https://github.com/facebook/rocksdb
Raw File
Tip revision: 97bf78721b7d9c1fa25e6a9b38b693d45e85196d authored by Jay Zhuang on 14 October 2020, 00:46:31 UTC
Update HISTORY.md and version.h for 6.13.3
Tip revision: 97bf787
xxhash.cc
//  Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
/*
*  xxHash - Fast Hash algorithm
*  Copyright (C) 2012-2016, Yann Collet
*
*  BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
*
*  Redistribution and use in source and binary forms, with or without
*  modification, are permitted provided that the following conditions are
*  met:
*
*  * Redistributions of source code must retain the above copyright
*  notice, this list of conditions and the following disclaimer.
*  * Redistributions in binary form must reproduce the above
*  copyright notice, this list of conditions and the following disclaimer
*  in the documentation and/or other materials provided with the
*  distribution.
*
*  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
*  "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
*  LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
*  A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
*  OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
*  SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
*  LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
*  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
*  THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
*  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
*  OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*  You can contact the author at :
*  - xxHash homepage: http://www.xxhash.com
*  - xxHash source repository : https://github.com/Cyan4973/xxHash
*/


/* since xxhash.c can be included (via XXH_INLINE_ALL),
 * it's good practice to protect it with guard
 * in case of multiples inclusions */
#ifndef XXHASH_C_01393879
#define XXHASH_C_01393879

/* *************************************
*  Tuning parameters
***************************************/
/*!XXH_FORCE_MEMORY_ACCESS :
 * By default, access to unaligned memory is controlled by `memcpy()`, which is safe and portable.
 * Unfortunately, on some target/compiler combinations, the generated assembly is sub-optimal.
 * The below switch allow to select different access method for improved performance.
 * Method 0 (default) : use `memcpy()`. Safe and portable.
 * Method 1 : `__packed` statement. It depends on compiler extension (ie, not portable).
 *            This method is safe if your compiler supports it, and *generally* as fast or faster than `memcpy`.
 * Method 2 : direct access. This method doesn't depend on compiler but violate C standard.
 *            It can generate buggy code on targets which do not support unaligned memory accesses.
 *            But in some circumstances, it's the only known way to get the most performance (ie GCC + ARMv6)
 * See http://stackoverflow.com/a/32095106/646947 for details.
 * Prefer these methods in priority order (0 > 1 > 2)
 */
#ifndef XXH_FORCE_MEMORY_ACCESS   /* can be defined externally, on command line for example */
#  if !defined(__clang__) && defined(__GNUC__) && defined(__ARM_FEATURE_UNALIGNED) && defined(__ARM_ARCH) && (__ARM_ARCH == 6)
#    define XXH_FORCE_MEMORY_ACCESS 2
#  elif !defined(__clang__) && ((defined(__INTEL_COMPILER) && !defined(_WIN32)) || \
  (defined(__GNUC__) && (defined(__ARM_ARCH) && __ARM_ARCH >= 7)))
#    define XXH_FORCE_MEMORY_ACCESS 1
#  endif
#endif

/*!XXH_ACCEPT_NULL_INPUT_POINTER :
 * If input pointer is NULL, xxHash default behavior is to dereference it, triggering a segfault.
 * When this macro is enabled, xxHash actively checks input for null pointer.
 * It it is, result for null input pointers is the same as a null-length input.
 */
#ifndef XXH_ACCEPT_NULL_INPUT_POINTER   /* can be defined externally */
#  define XXH_ACCEPT_NULL_INPUT_POINTER 0
#endif

/*!XXH_FORCE_ALIGN_CHECK :
 * This is a minor performance trick, only useful with lots of very small keys.
 * It means : check for aligned/unaligned input.
 * The check costs one initial branch per hash;
 * set it to 0 when the input is guaranteed to be aligned,
 * or when alignment doesn't matter for performance.
 */
#ifndef XXH_FORCE_ALIGN_CHECK /* can be defined externally */
#  if defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
#    define XXH_FORCE_ALIGN_CHECK 0
#  else
#    define XXH_FORCE_ALIGN_CHECK 1
#  endif
#endif

/*!XXH_REROLL:
 * Whether to reroll XXH32_finalize, and XXH64_finalize,
 * instead of using an unrolled jump table/if statement loop.
 *
 * This is automatically defined on -Os/-Oz on GCC and Clang. */
#ifndef XXH_REROLL
#  if defined(__OPTIMIZE_SIZE__)
#    define XXH_REROLL 1
#  else
#    define XXH_REROLL 0
#  endif
#endif

/* *************************************
*  Includes & Memory related functions
***************************************/
/*! Modify the local functions below should you wish to use some other memory routines
*   for malloc(), free() */
#include <stdlib.h>
static void* XXH_malloc(size_t s) { return malloc(s); }
static void  XXH_free  (void* p)  { free(p); }
/*! and for memcpy() */
#include <string.h>
static void* XXH_memcpy(void* dest, const void* src, size_t size) { return memcpy(dest,src,size); }

#include <limits.h>   /* ULLONG_MAX */

#ifndef XXH_STATIC_LINKING_ONLY
#define XXH_STATIC_LINKING_ONLY
#endif

#include "xxhash.h"

/* BEGIN RocksDB customizations */
#include "port/lang.h" /* for FALLTHROUGH_INTENDED, inserted as appropriate */
/* END RocksDB customizations */

/* *************************************
*  Compiler Specific Options
***************************************/
#ifdef _MSC_VER    /* Visual Studio */
#  pragma warning(disable : 4127)      /* disable: C4127: conditional expression is constant */
#  define XXH_FORCE_INLINE static __forceinline
#  define XXH_NO_INLINE static __declspec(noinline)
#else
#  if defined (__cplusplus) || defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L   /* C99 */
#    ifdef __GNUC__
#      define XXH_FORCE_INLINE static inline __attribute__((always_inline))
#      define XXH_NO_INLINE static __attribute__((noinline))
#    else
#      define XXH_FORCE_INLINE static inline
#      define XXH_NO_INLINE static
#    endif
#  else
#    define XXH_FORCE_INLINE static
#    define XXH_NO_INLINE static
#  endif /* __STDC_VERSION__ */
#endif



/* *************************************
*  Debug
***************************************/
/* DEBUGLEVEL is expected to be defined externally,
 * typically through compiler command line.
 * Value must be a number. */
#ifndef DEBUGLEVEL
#  define DEBUGLEVEL 0
#endif

#if (DEBUGLEVEL>=1)
#  include <assert.h>   /* note : can still be disabled with NDEBUG */
#  define XXH_ASSERT(c)   assert(c)
#else
#  define XXH_ASSERT(c)   ((void)0)
#endif

/* note : use after variable declarations */
#define XXH_STATIC_ASSERT(c)  { enum { XXH_sa = 1/(int)(!!(c)) }; }


/* *************************************
*  Basic Types
***************************************/
#if !defined (__VMS) \
 && (defined (__cplusplus) \
 || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
# include <stdint.h>
  typedef uint8_t  xxh_u8;
#else
  typedef unsigned char      xxh_u8;
#endif
typedef XXH32_hash_t xxh_u32;


/* ===   Memory access   === */

#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))

/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static xxh_u32 XXH_read32(const void* memPtr) { return *(const xxh_u32*) memPtr; }

#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))

/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { xxh_u32 u32; } __attribute__((packed)) unalign;
static xxh_u32 XXH_read32(const void* ptr) { return ((const unalign*)ptr)->u32; }

#else

/* portable and safe solution. Generally efficient.
 * see : http://stackoverflow.com/a/32095106/646947
 */
static xxh_u32 XXH_read32(const void* memPtr)
{
    xxh_u32 val;
    memcpy(&val, memPtr, sizeof(val));
    return val;
}

#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */


/* ===   Endianess   === */
typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;

/* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example on the compiler command line */
#ifndef XXH_CPU_LITTLE_ENDIAN
#  if defined(_WIN32) /* Windows is always little endian */ \
     || defined(__LITTLE_ENDIAN__) \
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
#    define XXH_CPU_LITTLE_ENDIAN 1
#  elif defined(__BIG_ENDIAN__) \
     || (defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)
#    define XXH_CPU_LITTLE_ENDIAN 0
#  else
static int XXH_isLittleEndian(void)
{
    const union { xxh_u32 u; xxh_u8 c[4]; } one = { 1 };   /* don't use static : performance detrimental  */
    return one.c[0];
}
#   define XXH_CPU_LITTLE_ENDIAN   XXH_isLittleEndian()
#  endif
#endif




/* ****************************************
*  Compiler-specific Functions and Macros
******************************************/
#define XXH_GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)

#ifndef __has_builtin
#  define __has_builtin(x) 0
#endif

#if !defined(NO_CLANG_BUILTIN) && __has_builtin(__builtin_rotateleft32) && __has_builtin(__builtin_rotateleft64)
#  define XXH_rotl32 __builtin_rotateleft32
#  define XXH_rotl64 __builtin_rotateleft64
/* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
#elif defined(_MSC_VER)
#  define XXH_rotl32(x,r) _rotl(x,r)
#  define XXH_rotl64(x,r) _rotl64(x,r)
#else
#  define XXH_rotl32(x,r) (((x) << (r)) | ((x) >> (32 - (r))))
#  define XXH_rotl64(x,r) (((x) << (r)) | ((x) >> (64 - (r))))
#endif

#if defined(_MSC_VER)     /* Visual Studio */
#  define XXH_swap32 _byteswap_ulong
#elif XXH_GCC_VERSION >= 403
#  define XXH_swap32 __builtin_bswap32
#else
static xxh_u32 XXH_swap32 (xxh_u32 x)
{
    return  ((x << 24) & 0xff000000 ) |
            ((x <<  8) & 0x00ff0000 ) |
            ((x >>  8) & 0x0000ff00 ) |
            ((x >> 24) & 0x000000ff );
}
#endif


/* ***************************
*  Memory reads
*****************************/
typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;

XXH_FORCE_INLINE xxh_u32 XXH_readLE32(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read32(ptr) : XXH_swap32(XXH_read32(ptr));
}

static xxh_u32 XXH_readBE32(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap32(XXH_read32(ptr)) : XXH_read32(ptr);
}

XXH_FORCE_INLINE xxh_u32
XXH_readLE32_align(const void* ptr, XXH_alignment align)
{
    if (align==XXH_unaligned) {
        return XXH_readLE32(ptr);
    } else {
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u32*)ptr : XXH_swap32(*(const xxh_u32*)ptr);
    }
}


/* *************************************
*  Misc
***************************************/
XXH_PUBLIC_API unsigned XXH_versionNumber (void) { return XXH_VERSION_NUMBER; }


/* *******************************************************************
*  32-bit hash functions
*********************************************************************/
static const xxh_u32 PRIME32_1 = 0x9E3779B1U;   /* 0b10011110001101110111100110110001 */
static const xxh_u32 PRIME32_2 = 0x85EBCA77U;   /* 0b10000101111010111100101001110111 */
static const xxh_u32 PRIME32_3 = 0xC2B2AE3DU;   /* 0b11000010101100101010111000111101 */
static const xxh_u32 PRIME32_4 = 0x27D4EB2FU;   /* 0b00100111110101001110101100101111 */
static const xxh_u32 PRIME32_5 = 0x165667B1U;   /* 0b00010110010101100110011110110001 */

static xxh_u32 XXH32_round(xxh_u32 acc, xxh_u32 input)
{
    acc += input * PRIME32_2;
    acc  = XXH_rotl32(acc, 13);
    acc *= PRIME32_1;
#if defined(__GNUC__) && defined(__SSE4_1__) && !defined(XXH_ENABLE_AUTOVECTORIZE)
    /* UGLY HACK:
     * This inline assembly hack forces acc into a normal register. This is the
     * only thing that prevents GCC and Clang from autovectorizing the XXH32 loop
     * (pragmas and attributes don't work for some resason) without globally
     * disabling SSE4.1.
     *
     * The reason we want to avoid vectorization is because despite working on
     * 4 integers at a time, there are multiple factors slowing XXH32 down on
     * SSE4:
     * - There's a ridiculous amount of lag from pmulld (10 cycles of latency on newer chips!)
     *   making it slightly slower to multiply four integers at once compared to four
     *   integers independently. Even when pmulld was fastest, Sandy/Ivy Bridge, it is
     *   still not worth it to go into SSE just to multiply unless doing a long operation.
     *
     * - Four instructions are required to rotate,
     *      movqda tmp,  v // not required with VEX encoding
     *      pslld  tmp, 13 // tmp <<= 13
     *      psrld  v,   19 // x >>= 19
     *      por    v,  tmp // x |= tmp
     *   compared to one for scalar:
     *      roll   v, 13    // reliably fast across the board
     *      shldl  v, v, 13 // Sandy Bridge and later prefer this for some reason
     *
     * - Instruction level parallelism is actually more beneficial here because the
     *   SIMD actually serializes this operation: While v1 is rotating, v2 can load data,
     *   while v3 can multiply. SSE forces them to operate together.
     *
     * How this hack works:
     * __asm__(""       // Declare an assembly block but don't declare any instructions
     *          :       // However, as an Input/Output Operand,
     *          "+r"    // constrain a read/write operand (+) as a general purpose register (r).
     *          (acc)   // and set acc as the operand
     * );
     *
     * Because of the 'r', the compiler has promised that seed will be in a
     * general purpose register and the '+' says that it will be 'read/write',
     * so it has to assume it has changed. It is like volatile without all the
     * loads and stores.
     *
     * Since the argument has to be in a normal register (not an SSE register),
     * each time XXH32_round is called, it is impossible to vectorize. */
    __asm__("" : "+r" (acc));
#endif
    return acc;
}

/* mix all bits */
static xxh_u32 XXH32_avalanche(xxh_u32 h32)
{
    h32 ^= h32 >> 15;
    h32 *= PRIME32_2;
    h32 ^= h32 >> 13;
    h32 *= PRIME32_3;
    h32 ^= h32 >> 16;
    return(h32);
}

#define XXH_get32bits(p) XXH_readLE32_align(p, align)

static xxh_u32
XXH32_finalize(xxh_u32 h32, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
#define PROCESS1               \
    h32 += (*ptr++) * PRIME32_5; \
    h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;

#define PROCESS4                         \
    h32 += XXH_get32bits(ptr) * PRIME32_3; \
    ptr+=4;                                \
    h32  = XXH_rotl32(h32, 17) * PRIME32_4 ;

    /* Compact rerolled version */
    if (XXH_REROLL) {
        len &= 15;
        while (len >= 4) {
            PROCESS4;
            len -= 4;
        }
        while (len > 0) {
            PROCESS1;
            --len;
        }
        return XXH32_avalanche(h32);
    } else {
         switch(len&15) /* or switch(bEnd - p) */ {
           case 12:      PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 8:       PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 4:       PROCESS4;
                         return XXH32_avalanche(h32);

           case 13:      PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 9:       PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 5:       PROCESS4;
                         PROCESS1;
                         return XXH32_avalanche(h32);

           case 14:      PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 10:      PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 6:       PROCESS4;
                         PROCESS1;
                         PROCESS1;
                         return XXH32_avalanche(h32);

           case 15:      PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 11:      PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 7:       PROCESS4;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 3:       PROCESS1;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 2:       PROCESS1;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 1:       PROCESS1;
                         FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 0:       return XXH32_avalanche(h32);
        }
        XXH_ASSERT(0);
        return h32;   /* reaching this point is deemed impossible */
    }
}

XXH_FORCE_INLINE xxh_u32
XXH32_endian_align(const xxh_u8* input, size_t len, xxh_u32 seed, XXH_alignment align)
{
    const xxh_u8* bEnd = input + len;
    xxh_u32 h32;

#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
    if (input==NULL) {
        len=0;
        bEnd=input=(const xxh_u8*)(size_t)16;
    }
#endif

    if (len>=16) {
        const xxh_u8* const limit = bEnd - 15;
        xxh_u32 v1 = seed + PRIME32_1 + PRIME32_2;
        xxh_u32 v2 = seed + PRIME32_2;
        xxh_u32 v3 = seed + 0;
        xxh_u32 v4 = seed - PRIME32_1;

        do {
            v1 = XXH32_round(v1, XXH_get32bits(input)); input += 4;
            v2 = XXH32_round(v2, XXH_get32bits(input)); input += 4;
            v3 = XXH32_round(v3, XXH_get32bits(input)); input += 4;
            v4 = XXH32_round(v4, XXH_get32bits(input)); input += 4;
        } while (input < limit);

        h32 = XXH_rotl32(v1, 1)  + XXH_rotl32(v2, 7)
            + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
    } else {
        h32  = seed + PRIME32_5;
    }

    h32 += (xxh_u32)len;

    return XXH32_finalize(h32, input, len&15, align);
}


XXH_PUBLIC_API XXH32_hash_t XXH32 (const void* input, size_t len, XXH32_hash_t seed)
{
#if 0
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    XXH32_state_t state;
    XXH32_reset(&state, seed);
    XXH32_update(&state, (const xxh_u8*)input, len);
    return XXH32_digest(&state);

#else

    if (XXH_FORCE_ALIGN_CHECK) {
        if ((((size_t)input) & 3) == 0) {   /* Input is 4-bytes aligned, leverage the speed benefit */
            return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
    }   }

    return XXH32_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);
#endif
}



/*======   Hash streaming   ======*/

XXH_PUBLIC_API XXH32_state_t* XXH32_createState(void)
{
    return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
{
    XXH_free(statePtr);
    return XXH_OK;
}

XXH_PUBLIC_API void XXH32_copyState(XXH32_state_t* dstState, const XXH32_state_t* srcState)
{
    memcpy(dstState, srcState, sizeof(*dstState));
}

XXH_PUBLIC_API XXH_errorcode XXH32_reset(XXH32_state_t* statePtr, XXH32_hash_t seed)
{
    XXH32_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
    memset(&state, 0, sizeof(state));
    state.v1 = seed + PRIME32_1 + PRIME32_2;
    state.v2 = seed + PRIME32_2;
    state.v3 = seed + 0;
    state.v4 = seed - PRIME32_1;
    /* do not write into reserved, planned to be removed in a future version */
    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved));
    return XXH_OK;
}


XXH_PUBLIC_API XXH_errorcode
XXH32_update(XXH32_state_t* state, const void* input, size_t len)
{
    if (input==NULL)
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
        return XXH_OK;
#else
        return XXH_ERROR;
#endif

    {   const xxh_u8* p = (const xxh_u8*)input;
        const xxh_u8* const bEnd = p + len;

        state->total_len_32 += (XXH32_hash_t)len;
        state->large_len |= (XXH32_hash_t)((len>=16) | (state->total_len_32>=16));

        if (state->memsize + len < 16)  {   /* fill in tmp buffer */
            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, len);
            state->memsize += (XXH32_hash_t)len;
            return XXH_OK;
        }

        if (state->memsize) {   /* some data left from previous update */
            XXH_memcpy((xxh_u8*)(state->mem32) + state->memsize, input, 16-state->memsize);
            {   const xxh_u32* p32 = state->mem32;
                state->v1 = XXH32_round(state->v1, XXH_readLE32(p32)); p32++;
                state->v2 = XXH32_round(state->v2, XXH_readLE32(p32)); p32++;
                state->v3 = XXH32_round(state->v3, XXH_readLE32(p32)); p32++;
                state->v4 = XXH32_round(state->v4, XXH_readLE32(p32));
            }
            p += 16-state->memsize;
            state->memsize = 0;
        }

        // uintptr_t casts added to avoid array-bounds error on
        // some inlined calls
        if ((uintptr_t)p <= (uintptr_t)bEnd - 16) {
            const uintptr_t limit = (uintptr_t)bEnd - 16;
            xxh_u32 v1 = state->v1;
            xxh_u32 v2 = state->v2;
            xxh_u32 v3 = state->v3;
            xxh_u32 v4 = state->v4;

            do {
                v1 = XXH32_round(v1, XXH_readLE32(p)); p+=4;
                v2 = XXH32_round(v2, XXH_readLE32(p)); p+=4;
                v3 = XXH32_round(v3, XXH_readLE32(p)); p+=4;
                v4 = XXH32_round(v4, XXH_readLE32(p)); p+=4;
            } while ((uintptr_t)p <= limit);

            state->v1 = v1;
            state->v2 = v2;
            state->v3 = v3;
            state->v4 = v4;
        }

        if (p < bEnd) {
            XXH_memcpy(state->mem32, p, (size_t)(bEnd-p));
            state->memsize = (unsigned)(bEnd-p);
        }
    }

    return XXH_OK;
}


XXH_PUBLIC_API XXH32_hash_t XXH32_digest (const XXH32_state_t* state)
{
    xxh_u32 h32;

    if (state->large_len) {
        h32 = XXH_rotl32(state->v1, 1)
            + XXH_rotl32(state->v2, 7)
            + XXH_rotl32(state->v3, 12)
            + XXH_rotl32(state->v4, 18);
    } else {
        h32 = state->v3 /* == seed */ + PRIME32_5;
    }

    h32 += state->total_len_32;

    return XXH32_finalize(h32, (const xxh_u8*)state->mem32, state->memsize, XXH_aligned);
}


/*======   Canonical representation   ======*/

/*! Default XXH result types are basic unsigned 32 and 64 bits.
*   The canonical representation follows human-readable write convention, aka big-endian (large digits first).
*   These functions allow transformation of hash result into and from its canonical format.
*   This way, hash values can be written into a file or buffer, remaining comparable across different systems.
*/

XXH_PUBLIC_API void XXH32_canonicalFromHash(XXH32_canonical_t* dst, XXH32_hash_t hash)
{
    XXH_STATIC_ASSERT(sizeof(XXH32_canonical_t) == sizeof(XXH32_hash_t));
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap32(hash);
    memcpy(dst, &hash, sizeof(*dst));
}

XXH_PUBLIC_API XXH32_hash_t XXH32_hashFromCanonical(const XXH32_canonical_t* src)
{
    return XXH_readBE32(src);
}


#ifndef XXH_NO_LONG_LONG

/* *******************************************************************
*  64-bit hash functions
*********************************************************************/

/*======   Memory access   ======*/

typedef XXH64_hash_t xxh_u64;


/*! XXH_REROLL_XXH64:
 * Whether to reroll the XXH64_finalize() loop.
 *
 * Just like XXH32, we can unroll the XXH64_finalize() loop. This can be a performance gain
 * on 64-bit hosts, as only one jump is required.
 *
 * However, on 32-bit hosts, because arithmetic needs to be done with two 32-bit registers,
 * and 64-bit arithmetic needs to be simulated, it isn't beneficial to unroll. The code becomes
 * ridiculously large (the largest function in the binary on i386!), and rerolling it saves
 * anywhere from 3kB to 20kB. It is also slightly faster because it fits into cache better
 * and is more likely to be inlined by the compiler.
 *
 * If XXH_REROLL is defined, this is ignored and the loop is always rerolled. */
#ifndef XXH_REROLL_XXH64
#  if (defined(__ILP32__) || defined(_ILP32)) /* ILP32 is often defined on 32-bit GCC family */ \
   || !(defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) /* x86-64 */ \
     || defined(_M_ARM64) || defined(__aarch64__) || defined(__arm64__) /* aarch64 */ \
     || defined(__PPC64__) || defined(__PPC64LE__) || defined(__ppc64__) || defined(__powerpc64__) /* ppc64 */ \
     || defined(__mips64__) || defined(__mips64)) /* mips64 */ \
   || (!defined(SIZE_MAX) || SIZE_MAX < ULLONG_MAX) /* check limits */
#    define XXH_REROLL_XXH64 1
#  else
#    define XXH_REROLL_XXH64 0
#  endif
#endif /* !defined(XXH_REROLL_XXH64) */

#if (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==2))

/* Force direct memory access. Only works on CPU which support unaligned memory access in hardware */
static xxh_u64 XXH_read64(const void* memPtr) { return *(const xxh_u64*) memPtr; }

#elif (defined(XXH_FORCE_MEMORY_ACCESS) && (XXH_FORCE_MEMORY_ACCESS==1))

/* __pack instructions are safer, but compiler specific, hence potentially problematic for some compilers */
/* currently only defined for gcc and icc */
typedef union { xxh_u32 u32; xxh_u64 u64; } __attribute__((packed)) unalign64;
static xxh_u64 XXH_read64(const void* ptr) { return ((const unalign64*)ptr)->u64; }

#else

/* portable and safe solution. Generally efficient.
 * see : http://stackoverflow.com/a/32095106/646947
 */

static xxh_u64 XXH_read64(const void* memPtr)
{
    xxh_u64 val;
    memcpy(&val, memPtr, sizeof(val));
    return val;
}

#endif   /* XXH_FORCE_DIRECT_MEMORY_ACCESS */

#if defined(_MSC_VER)     /* Visual Studio */
#  define XXH_swap64 _byteswap_uint64
#elif XXH_GCC_VERSION >= 403
#  define XXH_swap64 __builtin_bswap64
#else
static xxh_u64 XXH_swap64 (xxh_u64 x)
{
    return  ((x << 56) & 0xff00000000000000ULL) |
            ((x << 40) & 0x00ff000000000000ULL) |
            ((x << 24) & 0x0000ff0000000000ULL) |
            ((x << 8)  & 0x000000ff00000000ULL) |
            ((x >> 8)  & 0x00000000ff000000ULL) |
            ((x >> 24) & 0x0000000000ff0000ULL) |
            ((x >> 40) & 0x000000000000ff00ULL) |
            ((x >> 56) & 0x00000000000000ffULL);
}
#endif

XXH_FORCE_INLINE xxh_u64 XXH_readLE64(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_read64(ptr) : XXH_swap64(XXH_read64(ptr));
}

static xxh_u64 XXH_readBE64(const void* ptr)
{
    return XXH_CPU_LITTLE_ENDIAN ? XXH_swap64(XXH_read64(ptr)) : XXH_read64(ptr);
}

XXH_FORCE_INLINE xxh_u64
XXH_readLE64_align(const void* ptr, XXH_alignment align)
{
    if (align==XXH_unaligned)
        return XXH_readLE64(ptr);
    else
        return XXH_CPU_LITTLE_ENDIAN ? *(const xxh_u64*)ptr : XXH_swap64(*(const xxh_u64*)ptr);
}


/*======   xxh64   ======*/

static const xxh_u64 PRIME64_1 = 0x9E3779B185EBCA87ULL;   /* 0b1001111000110111011110011011000110000101111010111100101010000111 */
static const xxh_u64 PRIME64_2 = 0xC2B2AE3D27D4EB4FULL;   /* 0b1100001010110010101011100011110100100111110101001110101101001111 */
static const xxh_u64 PRIME64_3 = 0x165667B19E3779F9ULL;   /* 0b0001011001010110011001111011000110011110001101110111100111111001 */
static const xxh_u64 PRIME64_4 = 0x85EBCA77C2B2AE63ULL;   /* 0b1000010111101011110010100111011111000010101100101010111001100011 */
static const xxh_u64 PRIME64_5 = 0x27D4EB2F165667C5ULL;   /* 0b0010011111010100111010110010111100010110010101100110011111000101 */

static xxh_u64 XXH64_round(xxh_u64 acc, xxh_u64 input)
{
    acc += input * PRIME64_2;
    acc  = XXH_rotl64(acc, 31);
    acc *= PRIME64_1;
    return acc;
}

static xxh_u64 XXH64_mergeRound(xxh_u64 acc, xxh_u64 val)
{
    val  = XXH64_round(0, val);
    acc ^= val;
    acc  = acc * PRIME64_1 + PRIME64_4;
    return acc;
}

static xxh_u64 XXH64_avalanche(xxh_u64 h64)
{
    h64 ^= h64 >> 33;
    h64 *= PRIME64_2;
    h64 ^= h64 >> 29;
    h64 *= PRIME64_3;
    h64 ^= h64 >> 32;
    return h64;
}


#define XXH_get64bits(p) XXH_readLE64_align(p, align)

static xxh_u64
XXH64_finalize(xxh_u64 h64, const xxh_u8* ptr, size_t len, XXH_alignment align)
{
#define PROCESS1_64            \
    h64 ^= (*ptr++) * PRIME64_5; \
    h64 = XXH_rotl64(h64, 11) * PRIME64_1;

#define PROCESS4_64          \
    h64 ^= (xxh_u64)(XXH_get32bits(ptr)) * PRIME64_1; \
    ptr+=4;                    \
    h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;

#define PROCESS8_64 {        \
    xxh_u64 const k1 = XXH64_round(0, XXH_get64bits(ptr)); \
    ptr+=8;                    \
    h64 ^= k1;               \
    h64  = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4; \
}

    /* Rerolled version for 32-bit targets is faster and much smaller. */
    if (XXH_REROLL || XXH_REROLL_XXH64) {
        len &= 31;
        while (len >= 8) {
            PROCESS8_64;
            len -= 8;
        }
        if (len >= 4) {
            PROCESS4_64;
            len -= 4;
        }
        while (len > 0) {
            PROCESS1_64;
            --len;
        }
         return  XXH64_avalanche(h64);
    } else {
        switch(len & 31) {
           case 24: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 16: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  8: PROCESS8_64;
                    return XXH64_avalanche(h64);

           case 28: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 20: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 12: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  4: PROCESS4_64;
                    return XXH64_avalanche(h64);

           case 25: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 17: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  9: PROCESS8_64;
                    PROCESS1_64;
                    return XXH64_avalanche(h64);

           case 29: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 21: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 13: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  5: PROCESS4_64;
                    PROCESS1_64;
                    return XXH64_avalanche(h64);

           case 26: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 18: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 10: PROCESS8_64;
                    PROCESS1_64;
                    PROCESS1_64;
                    return XXH64_avalanche(h64);

           case 30: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 22: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 14: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  6: PROCESS4_64;
                    PROCESS1_64;
                    PROCESS1_64;
                    return XXH64_avalanche(h64);

           case 27: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 19: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 11: PROCESS8_64;
                    PROCESS1_64;
                    PROCESS1_64;
                    PROCESS1_64;
                    return XXH64_avalanche(h64);

           case 31: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 23: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case 15: PROCESS8_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  7: PROCESS4_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  3: PROCESS1_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  2: PROCESS1_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  1: PROCESS1_64;
                    FALLTHROUGH_INTENDED;
                         /* fallthrough */
           case  0: return XXH64_avalanche(h64);
        }
    }
    /* impossible to reach */
    XXH_ASSERT(0);
    return 0;  /* unreachable, but some compilers complain without it */
}

XXH_FORCE_INLINE xxh_u64
XXH64_endian_align(const xxh_u8* input, size_t len, xxh_u64 seed, XXH_alignment align)
{
    const xxh_u8* bEnd = input + len;
    xxh_u64 h64;

#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
    if (input==NULL) {
        len=0;
        bEnd=input=(const xxh_u8*)(size_t)32;
    }
#endif

    if (len>=32) {
        const xxh_u8* const limit = bEnd - 32;
        xxh_u64 v1 = seed + PRIME64_1 + PRIME64_2;
        xxh_u64 v2 = seed + PRIME64_2;
        xxh_u64 v3 = seed + 0;
        xxh_u64 v4 = seed - PRIME64_1;

        do {
            v1 = XXH64_round(v1, XXH_get64bits(input)); input+=8;
            v2 = XXH64_round(v2, XXH_get64bits(input)); input+=8;
            v3 = XXH64_round(v3, XXH_get64bits(input)); input+=8;
            v4 = XXH64_round(v4, XXH_get64bits(input)); input+=8;
        } while (input<=limit);

        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
        h64 = XXH64_mergeRound(h64, v1);
        h64 = XXH64_mergeRound(h64, v2);
        h64 = XXH64_mergeRound(h64, v3);
        h64 = XXH64_mergeRound(h64, v4);

    } else {
        h64  = seed + PRIME64_5;
    }

    h64 += (xxh_u64) len;

    return XXH64_finalize(h64, input, len, align);
}


XXH_PUBLIC_API XXH64_hash_t XXH64 (const void* input, size_t len, XXH64_hash_t seed)
{
#if 0
    /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
    XXH64_state_t state;
    XXH64_reset(&state, seed);
    XXH64_update(&state, (const xxh_u8*)input, len);
    return XXH64_digest(&state);

#else

    if (XXH_FORCE_ALIGN_CHECK) {
        if ((((size_t)input) & 7)==0) {  /* Input is aligned, let's leverage the speed advantage */
            return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_aligned);
    }   }

    return XXH64_endian_align((const xxh_u8*)input, len, seed, XXH_unaligned);

#endif
}

/*======   Hash Streaming   ======*/

XXH_PUBLIC_API XXH64_state_t* XXH64_createState(void)
{
    return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
}
XXH_PUBLIC_API XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
{
    XXH_free(statePtr);
    return XXH_OK;
}

XXH_PUBLIC_API void XXH64_copyState(XXH64_state_t* dstState, const XXH64_state_t* srcState)
{
    memcpy(dstState, srcState, sizeof(*dstState));
}

XXH_PUBLIC_API XXH_errorcode XXH64_reset(XXH64_state_t* statePtr, XXH64_hash_t seed)
{
    XXH64_state_t state;   /* using a local state to memcpy() in order to avoid strict-aliasing warnings */
    memset(&state, 0, sizeof(state));
    state.v1 = seed + PRIME64_1 + PRIME64_2;
    state.v2 = seed + PRIME64_2;
    state.v3 = seed + 0;
    state.v4 = seed - PRIME64_1;
     /* do not write into reserved64, might be removed in a future version */
    memcpy(statePtr, &state, sizeof(state) - sizeof(state.reserved64));
    return XXH_OK;
}

XXH_PUBLIC_API XXH_errorcode
XXH64_update (XXH64_state_t* state, const void* input, size_t len)
{
    if (input==NULL)
#if defined(XXH_ACCEPT_NULL_INPUT_POINTER) && (XXH_ACCEPT_NULL_INPUT_POINTER>=1)
        return XXH_OK;
#else
        return XXH_ERROR;
#endif

    {   const xxh_u8* p = (const xxh_u8*)input;
        const xxh_u8* const bEnd = p + len;

        state->total_len += len;

        if (state->memsize + len < 32) {  /* fill in tmp buffer */
            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, len);
            state->memsize += (xxh_u32)len;
            return XXH_OK;
        }

        if (state->memsize) {   /* tmp buffer is full */
            XXH_memcpy(((xxh_u8*)state->mem64) + state->memsize, input, 32-state->memsize);
            state->v1 = XXH64_round(state->v1, XXH_readLE64(state->mem64+0));
            state->v2 = XXH64_round(state->v2, XXH_readLE64(state->mem64+1));
            state->v3 = XXH64_round(state->v3, XXH_readLE64(state->mem64+2));
            state->v4 = XXH64_round(state->v4, XXH_readLE64(state->mem64+3));
            p += 32-state->memsize;
            state->memsize = 0;
        }

        // uintptr_t casts added to avoid array-bounds error on
        // some inlined calls
        if ((uintptr_t)p + 32 <= (uintptr_t)bEnd) {
            const uintptr_t limit = (uintptr_t)bEnd - 32;
            xxh_u64 v1 = state->v1;
            xxh_u64 v2 = state->v2;
            xxh_u64 v3 = state->v3;
            xxh_u64 v4 = state->v4;

            do {
                v1 = XXH64_round(v1, XXH_readLE64(p)); p+=8;
                v2 = XXH64_round(v2, XXH_readLE64(p)); p+=8;
                v3 = XXH64_round(v3, XXH_readLE64(p)); p+=8;
                v4 = XXH64_round(v4, XXH_readLE64(p)); p+=8;
            } while ((uintptr_t)p <= limit);

            state->v1 = v1;
            state->v2 = v2;
            state->v3 = v3;
            state->v4 = v4;
        }

        if (p < bEnd) {
            XXH_memcpy(state->mem64, p, (size_t)(bEnd-p));
            state->memsize = (unsigned)(bEnd-p);
        }
    }

    return XXH_OK;
}


XXH_PUBLIC_API XXH64_hash_t XXH64_digest (const XXH64_state_t* state)
{
    xxh_u64 h64;

    if (state->total_len >= 32) {
        xxh_u64 const v1 = state->v1;
        xxh_u64 const v2 = state->v2;
        xxh_u64 const v3 = state->v3;
        xxh_u64 const v4 = state->v4;

        h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
        h64 = XXH64_mergeRound(h64, v1);
        h64 = XXH64_mergeRound(h64, v2);
        h64 = XXH64_mergeRound(h64, v3);
        h64 = XXH64_mergeRound(h64, v4);
    } else {
        h64  = state->v3 /*seed*/ + PRIME64_5;
    }

    h64 += (xxh_u64) state->total_len;

    return XXH64_finalize(h64, (const xxh_u8*)state->mem64, (size_t)state->total_len, XXH_aligned);
}


/*====== Canonical representation   ======*/

XXH_PUBLIC_API void XXH64_canonicalFromHash(XXH64_canonical_t* dst, XXH64_hash_t hash)
{
    XXH_STATIC_ASSERT(sizeof(XXH64_canonical_t) == sizeof(XXH64_hash_t));
    if (XXH_CPU_LITTLE_ENDIAN) hash = XXH_swap64(hash);
    memcpy(dst, &hash, sizeof(*dst));
}

XXH_PUBLIC_API XXH64_hash_t XXH64_hashFromCanonical(const XXH64_canonical_t* src)
{
    return XXH_readBE64(src);
}



/* *********************************************************************
*  XXH3
*  New generation hash designed for speed on small keys and vectorization
************************************************************************ */

#include "xxh3p.h" /* XXH3 preview for RocksDB */


#endif  /* XXH_NO_LONG_LONG */

#endif  /* XXHASH_C_01393879 */
back to top