separated out into a general
// "LogicalAxisUtils.h" helper.  Should that be a class, or a namespace (under
// what super-namespace?), or what?

// Helper enums
// ============

// Represents a physical orientation for an axis.
// The directional suffix indicates the direction in which the axis *grows*.
// So e.g. eAxis_LR means a horizontal left-to-right axis, whereas eAxis_BT
// means a vertical bottom-to-top axis.
// NOTE: The order here is important -- these values are used as indices into
// the static array 'kAxisOrientationToSidesMap', defined below.
enum AxisOrientationType {
  eAxis_LR,
  eAxis_RL,
  eAxis_TB,
  eAxis_BT,
  eNumAxisOrientationTypes // For sizing arrays that use these values as indices
};

// Represents one or the other extreme of an axis (e.g. for the main axis, the
// main-start vs. main-end edge.
// NOTE: The order here is important -- these values are used as indices into
// the sub-arrays in 'kAxisOrientationToSidesMap', defined below.
enum AxisEdgeType {
  eAxisEdge_Start,
  eAxisEdge_End,
  eNumAxisEdges // For sizing arrays that use these values as indices
};

// This array maps each axis orientation to a pair of corresponding
// [start, end] physical mozilla::css::Side values.
static const Side
kAxisOrientationToSidesMap[eNumAxisOrientationTypes][eNumAxisEdges] = {
  { eSideLeft,   eSideRight  },  // eAxis_LR
  { eSideRight,  eSideLeft   },  // eAxis_RL
  { eSideTop,    eSideBottom },  // eAxis_TB
  { eSideBottom, eSideTop }      // eAxis_BT
};

// Helper structs / classes / methods
// ==================================

// Indicates whether advancing along the given axis is equivalent to
// increasing our X or Y position (as opposed to decreasing it).
static inline bool
AxisGrowsInPositiveDirection(AxisOrientationType aAxis)
{
  return eAxis_LR == aAxis || eAxis_TB == aAxis;
}

// Indicates whether the given axis is horizontal.
static inline bool
IsAxisHorizontal(AxisOrientationType aAxis)
{
  return eAxis_LR == aAxis || eAxis_RL == aAxis;
}

// Given an AxisOrientationType, returns the "reverse" AxisOrientationType
// (in the same dimension, but the opposite direction)
static inline AxisOrientationType
GetReverseAxis(AxisOrientationType aAxis)
{
  AxisOrientationType reversedAxis;

  if (aAxis % 2 == 0) {
    // even enum value. Add 1 to reverse.
    reversedAxis = AxisOrientationType(aAxis + 1);
  } else {
    // odd enum value. Subtract 1 to reverse.
    reversedAxis = AxisOrientationType(aAxis - 1);
  }

  // Check that we're still in the enum's valid range
  MOZ_ASSERT(reversedAxis >= eAxis_LR &&
             reversedAxis <= eAxis_BT);

  return reversedAxis;
}

// Returns aFrame's computed value for 'height' or 'width' -- whichever is in
// the same dimension as aAxis.
static inline const nsStyleCoord&
GetSizePropertyForAxis(const nsIFrame* aFrame, AxisOrientationType aAxis)
{
  const nsStylePosition* stylePos = aFrame->GetStylePosition();

  return IsAxisHorizontal(aAxis) ?
    stylePos->mWidth :
    stylePos->mHeight;
}

static nscoord
MarginComponentForSide(const nsMargin& aMargin, Side aSide)
{
  switch (aSide) {
    case eSideLeft:
      return aMargin.left;
    case eSideRight:
      return aMargin.right;
    case eSideTop:
      return aMargin.top;
    case eSideBottom:
      return aMargin.bottom;
  }

  NS_NOTREACHED("unexpected Side enum");
  return aMargin.left; // have to return something
                       // (but something's busted if we got here)
}

static nscoord&
MarginComponentForSide(nsMargin& aMargin, Side aSide)
{
  switch (aSide) {
    case eSideLeft:
      return aMargin.left;
    case eSideRight:
      return aMargin.right;
    case eSideTop:
      return aMargin.top;
    case eSideBottom:
      return aMargin.bottom;
  }

  NS_NOTREACHED("unexpected Side enum");
  return aMargin.left; // have to return something
                       // (but something's busted if we got here)
}

// Encapsulates our flex container's main & cross axes.
NS_STACK_CLASS class FlexboxAxisTracker {
public:
  FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame);

  // Accessors:
  AxisOrientationType GetMainAxis() const  { return mMainAxis;  }
  AxisOrientationType GetCrossAxis() const { return mCrossAxis; }

  nscoord GetMainComponent(const nsSize& aSize) const {
    return IsAxisHorizontal(mMainAxis) ?
      aSize.width : aSize.height;
  }
  int32_t GetMainComponent(const nsIntSize& aIntSize) const {
    return IsAxisHorizontal(mMainAxis) ?
      aIntSize.width : aIntSize.height;
  }
  nscoord GetMainComponent(const nsHTMLReflowMetrics& aMetrics) const {
    return IsAxisHorizontal(mMainAxis) ?
      aMetrics.width : aMetrics.height;
  }

  nscoord GetCrossComponent(const nsSize& aSize) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aSize.width : aSize.height;
  }
  int32_t GetCrossComponent(const nsIntSize& aIntSize) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aIntSize.width : aIntSize.height;
  }
  nscoord GetCrossComponent(const nsHTMLReflowMetrics& aMetrics) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aMetrics.width : aMetrics.height;
  }

  nscoord GetMarginSizeInMainAxis(const nsMargin& aMargin) const {
    return IsAxisHorizontal(mMainAxis) ?
      aMargin.LeftRight() :
      aMargin.TopBottom();
  }
  nscoord GetMarginSizeInCrossAxis(const nsMargin& aMargin) const {
    return IsAxisHorizontal(mCrossAxis) ?
      aMargin.LeftRight() :
      aMargin.TopBottom();
  }

  nsPoint PhysicalPositionFromLogicalPosition(nscoord aMainPosn,
                                              nscoord aCrossPosn) const {
    return IsAxisHorizontal(mMainAxis) ?
      nsPoint(aMainPosn, aCrossPosn) :
      nsPoint(aCrossPosn, aMainPosn);
  }
  nsSize PhysicalSizeFromLogicalSizes(nscoord aMainSize,
                                      nscoord aCrossSize) const {
    return IsAxisHorizontal(mMainAxis) ?
      nsSize(aMainSize, aCrossSize) :
      nsSize(aCrossSize, aMainSize);
  }

private:
  AxisOrientationType mMainAxis;
  AxisOrientationType mCrossAxis;
};

// Encapsulates a frame for a flex item, with enough information for us to
// sort by 'order' (and by the frame's actual index inside the parent's
// child-frames array, among frames with the same 'order').
class SortableFrame {
public:
  SortableFrame(nsIFrame* aFrame,
                int32_t aOrderValue,
                uint32_t aIndexInFrameList)
  : mFrame(aFrame),
    mOrderValue(aOrderValue),
    mIndexInFrameList(aIndexInFrameList)
  {
    MOZ_ASSERT(aFrame, "expecting a non-null child frame");
  }

  // Implement operator== and operator< so that we can use nsDefaultComparator
  bool operator==(const SortableFrame& rhs) const {
    MOZ_ASSERT(mFrame != rhs.mFrame ||
               (mOrderValue == rhs.mOrderValue &&
                mIndexInFrameList == rhs.mIndexInFrameList),
               "if frames are equal, the other member data should be too");
    return mFrame == rhs.mFrame;
  }

  bool operator<(const SortableFrame& rhs) const {
    if (mOrderValue == rhs.mOrderValue) {
      return mIndexInFrameList < rhs.mIndexInFrameList;
    }
    return mOrderValue < rhs.mOrderValue;
  }

  // Accessor for the frame
  inline nsIFrame* Frame() const { return mFrame; }

protected:
  nsIFrame* const mFrame;     // The flex item's frame
  int32_t   const mOrderValue; // mFrame's computed value of 'order' property
  uint32_t  const mIndexInFrameList; // mFrame's idx in parent's child frames
};

// Represents a flex item.
// Includes the various pieces of input that the Flexbox Layout Algorithm uses
// to resolve a flexible width.
class FlexItem {
public:
  FlexItem(nsIFrame* aChildFrame,
           float aFlexGrow, float aFlexShrink, nscoord aMainBaseSize,
           nscoord aMainMinSize, nscoord aMainMaxSize,
           nscoord aCrossMinSize, nscoord aCrossMaxSize,
           nsMargin aMargin, nsMargin aBorderPadding,
           const FlexboxAxisTracker& aAxisTracker);

  // Accessors
  nsIFrame* Frame() const          { return mFrame; }
  nscoord GetFlexBaseSize() const  { return mFlexBaseSize; }

  nscoord GetMainMinSize() const   { return mMainMinSize; }
  nscoord GetMainMaxSize() const   { return mMainMaxSize; }

  // Note: These return the main-axis position and size of our *content box*.
  nscoord GetMainSize() const      { return mMainSize; }
  nscoord GetMainPosition() const  { return mMainPosn; }

  nscoord GetCrossMinSize() const  { return mCrossMinSize; }
  nscoord GetCrossMaxSize() const  { return mCrossMaxSize; }

  // Note: These return the cross-axis position and size of our *content box*.
  nscoord GetCrossSize() const     { return mCrossSize;  }
  nscoord GetCrossPosition() const { return mCrossPosn; }

  nscoord GetAscent() const        { return mAscent; }

  float GetShareOfFlexWeightSoFar() const { return mShareOfFlexWeightSoFar; }

  bool IsFrozen() const            { return mIsFrozen; }

  bool HadMinViolation() const     { return mHadMinViolation; }
  bool HadMaxViolation() const     { return mHadMaxViolation; }

  // Indicates whether this item's cross-size has been stretched (from having
  // "align-self: stretch" with an auto cross-size and no auto margins in the
  // cross axis).
  bool IsStretched() const         { return mIsStretched; }

  uint8_t GetAlignSelf() const     { return mAlignSelf; }

  // Returns the flex weight that we should use in the "resolving flexible
  // lengths" algorithm.  If we've got a positive amount of free space, we use
  // the flex-grow weight; otherwise, we use the "scaled flex shrink weight"
  // (scaled by our flex base size)
  float GetFlexWeightToUse(bool aHavePositiveFreeSpace)
  {
    if (IsFrozen()) {
      return 0.0f;
    }

    return aHavePositiveFreeSpace ?
      mFlexGrow :
      mFlexShrink * mFlexBaseSize;
  }

  // Getters for margin:
  // ===================
  const nsMargin& GetMargin() const { return mMargin; }

  // Returns the margin component for a given mozilla::css::Side
  nscoord GetMarginComponentForSide(Side aSide) const
  { return MarginComponentForSide(mMargin, aSide); }

  // Returns the total space occupied by this item's margins in the given axis
  nscoord GetMarginSizeInAxis(AxisOrientationType aAxis) const
  {
    Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
    Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
    return GetMarginComponentForSide(startSide) +
      GetMarginComponentForSide(endSide);
  }

  // Getters for border/padding
  // ==========================
  // Returns the border+padding component for a given mozilla::css::Side
  nscoord GetBorderPaddingComponentForSide(Side aSide) const
  { return MarginComponentForSide(mBorderPadding, aSide); }

  // Returns the total space occupied by this item's borders and padding in
  // the given axis
  nscoord GetBorderPaddingSizeInAxis(AxisOrientationType aAxis) const
  {
    Side startSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_Start];
    Side endSide = kAxisOrientationToSidesMap[aAxis][eAxisEdge_End];
    return GetBorderPaddingComponentForSide(startSide) +
      GetBorderPaddingComponentForSide(endSide);
  }

  // Getter for combined margin/border/padding
  // =========================================
  // Returns the total space occupied by this item's margins, borders and
  // padding in the given axis
  nscoord GetMarginBorderPaddingSizeInAxis(AxisOrientationType aAxis) const
  {
    return GetMarginSizeInAxis(aAxis) + GetBorderPaddingSizeInAxis(aAxis);
  }

  // Setters
  // =======

  // Setters used while we're resolving flexible lengths
  // ---------------------------------------------------

  // Sets the main-size of our flex item's content-box.
  void SetMainSize(nscoord aNewMainSize)
  {
    MOZ_ASSERT(!mIsFrozen, "main size shouldn't change after we're frozen");
    mMainSize = aNewMainSize;
  }

  void SetShareOfFlexWeightSoFar(float aNewShare)
  {
    MOZ_ASSERT(!mIsFrozen || aNewShare == 0.0f,
               "shouldn't be giving this item any share of the weight "
               "after it's frozen");
    mShareOfFlexWeightSoFar = aNewShare;
  }

  void Freeze() { mIsFrozen = true; }

  void SetHadMinViolation()
  {
    MOZ_ASSERT(!mIsFrozen,
               "shouldn't be changing main size & having violations "
               "after we're frozen");
    mHadMinViolation = true;
  }
  void SetHadMaxViolation()
  {
    MOZ_ASSERT(!mIsFrozen,
               "shouldn't be changing main size & having violations "
               "after we're frozen");
    mHadMaxViolation = true;
  }
  void ClearViolationFlags()
  { mHadMinViolation = mHadMaxViolation = false; }

  // Setters for values that are determined after we've resolved our main size
  // -------------------------------------------------------------------------

  // Sets the main-axis position of our flex item's content-box.
  // (This is the distance between the main-start edge of the flex container
  // and the main-start edge of the flex item's content-box.)
  void SetMainPosition(nscoord aPosn) {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mMainPosn  = aPosn;
  }

  // Sets the cross-size of our flex item's content-box.
  void SetCrossSize(nscoord aCrossSize) {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mCrossSize = aCrossSize;
  }

  // Sets the cross-axis position of our flex item's content-box.
  // (This is the distance between the cross-start edge of the flex container
  // and the cross-start edge of the flex item.)
  void SetCrossPosition(nscoord aPosn) {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mCrossPosn = aPosn;
  }

  void SetAscent(nscoord aAscent) {
    mAscent = aAscent;
  }

  void SetIsStretched() {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    mIsStretched = true;
  }

  // Setter for margin components (for resolving "auto" margins)
  void SetMarginComponentForSide(Side aSide, nscoord aLength)
  {
    MOZ_ASSERT(mIsFrozen, "main size should be resolved before this");
    MarginComponentForSide(mMargin, aSide) = aLength;
  }

  uint32_t GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const;

protected:
  // Our frame:
  nsIFrame* const mFrame;

  // Values that we already know in constructor: (and are hence mostly 'const')
  const float mFlexGrow;
  const float mFlexShrink;

  const nsMargin mBorderPadding;
  nsMargin mMargin; // non-const because we need to resolve auto margins

  const nscoord mFlexBaseSize;

  const nscoord mMainMinSize;
  const nscoord mMainMaxSize;
  const nscoord mCrossMinSize;
  const nscoord mCrossMaxSize;

  // Values that we compute after constructor:
  nscoord mMainSize;
  nscoord mMainPosn;
  nscoord mCrossSize;
  nscoord mCrossPosn;
  nscoord mAscent;

  // Temporary state, while we're resolving flexible widths (for our main size)
  // XXXdholbert To save space, we could use a union to make these variables
  // overlay the same memory as some other member vars that aren't touched
  // until after main-size has been resolved. In particular, these could share
  // memory with mMainPosn through mAscent, and mIsStretched.
  float mShareOfFlexWeightSoFar;
  bool mIsFrozen;
  bool mHadMinViolation;
  bool mHadMaxViolation;

  // Misc:
  bool mIsStretched; // See IsStretched() documentation
  uint8_t mAlignSelf; // My "align-self" computed value (with "auto"
                      // swapped out for parent"s "align-items" value,
                      // in our constructor).
};

bool
nsFlexContainerFrame::IsHorizontal()
{
  const FlexboxAxisTracker axisTracker(this);
  return IsAxisHorizontal(axisTracker.GetMainAxis());
}

nsresult
nsFlexContainerFrame::AppendFlexItemForChild(
  nsPresContext* aPresContext,
  nsIFrame*      aChildFrame,
  const nsHTMLReflowState& aParentReflowState,
  const FlexboxAxisTracker& aAxisTracker,
  nsTArray<FlexItem>& aFlexItems)
{
  // Create temporary reflow state just for sizing -- to get hypothetical
  // main-size and the computed values of min / max main-size property.
  // (This reflow state will _not_ be used for reflow.)
  nsHTMLReflowState childRS(aPresContext, aParentReflowState, aChildFrame,
                            nsSize(aParentReflowState.ComputedWidth(),
                                   aParentReflowState.ComputedHeight()));

  // MAIN SIZES (flex base size, min/max size)
  // -----------------------------------------
  nscoord flexBaseSize =
    aAxisTracker.GetMainComponent(nsSize(childRS.ComputedWidth(),
                                         childRS.ComputedHeight()));
  nscoord mainMinSize =
    aAxisTracker.GetMainComponent(nsSize(childRS.mComputedMinWidth,
                                         childRS.mComputedMinHeight));
  nscoord mainMaxSize =
    aAxisTracker.GetMainComponent(nsSize(childRS.mComputedMaxWidth,
                                         childRS.mComputedMaxHeight));
  // This is enforced by the nsHTMLReflowState where these values come from:
  MOZ_ASSERT(mainMinSize <= mainMaxSize, "min size is larger than max size");

  // SPECIAL MAIN-SIZING FOR VERTICAL FLEX CONTAINERS
  // If we're vertical and our main size ended up being unconstrained
  // (e.g. because we had height:auto), we need to instead use our
  // "max-content" height, which is what we get from reflowing into our
  // available width.  This is the same as our "min-content" height --
  // so if we have "min-height:auto", we need to use this value as our
  // min-height.
  if (!IsAxisHorizontal(aAxisTracker.GetMainAxis())) {
    bool isMainSizeAuto = (NS_UNCONSTRAINEDSIZE == flexBaseSize);
    bool isMainMinSizeAuto =
      (eStyleUnit_Auto ==
       aChildFrame->GetStylePosition()->mMinHeight.GetUnit());

    if (isMainSizeAuto || isMainMinSizeAuto) {
      // Give the item a special reflow with "mIsFlexContainerMeasuringHeight"
      // set.  This tells it to behave as if it had "height: auto", regardless
      // of what the "height" property is actually set to.
      nsHTMLReflowState
        childRSForMeasuringHeight(aPresContext, aParentReflowState,
                                  aChildFrame,
                                  nsSize(aParentReflowState.ComputedWidth(),
                                         NS_UNCONSTRAINEDSIZE),
                                  -1, -1, false);
      childRSForMeasuringHeight.mFlags.mIsFlexContainerMeasuringHeight = true;
      childRSForMeasuringHeight.Init(aPresContext);

      nsHTMLReflowMetrics childDesiredSize;
      nsReflowStatus childReflowStatus;
      nsresult rv = ReflowChild(aChildFrame, aPresContext,
                                childDesiredSize, childRSForMeasuringHeight,
                                0, 0, NS_FRAME_NO_MOVE_FRAME,
                                childReflowStatus);
      NS_ENSURE_SUCCESS(rv, rv);

      MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
                 "We gave flex item unconstrained available height, so it "
                 "should be complete");

      // Subtract border/padding in vertical axis, to get _just_
      // the effective computed value of the "height" property.
      nscoord childDesiredHeight = childDesiredSize.height -
        childRS.mComputedBorderPadding.TopBottom();
      childDesiredHeight = NS_MAX(0, childDesiredHeight);

      if (isMainSizeAuto) {
        flexBaseSize = childDesiredHeight;
      }
      if (isMainMinSizeAuto) {
        mainMinSize = childDesiredHeight;
        mainMaxSize = NS_MAX(mainMaxSize, mainMinSize);
      }
    }
  }

  // CROSS MIN/MAX SIZE
  // ------------------

  nscoord crossMinSize =
    aAxisTracker.GetCrossComponent(nsSize(childRS.mComputedMinWidth,
                                          childRS.mComputedMinHeight));
  nscoord crossMaxSize =
    aAxisTracker.GetCrossComponent(nsSize(childRS.mComputedMaxWidth,
                                          childRS.mComputedMaxHeight));

  // SPECIAL-CASE FOR WIDGET-IMPOSED SIZES
  // Check if we're a themed widget, in which case we might have a minimum
  // main & cross size imposed by our widget (which we can't go below), or
  // (more severe) our widget might have only a single valid size.
  bool isFixedSizeWidget = false;
  const nsStyleDisplay* disp = aChildFrame->GetStyleDisplay();
  if (aChildFrame->IsThemed(disp)) {
    nsIntSize widgetMinSize(0, 0);
    bool canOverride = true;
    aPresContext->GetTheme()->
      GetMinimumWidgetSize(childRS.rendContext, aChildFrame,
                           disp->mAppearance,
                           &widgetMinSize, &canOverride);

    nscoord widgetMainMinSize =
      aPresContext->DevPixelsToAppUnits(
        aAxisTracker.GetMainComponent(widgetMinSize));
    nscoord widgetCrossMinSize =
      aPresContext->DevPixelsToAppUnits(
        aAxisTracker.GetCrossComponent(widgetMinSize));

    // GMWS() returns border-box; we need content-box
    widgetMainMinSize -=
      aAxisTracker.GetMarginSizeInMainAxis(childRS.mComputedBorderPadding);
    widgetCrossMinSize -=
      aAxisTracker.GetMarginSizeInCrossAxis(childRS.mComputedBorderPadding);

    if (!canOverride) {
      // Fixed-size widget: freeze our main-size at the widget's mandated size.
      // (Set min and max main-sizes to that size, too, to keep us from
      // clamping to any other size later on.)
      flexBaseSize = mainMinSize = mainMaxSize = widgetMainMinSize;
      crossMinSize = crossMaxSize = widgetCrossMinSize;
      isFixedSizeWidget = true;
    } else {
      // Variable-size widget: ensure our min/max sizes are at least as large
      // as the widget's mandated minimum size, so we don't flex below that.
      mainMinSize = NS_MAX(mainMinSize, widgetMainMinSize);
      mainMaxSize = NS_MAX(mainMaxSize, widgetMainMinSize);

      crossMinSize = NS_MAX(crossMinSize, widgetCrossMinSize);
      crossMaxSize = NS_MAX(crossMaxSize, widgetCrossMinSize);
    }
  }

  // FLEX GROW & SHRINK WEIGHTS
  const nsStylePosition* stylePos = aChildFrame->GetStylePosition();
  float flexGrow   = stylePos->mFlexGrow;
  float flexShrink = stylePos->mFlexShrink;

  aFlexItems.AppendElement(FlexItem(aChildFrame,
                                    flexGrow, flexShrink, flexBaseSize,
                                    mainMinSize, mainMaxSize,
                                    crossMinSize, crossMaxSize,
                                    childRS.mComputedMargin,
                                    childRS.mComputedBorderPadding,
                                    aAxisTracker));

  // If we're inflexible, we can just freeze to our hypothetical main-size
  // up-front. Similarly, if we're a fixed-size widget, we only have one
  // valid size, so we freeze to keep ourselves from flexing.
  if (isFixedSizeWidget || (flexGrow == 0.0f && flexShrink == 0.0f)) {
    aFlexItems.LastElement().Freeze();
  }

  return NS_OK;
}

FlexItem::FlexItem(nsIFrame* aChildFrame,
                   float aFlexGrow, float aFlexShrink, nscoord aFlexBaseSize,
                   nscoord aMainMinSize,  nscoord aMainMaxSize,
                   nscoord aCrossMinSize, nscoord aCrossMaxSize,
                   nsMargin aMargin, nsMargin aBorderPadding,
                   const FlexboxAxisTracker& aAxisTracker)
  : mFrame(aChildFrame),
    mFlexGrow(aFlexGrow),
    mFlexShrink(aFlexShrink),
    mBorderPadding(aBorderPadding),
    mMargin(aMargin),
    mFlexBaseSize(aFlexBaseSize),
    mMainMinSize(aMainMinSize),
    mMainMaxSize(aMainMaxSize),
    mCrossMinSize(aCrossMinSize),
    mCrossMaxSize(aCrossMaxSize),
    // Init main-size to 'hypothetical main size', which is flex base size
    // clamped to [min,max] range:
    mMainSize(NS_CSS_MINMAX(aFlexBaseSize, aMainMinSize, aMainMaxSize)),
    mMainPosn(0),
    mCrossSize(0),
    mCrossPosn(0),
    mAscent(0),
    mShareOfFlexWeightSoFar(0.0f),
    mIsFrozen(false),
    mHadMinViolation(false),
    mHadMaxViolation(false),
    mIsStretched(false),
    mAlignSelf(aChildFrame->GetStylePosition()->mAlignSelf)
{
  MOZ_ASSERT(aChildFrame, "expecting a non-null child frame");

  // Assert that any "auto" margin components are set to 0.
  // (We'll resolve them later; until then, we want to treat them as 0-sized.)
#ifdef DEBUG
  {
    const nsStyleSides& styleMargin = mFrame->GetStyleMargin()->mMargin;
    NS_FOR_CSS_SIDES(side) {
      if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
        MOZ_ASSERT(GetMarginComponentForSide(side) == 0,
                   "Someone else tried to resolve our auto margin");
      }
    }
  }
#endif // DEBUG

  // Resolve "align-self: auto" to parent's "align-items" value.
  if (mAlignSelf == NS_STYLE_ALIGN_SELF_AUTO) {
    mAlignSelf = mFrame->GetParent()->GetStylePosition()->mAlignItems;
  }

  // If the flex item's inline axis is the same as the cross axis, then
  // 'align-self:baseline' is identical to 'flex-start'. If that's the case, we
  // just directly convert our align-self value here, so that we don't have to
  // handle this with special cases elsewhere.
  // Moreover: for the time being (until we support writing-modes),
  // all inline axes are horizontal -- so we can just check if the cross axis
  // is horizontal.
  // FIXME: Once we support writing-mode (vertical text), this IsAxisHorizontal
  // check won't be sufficient anymore -- we'll actually need to compare our
  // inline axis vs. the cross axis.
  if (mAlignSelf == NS_STYLE_ALIGN_ITEMS_BASELINE &&
      IsAxisHorizontal(aAxisTracker.GetCrossAxis())) {
    mAlignSelf = NS_STYLE_ALIGN_ITEMS_FLEX_START;
  }
}

uint32_t
FlexItem::GetNumAutoMarginsInAxis(AxisOrientationType aAxis) const
{
  uint32_t numAutoMargins = 0;
  const nsStyleSides& styleMargin = mFrame->GetStyleMargin()->mMargin;
  for (uint32_t i = 0; i < eNumAxisEdges; i++) {
    Side side = kAxisOrientationToSidesMap[aAxis][i];
    if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
      numAutoMargins++;
    }
  }

  // Mostly for clarity:
  MOZ_ASSERT(numAutoMargins <= 2,
             "We're just looking at one item along one dimension, so we "
             "should only have examined 2 margins");

  return numAutoMargins;
}

// Keeps track of our position along a particular axis (where a '0' position
// corresponds to the 'start' edge of that axis).
// This class shouldn't be instantiated directly -- rather, it should only be
// instantiated via its subclasses defined below.
NS_STACK_CLASS
class PositionTracker {
public:
  // Accessor for the current value of the position that we're tracking.
  inline nscoord GetPosition() const { return mPosition; }
  inline AxisOrientationType GetAxis() const { return mAxis; }

  // Advances our position across the start edge of the given margin, in the
  // axis we're tracking.
  void EnterMargin(const nsMargin& aMargin)
  {
    Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start];
    mPosition += MarginComponentForSide(aMargin, side);
  }

  // Advances our position across the end edge of the given margin, in the axis
  // we're tracking.
  void ExitMargin(const nsMargin& aMargin)
  {
    Side side = kAxisOrientationToSidesMap[mAxis][eAxisEdge_End];
    mPosition += MarginComponentForSide(aMargin, side);
  }

  // Advances our current position from the start side of a child frame's
  // border-box to the frame's upper or left edge (depending on our axis).
  // (Note that this is a no-op if our axis grows in positive direction.)
  void EnterChildFrame(nscoord aChildFrameSize)
  {
    if (!AxisGrowsInPositiveDirection(mAxis))
      mPosition += aChildFrameSize;
  }

  // Advances our current position from a frame's upper or left border-box edge
  // (whichever is in the axis we're tracking) to the 'end' side of the frame
  // in the axis that we're tracking. (Note that this is a no-op if our axis
  // grows in the negative direction.)
  void ExitChildFrame(nscoord aChildFrameSize)
  {
    if (AxisGrowsInPositiveDirection(mAxis))
      mPosition += aChildFrameSize;
  }

protected:
  // Protected constructor, to be sure we're only instantiated via a subclass.
  PositionTracker(AxisOrientationType aAxis)
    : mPosition(0),
      mAxis(aAxis)
  {}

private:
  // Private copy-constructor, since we don't want any instances of our
  // subclasses to be accidentally copied.
  PositionTracker(const PositionTracker& aOther)
    : mPosition(aOther.mPosition),
      mAxis(aOther.mAxis)
  {}

protected:
  // Member data:
  nscoord mPosition;               // The position we're tracking
  const AxisOrientationType mAxis; // The axis along which we're moving
};

// Tracks our position in the main axis, when we're laying out flex items.
NS_STACK_CLASS
class MainAxisPositionTracker : public PositionTracker {
public:
  MainAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                          const FlexboxAxisTracker& aAxisTracker,
                          const nsHTMLReflowState& aReflowState,
                          const nsTArray<FlexItem>& aItems);

  ~MainAxisPositionTracker() {
    MOZ_ASSERT(mNumPackingSpacesRemaining == 0,
               "miscounted the number of packing spaces");
    MOZ_ASSERT(mNumAutoMarginsInMainAxis == 0,
               "miscounted the number of auto margins");
  }

  // Advances past the packing space (if any) between two flex items
  void TraversePackingSpace();

  // If aItem has any 'auto' margins in the main axis, this method updates the
  // corresponding values in its margin.
  void ResolveAutoMarginsInMainAxis(FlexItem& aItem);

private:
  nscoord  mPackingSpaceRemaining;
  uint32_t mNumAutoMarginsInMainAxis;
  uint32_t mNumPackingSpacesRemaining;
  uint8_t  mJustifyContent;
};

// Utility class for managing our position along the cross axis along
// the whole flex container (at a higher level than a single line)
class SingleLineCrossAxisPositionTracker;
NS_STACK_CLASS
class CrossAxisPositionTracker : public PositionTracker {
public:
  CrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                           const FlexboxAxisTracker& aAxisTracker,
                           const nsHTMLReflowState& aReflowState);

  // XXXdholbert This probably needs a ResolveStretchedLines() method,
  // (which takes an array of SingleLineCrossAxisPositionTracker objects
  // and distributes an equal amount of space to each one).
  // For now, we just have Reflow directly call
  // SingleLineCrossAxisPositionTracker::SetLineCrossSize().
};

// Utility class for managing our position along the cross axis, *within* a
// single flex line.
NS_STACK_CLASS
class SingleLineCrossAxisPositionTracker : public PositionTracker {
public:
  SingleLineCrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                                     const FlexboxAxisTracker& aAxisTracker,
                                     const nsTArray<FlexItem>& aItems);

  void ComputeLineCrossSize(const nsTArray<FlexItem>& aItems);
  inline nscoord GetLineCrossSize() const { return mLineCrossSize; }

  // Used to override the flex line's size, for cases when the flex container is
  // single-line and has a fixed size, and also in cases where
  // "align-self: stretch" triggers some space-distribution between lines
  // (when we support that property).
  inline void SetLineCrossSize(nscoord aNewLineCrossSize) {
    mLineCrossSize = aNewLineCrossSize;
  }

  void ResolveStretchedCrossSize(FlexItem& aItem);
  void ResolveAutoMarginsInCrossAxis(FlexItem& aItem);

  void EnterAlignPackingSpace(const FlexItem& aItem);

  // Resets our position to the cross-start edge of this line.
  inline void ResetPosition() { mPosition = 0; }

private:
  // Returns the distance from the cross-start side of the given flex item's
  // margin-box to its baseline. (Used in baseline alignment.)
  nscoord GetBaselineOffsetFromCrossStart(const FlexItem& aItem) const;

  nscoord mLineCrossSize;

  // Largest distance from an item's cross-start margin-box edge to its
  // baseline.  Computed in ComputeLineCrossSize, and used for alignment of any
  // "align-self: baseline" items in this line (and possibly used for computing
  // the baseline of the flex container, as well).
  nscoord mCrossStartToFurthestBaseline;
};

//----------------------------------------------------------------------

// Frame class boilerplate
// =======================

NS_QUERYFRAME_HEAD(nsFlexContainerFrame)
  NS_QUERYFRAME_ENTRY(nsFlexContainerFrame)
NS_QUERYFRAME_TAIL_INHERITING(nsFlexContainerFrameSuper)

NS_IMPL_FRAMEARENA_HELPERS(nsFlexContainerFrame)

nsIFrame*
NS_NewFlexContainerFrame(nsIPresShell* aPresShell,
                         nsStyleContext* aContext)
{
  return new (aPresShell) nsFlexContainerFrame(aContext);
}

//----------------------------------------------------------------------

// nsFlexContainerFrame Method Implementations
// ===========================================

/* virtual */
nsFlexContainerFrame::~nsFlexContainerFrame()
{
}

/* virtual */
void
nsFlexContainerFrame::DestroyFrom(nsIFrame* aDestructRoot)
{
  DestroyAbsoluteFrames(aDestructRoot);
  nsFlexContainerFrameSuper::DestroyFrom(aDestructRoot);
}

/* virtual */
nsIAtom*
nsFlexContainerFrame::GetType() const
{
  return nsGkAtoms::flexContainerFrame;
}

#ifdef DEBUG
NS_IMETHODIMP
nsFlexContainerFrame::GetFrameName(nsAString& aResult) const
{
  return MakeFrameName(NS_LITERAL_STRING("FlexContainer"), aResult);
}
#endif // DEBUG

NS_IMETHODIMP
nsFlexContainerFrame::BuildDisplayList(nsDisplayListBuilder*   aBuilder,
                                       const nsRect&           aDirtyRect,
                                       const nsDisplayListSet& aLists)
{
  nsresult rv = DisplayBorderBackgroundOutline(aBuilder, aLists);
  NS_ENSURE_SUCCESS(rv, rv);

  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    rv = BuildDisplayListForChild(aBuilder, e.get(), aDirtyRect, aLists);
    NS_ENSURE_SUCCESS(rv, rv);
  }

  return NS_OK;
}

#ifdef DEBUG
// helper for the debugging method below
bool
FrameWantsToBeInAnonymousFlexItem(nsIFrame* aFrame)
{
  // Note: This needs to match the logic in
  // nsCSSFrameConstructor::FrameConstructionItem::NeedsAnonFlexItem()
  return (aFrame->IsFrameOfType(nsIFrame::eLineParticipant) ||
          nsGkAtoms::placeholderFrame == aFrame->GetType());
}

// Debugging method, to let us assert that our anonymous flex items are
// set up correctly -- in particular, we assert:
//  (1) we don't have any inline non-replaced children
//  (2) we don't have any consecutive anonymous flex items
//  (3) we don't have any empty anonymous flex items
//
// XXXdholbert This matches what nsCSSFrameConstructor currently does, and what
// the spec used to say.  However, the spec has now changed regarding what
// types of content get wrapped in an anonymous flexbox item.  The patch that
// implements those changes (in nsCSSFrameConstructor) will need to change
// this method as well.
void
nsFlexContainerFrame::SanityCheckAnonymousFlexItems() const
{
  bool prevChildWasAnonFlexItem = false;
  for (nsIFrame* child = mFrames.FirstChild(); child;
       child = child->GetNextSibling()) {
    MOZ_ASSERT(!FrameWantsToBeInAnonymousFlexItem(child),
               "frame wants to be inside an anonymous flex item, "
               "but it isn't");
    if (child->GetStyleContext()->GetPseudo() ==
        nsCSSAnonBoxes::anonymousFlexItem) {
      MOZ_ASSERT(!prevChildWasAnonFlexItem,
                 "two anon flex items in a row (shouldn't happen)");

      nsIFrame* firstWrappedChild = child->GetFirstPrincipalChild();
      MOZ_ASSERT(firstWrappedChild,
                 "anonymous flex item is empty (shouldn't happen)");
      prevChildWasAnonFlexItem = true;
    } else {
      prevChildWasAnonFlexItem = false;
    }
  }
}
#endif // DEBUG

// Based on the sign of aTotalViolation, this function freezes a subset of our
// flexible sizes, and restores the remaining ones to their initial pref sizes.
static void
FreezeOrRestoreEachFlexibleSize(
  const nscoord aTotalViolation,
  nsTArray<FlexItem>& aItems)
{
  enum FreezeType {
    eFreezeEverything,
    eFreezeMinViolations,
    eFreezeMaxViolations
  };

  FreezeType freezeType;
  if (aTotalViolation == 0) {
    freezeType = eFreezeEverything;
  } else if (aTotalViolation > 0) {
    freezeType = eFreezeMinViolations;
  } else { // aTotalViolation < 0
    freezeType = eFreezeMaxViolations;
  }

  for (uint32_t i = 0; i < aItems.Length(); i++) {
    FlexItem& item = aItems[i];
    MOZ_ASSERT(!item.HadMinViolation() || !item.HadMaxViolation(),
               "Can have either min or max violation, but not both");

    if (!item.IsFrozen()) {
      if (eFreezeEverything == freezeType ||
          (eFreezeMinViolations == freezeType && item.HadMinViolation()) ||
          (eFreezeMaxViolations == freezeType && item.HadMaxViolation())) {

        MOZ_ASSERT(item.GetMainSize() >= item.GetMainMinSize(),
                   "Freezing item at a size below its minimum");
        MOZ_ASSERT(item.GetMainSize() <= item.GetMainMaxSize(),
                   "Freezing item at a size above its maximum");

        item.Freeze();
      } // else, we'll reset this item's main size to its flex base size on the
        // next iteration of this algorithm.

      // Clear this item's violation(s), now that we've dealt with them
      item.ClearViolationFlags();
    }
  }
}

// Implementation of flexbox spec's "Determine sign of flexibility" step.
// NOTE: aTotalFreeSpace should already have the flex items' margin, border,
// & padding values subtracted out.
static bool
ShouldUseFlexGrow(nscoord aTotalFreeSpace,
                  nsTArray<FlexItem>& aItems)
{
  // NOTE: The FlexItem constructor sets its main-size to the
  // *hypothetical main size*, which is the flex base size, clamped
  // to the min/max range.  That's what we want here. Good.
  for (uint32_t i = 0; i < aItems.Length(); i++) {
    aTotalFreeSpace -= aItems[i].GetMainSize();
    if (aTotalFreeSpace <= 0) {
      return false;
    }
  }
  MOZ_ASSERT(aTotalFreeSpace > 0,
             "if we used up all the space, should've already returned");
  return true;
}

// Implementation of flexbox spec's "resolve the flexible lengths" algorithm.
// NOTE: aTotalFreeSpace should already have the flex items' margin, border,
// & padding values subtracted out, so that all we need to do is distribute the
// remaining free space among content-box sizes.  (The spec deals with
// margin-box sizes, but we can have fewer values in play & a simpler algorithm
// if we subtract margin/border/padding up front.)
void
nsFlexContainerFrame::ResolveFlexibleLengths(
  const FlexboxAxisTracker& aAxisTracker,
  nscoord aFlexContainerMainSize,
  nsTArray<FlexItem>& aItems)
{
  PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG, ("ResolveFlexibleLengths\n"));
  if (aItems.IsEmpty()) {
    return;
  }

  // Subtract space occupied by our items' margins/borders/padding, so we can
  // just be dealing with the space available for our flex items' content
  // boxes.
  nscoord spaceAvailableForFlexItemsContentBoxes = aFlexContainerMainSize;
  for (uint32_t i = 0; i < aItems.Length(); i++) {
    spaceAvailableForFlexItemsContentBoxes -=
      aItems[i].GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis());
  }

  // Determine whether we're going to be growing or shrinking items.
  bool havePositiveFreeSpace =
    ShouldUseFlexGrow(spaceAvailableForFlexItemsContentBoxes, aItems);

  // NOTE: I claim that this chunk of the algorithm (the looping part) needs to
  // run the loop at MOST aItems.Length() times.  This claim should hold up
  // because we'll freeze at least one item on each loop iteration, and once
  // we've run out of items to freeze, there's nothing left to do.  However,
  // in most cases, we'll break out of this loop long before we hit that many
  // iterations.
  for (uint32_t iterationCounter = 0;
       iterationCounter < aItems.Length(); iterationCounter++) {
    // Set every not-yet-frozen item's used main size to its
    // flex base size, and subtract all the used main sizes from our
    // total amount of space to determine the 'available free space'
    // (positive or negative) to be distributed among our flexible items.
    nscoord availableFreeSpace = spaceAvailableForFlexItemsContentBoxes;
    for (uint32_t i = 0; i < aItems.Length(); i++) {
      FlexItem& item = aItems[i];
      if (!item.IsFrozen()) {
        item.SetMainSize(item.GetFlexBaseSize());
      }
      availableFreeSpace -= item.GetMainSize();
    }

    PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG,
           (" available free space = %d\n", availableFreeSpace));

    // If sign of free space matches flexType, give each flexible
    // item a portion of availableFreeSpace.
    if ((availableFreeSpace > 0 && havePositiveFreeSpace) ||
        (availableFreeSpace < 0 && !havePositiveFreeSpace)) {

      // STRATEGY: On each item, we compute & store its "share" of the total
      // flex weight that we've seen so far:
      //   curFlexWeight / runningFlexWeightSum
      //
      // Then, when we go to actually distribute the space (in the next loop),
      // we can simply walk backwards through the elements and give each item
      // its "share" multiplied by the remaining available space.
      //
      // SPECIAL CASE: If the sum of the flex weights is larger than the
      // maximum representable float (overflowing to infinity), then we can't
      // sensibly divide out proportional shares anymore. In that case, we
      // simply treat the flex item(s) with the largest flex weights as if
      // their weights were infinite (dwarfing all the others), and we
      // distribute all of the available space among them.
      float runningFlexWeightSum = 0.0f;
      float largestFlexWeight = 0.0f;
      uint32_t numItemsWithLargestFlexWeight = 0;
      for (uint32_t i = 0; i < aItems.Length(); i++) {
        FlexItem& item = aItems[i];
        float curFlexWeight = item.GetFlexWeightToUse(havePositiveFreeSpace);
        MOZ_ASSERT(curFlexWeight >= 0.0f, "weights are non-negative");

        runningFlexWeightSum += curFlexWeight;
        if (NS_finite(runningFlexWeightSum)) {
          if (curFlexWeight == 0.0f) {
            item.SetShareOfFlexWeightSoFar(0.0f);
          } else {
            item.SetShareOfFlexWeightSoFar(curFlexWeight /
                                           runningFlexWeightSum);
          }
        } // else, the sum of weights overflows to infinity, in which
          // case we don't bother with "SetShareOfFlexWeightSoFar" since
          // we know we won't use it. (instead, we'll just give every
          // item with the largest flex weight an equal share of space.)

        // Update our largest-flex-weight tracking vars
        if (curFlexWeight > largestFlexWeight) {
          largestFlexWeight = curFlexWeight;
          numItemsWithLargestFlexWeight = 1;
        } else if (curFlexWeight == largestFlexWeight) {
          numItemsWithLargestFlexWeight++;
        }
      }

      if (runningFlexWeightSum != 0.0f) { // no distribution if no flexibility
        PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG,
               (" Distributing available space:"));
        for (uint32_t i = aItems.Length() - 1; i < aItems.Length(); --i) {
          FlexItem& item = aItems[i];

          if (!item.IsFrozen()) {
            // To avoid rounding issues, we compute the change in size for this
            // item, and then subtract it from the remaining available space.
            nscoord sizeDelta = 0;
            if (NS_finite(runningFlexWeightSum)) {
              float myShareOfRemainingSpace =
                item.GetShareOfFlexWeightSoFar();

              MOZ_ASSERT(myShareOfRemainingSpace >= 0.0f &&
                         myShareOfRemainingSpace <= 1.0f,
                         "my share should be nonnegative fractional amount");

              if (myShareOfRemainingSpace == 1.0f) {
                // (We special-case 1.0f to avoid float error from converting
                // availableFreeSpace from integer*1.0f --> float --> integer)
                sizeDelta = availableFreeSpace;
              } else if (myShareOfRemainingSpace > 0.0f) {
                sizeDelta = NSToCoordRound(availableFreeSpace *
                                           myShareOfRemainingSpace);
              }
            } else if (item.GetFlexWeightToUse(havePositiveFreeSpace) ==
                       largestFlexWeight) {
              // Total flexibility is infinite, so we're just distributing
              // the available space equally among the items that are tied for
              // having the largest weight (and this is one of those items).
              sizeDelta =
                NSToCoordRound(availableFreeSpace /
                               float(numItemsWithLargestFlexWeight));
              numItemsWithLargestFlexWeight--;
            }

            availableFreeSpace -= sizeDelta;

            item.SetMainSize(item.GetMainSize() + sizeDelta);
            PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG,
                   ("  child %d receives %d, for a total of %d\n",
                    i, sizeDelta, item.GetMainSize()));
          }
        }
      }
    }

    // Fix min/max violations:
    nscoord totalViolation = 0; // keeps track of adjustments for min/max
    PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG,
           (" Checking for violations:"));

    for (uint32_t i = 0; i < aItems.Length(); i++) {
      FlexItem& item = aItems[i];
      if (!item.IsFrozen()) {
        if (item.GetMainSize() < item.GetMainMinSize()) {
          // min violation
          totalViolation += item.GetMainMinSize() - item.GetMainSize();
          item.SetMainSize(item.GetMainMinSize());
          item.SetHadMinViolation();
        } else if (item.GetMainSize() > item.GetMainMaxSize()) {
          // max violation
          totalViolation += item.GetMainMaxSize() - item.GetMainSize();
          item.SetMainSize(item.GetMainMaxSize());
          item.SetHadMaxViolation();
        }
      }
    }

    FreezeOrRestoreEachFlexibleSize(totalViolation, aItems);

    PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG,
           (" Total violation: %d\n", totalViolation));

    if (totalViolation == 0) {
      break;
    }
  }

  // Post-condition: all lengths should've been frozen.
#ifdef DEBUG
  for (uint32_t i = 0; i < aItems.Length(); ++i) {
    MOZ_ASSERT(aItems[i].IsFrozen(),
               "All flexible lengths should've been resolved");
  }
#endif // DEBUG
}

const nsTArray<SortableFrame>
BuildSortedChildArray(const nsFrameList& aChildren)
{
  // NOTE: To benefit from Return Value Optimization, we must only return
  // this value:
  nsTArray<SortableFrame> sortedChildArray(aChildren.GetLength());

  // Throw all our children in the array...
  uint32_t indexInFrameList = 0;
  for (nsFrameList::Enumerator e(aChildren); !e.AtEnd(); e.Next()) {
    int32_t orderValue = e.get()->GetStylePosition()->mOrder;
    sortedChildArray.AppendElement(SortableFrame(e.get(), orderValue,
                                                 indexInFrameList));
    indexInFrameList++;
  }

  // ... and sort (by 'order' property)
  sortedChildArray.Sort();

  return sortedChildArray;
}

MainAxisPositionTracker::
  MainAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                          const FlexboxAxisTracker& aAxisTracker,
                          const nsHTMLReflowState& aReflowState,
                          const nsTArray<FlexItem>& aItems)
  : PositionTracker(aAxisTracker.GetMainAxis()),
    mNumAutoMarginsInMainAxis(0),
    mNumPackingSpacesRemaining(0)
{
  MOZ_ASSERT(aReflowState.frame == aFlexContainerFrame,
             "Expecting the reflow state for the flex container frame");

  // Step over flex container's own main-start border/padding.
  // XXXdholbert Check GetSkipSides() here when we support pagination.
  EnterMargin(aReflowState.mComputedBorderPadding);

  // Set up our state for managing packing space & auto margins.
  //   * If our main-size is unconstrained, then we just shrinkwrap our
  // contents, and we don't have any packing space.
  //   * Otherwise, we subtract our items' margin-box main-sizes from our
  // computed main-size to get our available packing space.
  mPackingSpaceRemaining =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.ComputedWidth(),
                                         aReflowState.ComputedHeight()));
  if (mPackingSpaceRemaining == NS_UNCONSTRAINEDSIZE) {
    mPackingSpaceRemaining = 0;
  } else {
    for (uint32_t i = 0; i < aItems.Length(); i++) {
      nscoord itemMarginBoxMainSize =
        aItems[i].GetMainSize() +
        aItems[i].GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis());
      mPackingSpaceRemaining -= itemMarginBoxMainSize;
    }
  }

  if (mPackingSpaceRemaining > 0) {
    for (uint32_t i = 0; i < aItems.Length(); i++) {
      mNumAutoMarginsInMainAxis += aItems[i].GetNumAutoMarginsInAxis(mAxis);
    }
  }

  mJustifyContent = aFlexContainerFrame->GetStylePosition()->mJustifyContent;
  // If packing space is negative, 'justify' behaves like 'start', and
  // 'distribute' behaves like 'center'.  In those cases, it's simplest to
  // just pretend we have a different 'justify-content' value and share code.
  if (mPackingSpaceRemaining < 0) {
    if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN) {
      mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_FLEX_START;
    } else if (mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND) {
      mJustifyContent = NS_STYLE_JUSTIFY_CONTENT_CENTER;
    }
  }

  // Figure out how much space we'll set aside for auto margins or
  // packing spaces, and advance past any leading packing-space.
  if (mNumAutoMarginsInMainAxis == 0 &&
      mPackingSpaceRemaining != 0 &&
      !aItems.IsEmpty()) {
    switch (mJustifyContent) {
      case NS_STYLE_JUSTIFY_CONTENT_FLEX_START:
        // All packing space should go at the end --> nothing to do here.
        break;
      case NS_STYLE_JUSTIFY_CONTENT_FLEX_END:
        // All packing space goes at the beginning
        mPosition += mPackingSpaceRemaining;
        break;
      case NS_STYLE_JUSTIFY_CONTENT_CENTER:
        // Half the packing space goes at the beginning
        mPosition += mPackingSpaceRemaining / 2;
        break;
      case NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN:
        MOZ_ASSERT(mPackingSpaceRemaining >= 0,
                   "negative packing space should make us use 'flex-start' "
                   "instead of 'space-between'");
        // 1 packing space between each flex item, no packing space at ends.
        mNumPackingSpacesRemaining = aItems.Length() - 1;
        break;
      case NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND:
        MOZ_ASSERT(mPackingSpaceRemaining >= 0,
                   "negative packing space should make us use 'center' "
                   "instead of 'space-around'");
        // 1 packing space between each flex item, plus half a packing space
        // at beginning & end.  So our number of full packing-spaces is equal
        // to the number of flex items.
        mNumPackingSpacesRemaining = aItems.Length();
        if (mNumPackingSpacesRemaining > 0) {
          // The edges (start/end) share one full packing space
          nscoord totalEdgePackingSpace =
            mPackingSpaceRemaining / mNumPackingSpacesRemaining;

          // ...and we'll use half of that right now, at the start
          mPosition += totalEdgePackingSpace / 2;
          // ...but we need to subtract all of it right away, so that we won't
          // hand out any of it to intermediate packing spaces.
          mPackingSpaceRemaining -= totalEdgePackingSpace;
          mNumPackingSpacesRemaining--;
        }
        break;
      default:
        MOZ_NOT_REACHED("Unexpected justify-content value");
    }
  }

  MOZ_ASSERT(mNumPackingSpacesRemaining == 0 ||
             mNumAutoMarginsInMainAxis == 0,
             "extra space should either go to packing space or to "
             "auto margins, but not to both");
}

void
MainAxisPositionTracker::ResolveAutoMarginsInMainAxis(FlexItem& aItem)
{
  if (mNumAutoMarginsInMainAxis) {
    const nsStyleSides& styleMargin = aItem.Frame()->GetStyleMargin()->mMargin;
    for (uint32_t i = 0; i < eNumAxisEdges; i++) {
      Side side = kAxisOrientationToSidesMap[mAxis][i];
      if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
        // NOTE: This integer math will skew the distribution of remainder
        // app-units towards the end, which is fine.
        nscoord curAutoMarginSize =
          mPackingSpaceRemaining / mNumAutoMarginsInMainAxis;

        MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
                   "Expecting auto margins to have value '0' before we "
                   "resolve them");
        aItem.SetMarginComponentForSide(side, curAutoMarginSize);

        mNumAutoMarginsInMainAxis--;
        mPackingSpaceRemaining -= curAutoMarginSize;
      }
    }
  }
}

void
MainAxisPositionTracker::TraversePackingSpace()
{
  if (mNumPackingSpacesRemaining) {
    MOZ_ASSERT(mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_BETWEEN ||
               mJustifyContent == NS_STYLE_JUSTIFY_CONTENT_SPACE_AROUND,
               "mNumPackingSpacesRemaining only applies for "
               "space-between/space-around");

    MOZ_ASSERT(mPackingSpaceRemaining >= 0,
               "ran out of packing space earlier than we expected");

    // NOTE: This integer math will skew the distribution of remainder
    // app-units towards the end, which is fine.
    nscoord curPackingSpace =
      mPackingSpaceRemaining / mNumPackingSpacesRemaining;

    mPosition += curPackingSpace;
    mNumPackingSpacesRemaining--;
    mPackingSpaceRemaining -= curPackingSpace;
  }
}

CrossAxisPositionTracker::
  CrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                           const FlexboxAxisTracker& aAxisTracker,
                           const nsHTMLReflowState& aReflowState)
    : PositionTracker(aAxisTracker.GetCrossAxis())
{
  // Step over flex container's cross-start border/padding.
  EnterMargin(aReflowState.mComputedBorderPadding);
}

SingleLineCrossAxisPositionTracker::
  SingleLineCrossAxisPositionTracker(nsFlexContainerFrame* aFlexContainerFrame,
                                     const FlexboxAxisTracker& aAxisTracker,
                                     const nsTArray<FlexItem>& aItems)
  : PositionTracker(aAxisTracker.GetCrossAxis()),
    mLineCrossSize(0),
    mCrossStartToFurthestBaseline(nscoord_MIN) // Starts at -infinity, and then
                                               // we progressively increase it.
{
}

void
SingleLineCrossAxisPositionTracker::
  ComputeLineCrossSize(const nsTArray<FlexItem>& aItems)
{
  // NOTE: mCrossStartToFurthestBaseline is a member var rather than a local
  // var, because we'll need it when we're baseline-aligning our children, and
  // we'd prefer to not have to recompute it.
  MOZ_ASSERT(mCrossStartToFurthestBaseline == nscoord_MIN,
             "Computing largest baseline offset more than once");

  nscoord crossEndToFurthestBaseline = nscoord_MIN;
  nscoord largestOuterCrossSize = 0;
  for (uint32_t i = 0; i < aItems.Length(); ++i) {
    const FlexItem& curItem = aItems[i];
    nscoord curOuterCrossSize = curItem.GetCrossSize() +
      curItem.GetMarginBorderPaddingSizeInAxis(mAxis);

    if (curItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE &&
        curItem.GetNumAutoMarginsInAxis(mAxis) == 0) {
      // FIXME: Once we support multi-line flexbox with "wrap-reverse", that'll
      // give us bottom-to-top cross axes. (But for now, we assume eAxis_TB.)
      // FIXME: Once we support "writing-mode", we'll have to do baseline
      // alignment in vertical flex containers here (w/ horizontal cross-axes).
      MOZ_ASSERT(mAxis == eAxis_TB,
                 "Only expecting to do baseline-alignment in horizontal "
                 "flex containers, with top-to-bottom cross axis");

      // Find distance from our item's cross-start and cross-end margin-box
      // edges to its baseline.
      //
      // Here's a diagram of a flex-item that we might be doing this on.
      // "mmm" is the margin-box, "bbb" is the border-box. The bottom of
      // the text "BASE" is the baseline.
      //
      // ---(cross-start)---
      //                ___              ___            ___
      //   mmmmmmmmmmmm  |                |margin-start  |
      //   m          m  |               _|_   ___       |
      //   m bbbbbbbb m  |curOuterCrossSize     |        |crossStartToBaseline
      //   m b      b m  |                      |ascent  |
      //   m b BASE b m  |                     _|_      _|_
      //   m b      b m  |                               |
      //   m bbbbbbbb m  |                               |crossEndToBaseline
      //   m          m  |                               |
      //   mmmmmmmmmmmm _|_                             _|_
      //
      // ---(cross-end)---
      //
      // We already have the curOuterCrossSize, margin-start, and the ascent.
      // * We can get crossStartToBaseline by adding margin-start + ascent.
      // * If we subtract that from the curOuterCrossSize, we get
      //   crossEndToBaseline.

      nscoord crossStartToBaseline = GetBaselineOffsetFromCrossStart(curItem);
      nscoord crossEndToBaseline = curOuterCrossSize - crossStartToBaseline;

      // Now, update our "largest" values for these (across all the flex items
      // in this flex line), so we can use them in computing mLineCrossSize
      // below:
      mCrossStartToFurthestBaseline = NS_MAX(mCrossStartToFurthestBaseline,
                                             crossStartToBaseline);
      crossEndToFurthestBaseline = NS_MAX(crossEndToFurthestBaseline,
                                          crossEndToBaseline);
    } else {
      largestOuterCrossSize = NS_MAX(largestOuterCrossSize, curOuterCrossSize);
    }
  }

  // The line's cross-size is the larger of:
  //  (a) [largest cross-start-to-baseline + largest baseline-to-cross-end] of
  //      all baseline-aligned items with no cross-axis auto margins...
  // and
  //  (b) largest cross-size of all other children.
  mLineCrossSize = NS_MAX(mCrossStartToFurthestBaseline +
                          crossEndToFurthestBaseline,
                          largestOuterCrossSize);
}

nscoord
SingleLineCrossAxisPositionTracker::
  GetBaselineOffsetFromCrossStart(const FlexItem& aItem) const
{
  Side crossStartSide = kAxisOrientationToSidesMap[mAxis][eAxisEdge_Start];

  // XXXdholbert This assumes cross axis is Top-To-Bottom.
  // For bottom-to-top support, probably want to make this depend on
  //   AxisGrowsInPositiveDirection(mAxis)
  return aItem.GetAscent() + aItem.GetMarginComponentForSide(crossStartSide);
}

void
SingleLineCrossAxisPositionTracker::
  ResolveStretchedCrossSize(FlexItem& aItem)
{
  // We stretch IFF we are align-self:stretch, have no auto margins in
  // cross axis, and have cross-axis size property == "auto". If any of those
  // conditions don't hold up, we can just return.
  if (aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_STRETCH ||
      aItem.GetNumAutoMarginsInAxis(mAxis) != 0 ||
      GetSizePropertyForAxis(aItem.Frame(), mAxis).GetUnit() !=
        eStyleUnit_Auto) {
    return;
  }

  // Reserve space for margins & border & padding, and then use whatever
  // remains as our item's cross-size (clamped to its min/max range).
  nscoord stretchedSize = mLineCrossSize -
    aItem.GetMarginBorderPaddingSizeInAxis(mAxis);

  stretchedSize = NS_CSS_MINMAX(stretchedSize,
                                aItem.GetCrossMinSize(),
                                aItem.GetCrossMaxSize());

  // Update the cross-size & make a note that it's stretched, so we know to
  // override the reflow state's computed cross-size in our final reflow.
  aItem.SetCrossSize(stretchedSize);
  aItem.SetIsStretched();
}

void
SingleLineCrossAxisPositionTracker::
  ResolveAutoMarginsInCrossAxis(FlexItem& aItem)
{
  // Subtract the space that our item is already occupying, to see how much
  // space (if any) is available for its auto margins.
  nscoord spaceForAutoMargins = mLineCrossSize -
    (aItem.GetCrossSize() + aItem.GetMarginBorderPaddingSizeInAxis(mAxis));

  if (spaceForAutoMargins <= 0) {
    return; // No available space  --> nothing to do
  }

  uint32_t numAutoMargins = aItem.GetNumAutoMarginsInAxis(mAxis);
  if (numAutoMargins == 0) {
    return; // No auto margins --> nothing to do.
  }

  // OK, we have at least one auto margin and we have some available space.
  // Give each auto margin a share of the space.
  const nsStyleSides& styleMargin = aItem.Frame()->GetStyleMargin()->mMargin;
  for (uint32_t i = 0; i < eNumAxisEdges; i++) {
    Side side = kAxisOrientationToSidesMap[mAxis][i];
    if (styleMargin.GetUnit(side) == eStyleUnit_Auto) {
      MOZ_ASSERT(aItem.GetMarginComponentForSide(side) == 0,
                 "Expecting auto margins to have value '0' before we "
                 "update them");

      // NOTE: integer divison is fine here; numAutoMargins is either 1 or 2.
      // If it's 2 & spaceForAutoMargins is odd, 1st margin gets smaller half.
      nscoord curAutoMarginSize = spaceForAutoMargins / numAutoMargins;
      aItem.SetMarginComponentForSide(side, curAutoMarginSize);
      numAutoMargins--;
      spaceForAutoMargins -= curAutoMarginSize;
    }
  }
}

void
SingleLineCrossAxisPositionTracker::
  EnterAlignPackingSpace(const FlexItem& aItem)
{
  // We don't do align-self alignment on items that have auto margins
  // in the cross axis.
  if (aItem.GetNumAutoMarginsInAxis(mAxis)) {
    return;
  }

  switch (aItem.GetAlignSelf()) {
    case NS_STYLE_ALIGN_ITEMS_FLEX_START:
    case NS_STYLE_ALIGN_ITEMS_STRETCH:
      // No space to skip over -- we're done.
      // NOTE: 'stretch' behaves like 'start' once we've stretched any
      // auto-sized items (which we've already done).
      break;
    case NS_STYLE_ALIGN_ITEMS_FLEX_END:
      mPosition +=
        mLineCrossSize -
        (aItem.GetCrossSize() +
         aItem.GetMarginBorderPaddingSizeInAxis(mAxis));
      break;
    case NS_STYLE_ALIGN_ITEMS_CENTER:
      // Note: If cross-size is odd, the "after" space will get the extra unit.
      mPosition +=
        (mLineCrossSize -
         (aItem.GetCrossSize() +
          aItem.GetMarginBorderPaddingSizeInAxis(mAxis))) / 2;
      break;
    case NS_STYLE_ALIGN_ITEMS_BASELINE:
      MOZ_ASSERT(mCrossStartToFurthestBaseline != nscoord_MIN,
                 "using uninitialized baseline offset");
      MOZ_ASSERT(mCrossStartToFurthestBaseline >=
                 GetBaselineOffsetFromCrossStart(aItem),
                 "failed at finding largest ascent");

      // Advance so that aItem's baseline is aligned with
      // largest baseline offset.
      mPosition += (mCrossStartToFurthestBaseline -
                    GetBaselineOffsetFromCrossStart(aItem));
      break;
    default:
      NS_NOTREACHED("Unexpected align-self value");
      break;
  }
}

FlexboxAxisTracker::FlexboxAxisTracker(nsFlexContainerFrame* aFlexContainerFrame)
{
  uint32_t flexDirection =
    aFlexContainerFrame->GetStylePosition()->mFlexDirection;
  uint32_t cssDirection =
    aFlexContainerFrame->GetStyleVisibility()->mDirection;

  MOZ_ASSERT(cssDirection == NS_STYLE_DIRECTION_LTR ||
             cssDirection == NS_STYLE_DIRECTION_RTL,
             "Unexpected computed value for 'direction' property");
  // (Not asserting for flexDirection here; it's checked by the switch below.)

  // These are defined according to writing-modes' definitions of
  // start/end (for the inline dimension) and before/after (for the block
  // dimension), here:
  //   http://www.w3.org/TR/css3-writing-modes/#logical-directions
  // (NOTE: I'm intentionally not calling this "inlineAxis"/"blockAxis", since
  // those terms have explicit definition in the writing-modes spec, which are
  // the opposite of how I'd be using them here.)
  // XXXdholbert Once we support the 'writing-mode' property, use its value
  // here to further customize inlineDimension & blockDimension.

  // Inline dimension ("start-to-end"):
  AxisOrientationType inlineDimension =
    cssDirection == NS_STYLE_DIRECTION_RTL ? eAxis_RL : eAxis_LR;

  // Block dimension ("before-to-after"):
  AxisOrientationType blockDimension = eAxis_TB;

  // Determine main axis:
  switch (flexDirection) {
    case NS_STYLE_FLEX_DIRECTION_ROW:
      mMainAxis = inlineDimension;
      break;
    case NS_STYLE_FLEX_DIRECTION_ROW_REVERSE:
      mMainAxis = GetReverseAxis(inlineDimension);
      break;
    case NS_STYLE_FLEX_DIRECTION_COLUMN:
      mMainAxis = blockDimension;
      break;
    case NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE:
      mMainAxis = GetReverseAxis(blockDimension);
      break;
    default:
      MOZ_NOT_REACHED("Unexpected computed value for 'flex-flow' property");
      mMainAxis = inlineDimension;
      break;
  }

  // Determine cross axis:
  // (This is set up so that a bogus |flexDirection| value will
  // give us blockDimension.
  if (flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN ||
      flexDirection == NS_STYLE_FLEX_DIRECTION_COLUMN_REVERSE) {
    mCrossAxis = inlineDimension;
  } else {
    mCrossAxis = blockDimension;
  }
      
  // FIXME: Once we support "flex-wrap", check if it's "wrap-reverse"
  // here to determine whether we should reverse mCrossAxis.
  MOZ_ASSERT(IsAxisHorizontal(mMainAxis) != IsAxisHorizontal(mCrossAxis),
             "main & cross axes should be in different dimensions");


  // NOTE: Right now, cross axis is never bottom-to-top.
  // The only way for it to be different would be if we used a vertical
  // "writing-mode" or if we had "flex-wrap: wrap-reverse" -- but we don't
  // support either of those yet, so that can't happen right now.
  // (When we add support for either of those properties, this assert will
  // no longer hold.)
  MOZ_ASSERT(mCrossAxis != eAxis_BT, "Not expecting bottom-to-top cross axis");
}

nsresult
nsFlexContainerFrame::GenerateFlexItems(
  nsPresContext* aPresContext,
  const nsHTMLReflowState& aReflowState,
  const FlexboxAxisTracker& aAxisTracker,
  nsTArray<FlexItem>& aFlexItems)
{
  MOZ_ASSERT(aFlexItems.IsEmpty(), "Expecting outparam to start out empty");

  // Sort by 'order' property:
  const nsTArray<SortableFrame> sortedChildren = BuildSortedChildArray(mFrames);

  // Build list of unresolved flex items:

  // XXXdholbert When we support multi-line, we  might want this to be a linked
  // list, so we can easily split into multiple lines.
  aFlexItems.SetCapacity(sortedChildren.Length());
  for (uint32_t i = 0; i < sortedChildren.Length(); ++i) {
    nsresult rv = AppendFlexItemForChild(aPresContext,
                                         sortedChildren[i].Frame(),
                                         aReflowState, aAxisTracker,
                                         aFlexItems);
    NS_ENSURE_SUCCESS(rv,rv);
  }

  return NS_OK;
}

// Computes the content-box main-size of our flex container.
nscoord
nsFlexContainerFrame::ComputeFlexContainerMainSize(
  const nsHTMLReflowState& aReflowState,
  const FlexboxAxisTracker& aAxisTracker,
  const nsTArray<FlexItem>& aItems)
{
  // If we've got a finite computed main-size, use that.
  nscoord mainSize =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.ComputedWidth(),
                                         aReflowState.ComputedHeight()));
  if (mainSize != NS_UNCONSTRAINEDSIZE) {
    return mainSize;
  }

  MOZ_ASSERT(!IsAxisHorizontal(aAxisTracker.GetMainAxis()),
             "Computed width should always be constrained, so horizontal "
             "flex containers should always have a constrained main-size");

  // Otherwise, use the sum of our items' hypothetical main sizes, clamped
  // to our computed min/max main-size properties.
  mainSize = 0;
  for (uint32_t i = 0; i < aItems.Length(); ++i) {
    mainSize +=
      aItems[i].GetMainSize() +
      aItems[i].GetMarginBorderPaddingSizeInAxis(aAxisTracker.GetMainAxis());
  }

  nscoord minMainSize =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.mComputedMinWidth,
                                         aReflowState.mComputedMinHeight));
  nscoord maxMainSize =
    aAxisTracker.GetMainComponent(nsSize(aReflowState.mComputedMaxWidth,
                                         aReflowState.mComputedMaxHeight));

  return NS_CSS_MINMAX(mainSize, minMainSize, maxMainSize);
}

void
nsFlexContainerFrame::PositionItemInMainAxis(
  MainAxisPositionTracker& aMainAxisPosnTracker,
  FlexItem& aItem)
{
  nscoord itemMainBorderBoxSize =
    aItem.GetMainSize() +
    aItem.GetBorderPaddingSizeInAxis(aMainAxisPosnTracker.GetAxis());

  // Resolve any main-axis 'auto' margins on aChild to an actual value.
  aMainAxisPosnTracker.ResolveAutoMarginsInMainAxis(aItem);

  // Advance our position tracker to child's upper-left content-box corner,
  // and use that as its position in the main axis.
  aMainAxisPosnTracker.EnterMargin(aItem.GetMargin());
  aMainAxisPosnTracker.EnterChildFrame(itemMainBorderBoxSize);

  aItem.SetMainPosition(aMainAxisPosnTracker.GetPosition());

  aMainAxisPosnTracker.ExitChildFrame(itemMainBorderBoxSize);
  aMainAxisPosnTracker.ExitMargin(aItem.GetMargin());
  aMainAxisPosnTracker.TraversePackingSpace();
}

nsresult
nsFlexContainerFrame::SizeItemInCrossAxis(
  nsPresContext* aPresContext,
  const FlexboxAxisTracker& aAxisTracker,
  const nsHTMLReflowState& aChildReflowState,
  FlexItem& aItem)
{
  // In vertical flexbox (with horizontal cross-axis), we can just trust the
  // reflow state's computed-width as our cross-size. We also don't need to
  // record the baseline because we'll have converted any "align-self:baseline"
  // items to be "align-self:flex-start" in the FlexItem constructor.
  // FIXME: Once we support writing-mode (vertical text), we will be able to
  // have baseline-aligned items in a vertical flexbox, and we'll need to
  // record baseline information here.
  if (IsAxisHorizontal(aAxisTracker.GetCrossAxis())) {
    MOZ_ASSERT(aItem.GetAlignSelf() != NS_STYLE_ALIGN_ITEMS_BASELINE,
               "In vert flex container, we depend on FlexItem constructor to "
               "convert 'align-self: baseline' to 'align-self: flex-start'");
    aItem.SetCrossSize(aChildReflowState.ComputedWidth());
    return NS_OK;
  }

  nsHTMLReflowMetrics childDesiredSize;
  nsReflowStatus childReflowStatus;
  nsresult rv = ReflowChild(aItem.Frame(), aPresContext,
                            childDesiredSize, aChildReflowState,
                            0, 0, NS_FRAME_NO_MOVE_FRAME,
                            childReflowStatus);
  NS_ENSURE_SUCCESS(rv, rv);

  // XXXdholbert Once we do pagination / splitting, we'll need to actually
  // handle incomplete childReflowStatuses. But for now, we give our kids
  // unconstrained available height, which means they should always complete.
  MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
             "We gave flex item unconstrained available height, so it "
             "should be complete");

  // Tell the child we're done with its initial reflow.
  // (Necessary for e.g. GetBaseline() to work below w/out asserting)
  rv = FinishReflowChild(aItem.Frame(), aPresContext,
                         &aChildReflowState, childDesiredSize, 0, 0, 0);
  NS_ENSURE_SUCCESS(rv, rv);

  // Save the sizing info that we learned from this reflow
  // -----------------------------------------------------

  // Tentatively accept the child's desired size, minus border/padding, as its
  // cross-size:
  MOZ_ASSERT(childDesiredSize.height >=
             aItem.GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis()),
             "Child should ask for at least enough space for border/padding");
  nscoord crossSize =
    aAxisTracker.GetCrossComponent(childDesiredSize) -
    aItem.GetBorderPaddingSizeInAxis(aAxisTracker.GetCrossAxis());
  aItem.SetCrossSize(crossSize);

  // If we need to do baseline-alignment, store the child's ascent.
  if (aItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_BASELINE) {
    if (childDesiredSize.ascent == nsHTMLReflowMetrics::ASK_FOR_BASELINE) {
      // Use GetFirstLineBaseline(), or just GetBaseline() if that fails.
      if (!nsLayoutUtils::GetFirstLineBaseline(aItem.Frame(),
                                               &childDesiredSize.ascent)) {
        childDesiredSize.ascent = aItem.Frame()->GetBaseline();
      }
    }
    aItem.SetAscent(childDesiredSize.ascent);
  }

  return NS_OK;
}

void
nsFlexContainerFrame::PositionItemInCrossAxis(
  nscoord aLineStartPosition,
  SingleLineCrossAxisPositionTracker& aLineCrossAxisPosnTracker,
  FlexItem& aItem)
{
  MOZ_ASSERT(aLineCrossAxisPosnTracker.GetPosition() == 0,
             "per-line cross-axis position tracker wasn't correctly reset");

  // Resolve any to-be-stretched cross-sizes & auto margins in cross axis.
  aLineCrossAxisPosnTracker.ResolveStretchedCrossSize(aItem);
  aLineCrossAxisPosnTracker.ResolveAutoMarginsInCrossAxis(aItem);

  // Compute the cross-axis position of this item
  nscoord itemCrossBorderBoxSize =
    aItem.GetCrossSize() +
    aItem.GetBorderPaddingSizeInAxis(aLineCrossAxisPosnTracker.GetAxis());
  aLineCrossAxisPosnTracker.EnterAlignPackingSpace(aItem);
  aLineCrossAxisPosnTracker.EnterMargin(aItem.GetMargin());
  aLineCrossAxisPosnTracker.EnterChildFrame(itemCrossBorderBoxSize);

  aItem.SetCrossPosition(aLineStartPosition +
                         aLineCrossAxisPosnTracker.GetPosition());

  // Back out to cross-axis edge of the line.
  aLineCrossAxisPosnTracker.ResetPosition();
}

NS_IMETHODIMP
nsFlexContainerFrame::Reflow(nsPresContext*           aPresContext,
                             nsHTMLReflowMetrics&     aDesiredSize,
                             const nsHTMLReflowState& aReflowState,
                             nsReflowStatus&          aStatus)
{
  DO_GLOBAL_REFLOW_COUNT("nsFlexContainerFrame");
  DISPLAY_REFLOW(aPresContext, this, aReflowState, aDesiredSize, aStatus);
  PR_LOG(nsFlexContainerFrameLM, PR_LOG_DEBUG,
         ("Reflow() for nsFlexContainerFrame %p\n", this));

  // We (and our children) can only depend on our ancestor's height if we have
  // a percent-height.  (There are actually other cases, too -- e.g. if our
  // parent is itself a vertical flex container and we're flexible -- but we'll
  // let our ancestors handle those sorts of cases.)
  if (GetStylePosition()->mHeight.HasPercent()) {
    AddStateBits(NS_FRAME_CONTAINS_RELATIVE_HEIGHT);
  }

#ifdef DEBUG
  SanityCheckAnonymousFlexItems();
#endif // DEBUG

  // If our subtree is dirty (i.e. some of our descendants have changed), we
  // reflow _all_ of our children.  We have to do this -- we can't just reflow
  // select children, as we would in other frame classes.  This is because flex
  // items' sizes (in both axes) are highly dependent on their siblings' sizes.
  bool shouldReflowChildren =
    NS_SUBTREE_DIRTY(this) || aReflowState.ShouldReflowAllKids();

  const FlexboxAxisTracker axisTracker(this);

  // Generate a list of our flex items (already sorted), and get our main
  // size (which may depend on those items).
  nsTArray<FlexItem> items;
  nsresult rv = GenerateFlexItems(aPresContext, aReflowState,
                                  axisTracker, items);
  NS_ENSURE_SUCCESS(rv, rv);

  // XXXdholbert FOR MULTI-LINE FLEX CONTAINERS: Do line-breaking here.
  // This would produce an array of arrays, or a list of arrays,
  // or something like that. (one list/array per line)

  nscoord flexContainerMainSize =
    ComputeFlexContainerMainSize(aReflowState, axisTracker, items);

  ResolveFlexibleLengths(axisTracker, flexContainerMainSize, items);

  // Our frame's main-size is the content-box size plus border and padding.
  nscoord frameMainSize = flexContainerMainSize +
    axisTracker.GetMarginSizeInMainAxis(aReflowState.mComputedBorderPadding);

  nscoord frameCrossSize;

  if (!shouldReflowChildren) {
    // Children don't need reflow --> assume our content-box size is the same
    // since our last reflow.
    frameCrossSize = mCachedContentBoxCrossSize +
      axisTracker.GetMarginSizeInCrossAxis(aReflowState.mComputedBorderPadding);
  } else {
    MainAxisPositionTracker mainAxisPosnTracker(this, axisTracker,
                                                aReflowState, items);

    // First loop: Compute main axis position & cross-axis size of each item
    for (uint32_t i = 0; i < items.Length(); ++i) {
      FlexItem& curItem = items[i];

      nsHTMLReflowState childReflowState(aPresContext, aReflowState,
                                         curItem.Frame(),
                                         nsSize(aReflowState.ComputedWidth(),
                                                NS_UNCONSTRAINEDSIZE));
      // Override computed main-size
      if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
        childReflowState.SetComputedWidth(curItem.GetMainSize());
      } else {
        childReflowState.SetComputedHeight(curItem.GetMainSize());
      }

      PositionItemInMainAxis(mainAxisPosnTracker, curItem);

      nsresult rv =
        SizeItemInCrossAxis(aPresContext, axisTracker,
                            childReflowState, curItem);
      NS_ENSURE_SUCCESS(rv, rv);
    }

    // SIZE & POSITION THE FLEX LINE (IN CROSS AXIS)
    // Set up state for cross-axis alignment, at a high level (outside the
    // scope of a particular flex line)
    CrossAxisPositionTracker
      crossAxisPosnTracker(this, axisTracker, aReflowState);

    // Set up state for cross-axis-positioning of children _within_ a single
    // flex line.
    SingleLineCrossAxisPositionTracker
      lineCrossAxisPosnTracker(this, axisTracker, items);

    lineCrossAxisPosnTracker.ComputeLineCrossSize(items);
    // XXXdholbert Once we've got multi-line flexbox support: here, after we've
    // computed the cross size of all lines, we need to check if if
    // 'align-content' is 'stretch' -- if it is, we need to give each line an
    // additional share of our flex container's desired cross-size. (if it's
    // not NS_AUTOHEIGHT and there's any cross-size left over to distribute)

    // Figure out our flex container's cross size
    mCachedContentBoxCrossSize =
      axisTracker.GetCrossComponent(nsSize(aReflowState.ComputedWidth(),
                                           aReflowState.ComputedHeight()));

    if (mCachedContentBoxCrossSize == NS_AUTOHEIGHT) {
      // unconstrained 'auto' cross-size: shrink-wrap our line(s)
      mCachedContentBoxCrossSize =
        lineCrossAxisPosnTracker.GetLineCrossSize();
    } else {
      // XXXdholbert When we support multi-line flex containers, we should
      // distribute any extra space among or between our lines here according
      // to 'align-content'. For now, we do the single-line special behavior:
      // "If the flex container has only a single line (even if it's a
      // multi-line flex container), the cross size of the flex line is the
      // flex container's inner cross size."
      lineCrossAxisPosnTracker.SetLineCrossSize(mCachedContentBoxCrossSize);
    }
    frameCrossSize = mCachedContentBoxCrossSize +
      axisTracker.GetMarginSizeInCrossAxis(aReflowState.mComputedBorderPadding);

    // XXXdholbert FOLLOW ACTUAL RULES FOR FLEX CONTAINER BASELINE
    // If we have any baseline-aligned items on first line, use their baseline.
    // ...ELSE if we have at least one flex item and our first flex item's
    //         baseline is parallel to main axis, then use that baseline.
    // ...ELSE use "after" edge of content box.
    // Default baseline: the "after" edge of content box. (Note: if we have any
    // flex items, they'll override this.)
    mCachedAscent = mCachedContentBoxCrossSize +
      aReflowState.mComputedBorderPadding.top;

    // Position the items in cross axis, within their line
    for (uint32_t i = 0; i < items.Length(); ++i) {
      PositionItemInCrossAxis(crossAxisPosnTracker.GetPosition(),
                              lineCrossAxisPosnTracker, items[i]);
    }

    // FINAL REFLOW: Give each child frame another chance to reflow, now that
    // we know its final size and position.
    for (uint32_t i = 0; i < items.Length(); ++i) {
      FlexItem& curItem = items[i];
      nsHTMLReflowState childReflowState(aPresContext, aReflowState,
                                         curItem.Frame(),
                                         nsSize(aReflowState.ComputedWidth(),
                                                NS_UNCONSTRAINEDSIZE));

      // Override computed main-size
      if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
        childReflowState.SetComputedWidth(curItem.GetMainSize());
      } else {
        childReflowState.SetComputedHeight(curItem.GetMainSize());
      }

      // Override reflow state's computed cross-size, for stretched items.
      if (curItem.IsStretched()) {
        MOZ_ASSERT(curItem.GetAlignSelf() == NS_STYLE_ALIGN_ITEMS_STRETCH,
                   "stretched item w/o 'align-self: stretch'?");
        if (IsAxisHorizontal(axisTracker.GetCrossAxis())) {
          childReflowState.SetComputedWidth(curItem.GetCrossSize());
        } else {
          childReflowState.SetComputedHeight(curItem.GetCrossSize());
        }
      }

      // XXXdholbert Might need to actually set the correct margins in the
      // reflow state at some point, so that they can be saved on the frame for
      // UsedMarginPropeorty().  Maybe doesn't matter though...?

      // XXXdholbert Assuming horizontal
      nscoord mainPosn = curItem.GetMainPosition();
      nscoord crossPosn = curItem.GetCrossPosition();
      if (!AxisGrowsInPositiveDirection(axisTracker.GetMainAxis())) {
        mainPosn = frameMainSize - mainPosn;
      }
      if (!AxisGrowsInPositiveDirection(axisTracker.GetCrossAxis())) {
        crossPosn = frameCrossSize - crossPosn;
      }

      nsPoint physicalPosn =
        axisTracker.PhysicalPositionFromLogicalPosition(mainPosn, crossPosn);

      nsHTMLReflowMetrics childDesiredSize;
      nsReflowStatus childReflowStatus;
      nsresult rv = ReflowChild(curItem.Frame(), aPresContext,
                                childDesiredSize, childReflowState,
                                physicalPosn.x, physicalPosn.y,
                                0, childReflowStatus);
      NS_ENSURE_SUCCESS(rv, rv);

      // XXXdholbert Once we do pagination / splitting, we'll need to actually
      // handle incomplete childReflowStatuses. But for now, we give our kids
      // unconstrained available height, which means they should always
      // complete.
      MOZ_ASSERT(NS_FRAME_IS_COMPLETE(childReflowStatus),
                 "We gave flex item unconstrained available height, so it "
                 "should be complete");

      // Apply CSS relative positioning
      const nsStyleDisplay* styleDisp = curItem.Frame()->GetStyleDisplay();
      if (NS_STYLE_POSITION_RELATIVE == styleDisp->mPosition) {
        physicalPosn.x += childReflowState.mComputedOffsets.left;
        physicalPosn.y += childReflowState.mComputedOffsets.top;
      }

      rv = FinishReflowChild(curItem.Frame(), aPresContext,
                             &childReflowState, childDesiredSize,
                             physicalPosn.x, physicalPosn.y, 0);
      NS_ENSURE_SUCCESS(rv, rv);
    }
  }

  // XXXdholbert This could be more elegant
  aDesiredSize.width =
    IsAxisHorizontal(axisTracker.GetMainAxis()) ?
    frameMainSize : frameCrossSize;
  aDesiredSize.height =
    IsAxisHorizontal(axisTracker.GetCrossAxis()) ?
    frameMainSize : frameCrossSize;

  aDesiredSize.ascent = mCachedAscent;

  // Overflow area = union(my overflow area, kids' overflow areas)
  aDesiredSize.SetOverflowAreasToDesiredBounds();
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    ConsiderChildOverflow(aDesiredSize.mOverflowAreas, e.get());
  }

  NS_FRAME_SET_TRUNCATION(aStatus, aReflowState, aDesiredSize)

  aStatus = NS_FRAME_COMPLETE;

  FinishReflowWithAbsoluteFrames(aPresContext, aDesiredSize,
                                 aReflowState, aStatus);

  return NS_OK;
}

/* virtual */ nscoord
nsFlexContainerFrame::GetMinWidth(nsRenderingContext* aRenderingContext)
{
  FlexboxAxisTracker axisTracker(this);

  nscoord minWidth = 0;
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    nscoord childMinWidth =
      nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(),
                                           nsLayoutUtils::MIN_WIDTH);
    if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
      minWidth += childMinWidth;
    } else {
      minWidth = NS_MAX(minWidth, childMinWidth);
    }
  }
  return minWidth;
}

/* virtual */ nscoord
nsFlexContainerFrame::GetPrefWidth(nsRenderingContext* aRenderingContext)
{
  // XXXdholbert Optimization: We could cache our intrinsic widths like
  // nsBlockFrame does (and return it early from this function if it's set).
  // Whenever anything happens that might change it, set it to
  // NS_INTRINSIC_WIDTH_UNKNOWN (like nsBlockFrame::MarkIntrinsicWidthsDirty
  // does)
  FlexboxAxisTracker axisTracker(this);

  nscoord prefWidth = 0;
  for (nsFrameList::Enumerator e(mFrames); !e.AtEnd(); e.Next()) {
    nscoord childPrefWidth =
      nsLayoutUtils::IntrinsicForContainer(aRenderingContext, e.get(),
                                           nsLayoutUtils::PREF_WIDTH);
    if (IsAxisHorizontal(axisTracker.GetMainAxis())) {
      prefWidth += childPrefWidth;
    } else {
      prefWidth = NS_MAX(prefWidth, childPrefWidth);
    }
  }
  return prefWidth;
}
back to top