https://github.com/RadioAstronomySoftwareGroup/pyuvdata
Raw File
Tip revision: 983ae27b57a28550b6ee1a58e13cc9161bb89327 authored by Bryna Hazelton on 15 January 2020, 19:15:00 UTC
update release date
Tip revision: 983ae27
mwa_corr_fits.py
# -*- mode: python; coding: utf-8 -*-
# Copyright (c) 2019 Radio Astronomy Software Group
# Licensed under the 2-clause BSD License

"""Class for reading MWA correlator FITS files."""
import numpy as np
import warnings
from astropy.io import fits
from astropy.time import Time
from astropy import constants as const

from . import UVData
from . import utils as uvutils


def input_output_mapping():
    """Build a mapping dictionary from pfb input to output numbers."""
    # the polyphase filter bank maps inputs to outputs, which the MWA
    # correlator then records as the antenna indices.
    # the following is taken from mwa_build_lfiles/mwac_utils.c
    # inputs are mapped to outputs via pfb_mapper as follows
    # (from mwa_build_lfiles/antenna_mapping.h):
    # floor(index/4) + index%4 * 16 = input
    # for the first 64 outputs, pfb_mapper[output] = input
    pfb_mapper = [0, 16, 32, 48, 1, 17, 33, 49, 2, 18, 34, 50, 3, 19, 35, 51,
                  4, 20, 36, 52, 5, 21, 37, 53, 6, 22, 38, 54, 7, 23, 39, 55,
                  8, 24, 40, 56, 9, 25, 41, 57, 10, 26, 42, 58, 11, 27, 43, 59,
                  12, 28, 44, 60, 13, 29, 45, 61, 14, 30, 46, 62, 15, 31, 47,
                  63]
    # build a mapper for all 256 inputs
    pfb_inputs_to_outputs = {}
    for p in range(4):
        for i in range(64):
            pfb_inputs_to_outputs[pfb_mapper[i] + p * 64] = p * 64 + i
    return pfb_inputs_to_outputs


class MWACorrFITS(UVData):
    """
    UVData subclass for reading MWA correlator fits files.

    This class should not be interacted with directly; instead use the
    read_mwa_corr_fits method on the UVData class.
    """

    def correct_cable_length(self, cable_lens):
        """
        Apply a cable length correction to the data array.

        Parameters
        ----------
        cable_lens : list of strings
        A list of strings containing the cable lengths for each antenna.
        """
        # "the velocity factor of electic fields in RG-6 like coax"
        # from MWA_Tools/CONV2UVFITS/convutils.h
        v_factor = 1.204
        # check if the cable length already has the velocity factor applied
        cable_array = []
        for i in cable_lens:
            if i[0:3] == 'EL_':
                cable_array.append(float(i[3:]))
            else:
                cable_array.append(float(i) * v_factor)
        # build array of differences
        cable_len_diffs = np.zeros((self.Nblts, 1))
        for j in range(self.Nblts):
            cable_len_diffs[j] = cable_array[self.ant_2_array[j]] - cable_array[self.ant_1_array[j]]
        self.data_array *= np.exp(-1j * 2 * np.pi * cable_len_diffs / const.c.to('m/s').value
                                  * self.freq_array.reshape(1, self.Nfreqs))[:, :, None]

    def read_mwa_corr_fits(self, filelist, use_cotter_flags=False, correct_cable_len=False,
                           phase_to_pointing_center=False, run_check=True, check_extra=True,
                           run_check_acceptability=True):
        """
        Read in MWA correlator gpu box files.

        Parameters
        ----------
        filelist : list of str
            The list of MWA correlator files to read from. Must include at
            least one fits file and only one metafits file per data set.
            Can also be a list of lists to read multiple data sets.
        axis : str
            Axis to concatenate files along. This enables fast concatenation
            along the specified axis without the normal checking that all other
            metadata agrees. This method does not guarantee correct resulting
            objects. Please see the docstring for fast_concat for details.
            Allowed values are: 'blt', 'freq', 'polarization'. Only used if
            multiple files are passed.
        use_cotter_flags : bool
            Option to use cotter output mwaf flag files. Otherwise flagging
            will only be applied to missing data and bad antennas.
        correct_cable_len : bool
            Option to apply a cable delay correction.
        phase_to_pointing_center : bool
            Option to phase to the observation pointing center.
        run_check : bool
            Option to check for the existence and proper shapes of parameters
            after after reading in the file (the default is True,
            meaning the check will be run).
        check_extra : bool
            Option to check optional parameters as well as required ones (the
            default is True, meaning the optional parameters will be checked).
        run_check_acceptability : bool
            Option to check acceptable range of the values of parameters after
            reading in the file (the default is True, meaning the acceptable
            range check will be done).

        Raises
        ------
        ValueError
            If required files are missing or multiple files metafits files are included in filelist.
            If files from different observations are included in filelist.
            If files in fileslist have different fine channel widths
            If file types other than fits, metafits, and mwaf files are included in filelist.

        """
        metafits_file = None
        obs_id = None
        file_dict = {}
        start_time = 0.0
        end_time = 0.0
        included_file_nums = []
        cotter_warning = False
        num_fine_chans = 0

        # iterate through files and organize
        # create a list of included coarse channels
        # find the first and last times that have data
        for file in filelist:
            if file.lower().endswith('.metafits'):
                # force only one metafits file
                if metafits_file is not None:
                    raise ValueError('multiple metafits files in filelist')
                metafits_file = file
            # organize data files
            elif file.lower().endswith('.fits'):
                # get the file number from the file name;
                # this will later be mapped to a coarse channel
                file_num = int(file.split('_')[-2][-2:])
                if file_num not in included_file_nums:
                    included_file_nums.append(file_num)
                with fits.open(file) as data:
                    # check obs id
                    if obs_id is None:
                        obs_id = data[0].header['OBSID']
                    else:
                        if data[0].header['OBSID'] != obs_id:
                            raise ValueError('files from different observations submitted in same list')
                    # check headers for first and last times containing data
                    first_time = data[1].header['TIME'] + data[1].header['MILLITIM'] / 1000.0
                    last_time = data[-1].header['TIME'] + data[-1].header['MILLITIM'] / 1000.0
                    if start_time == 0.0:
                        start_time = first_time
                    elif start_time > first_time:
                        start_time = first_time
                    if end_time < last_time:
                        end_time = last_time
                    # get number of fine channels
                    if num_fine_chans == 0:
                        num_fine_chans = data[1].header['NAXIS2']
                    elif num_fine_chans != data[1].header['NAXIS2']:
                        raise ValueError('files submitted have different fine channel widths')

                # organize files
                if 'data' not in file_dict.keys():
                    file_dict['data'] = [file]
                else:
                    file_dict['data'].append(file)
            # look for flag files
            elif file.lower().endswith('.mwaf'):
                if use_cotter_flags is False and cotter_warning is False:
                    warnings.warn('mwaf files submitted with use_cotter_flags=False')
                    cotter_warning = True
                elif 'flags' not in file_dict.keys():
                    file_dict['flags'] = [file]
                else:
                    file_dict['flags'].append(file)
            else:
                raise ValueError('only fits, metafits, and mwaf files supported')

        # checks:
        if metafits_file is None:
            raise ValueError('no metafits file submitted')
        if 'data' not in file_dict.keys():
            raise ValueError('no data files submitted')
        if 'flags' not in file_dict.keys() and use_cotter_flags:
            raise ValueError('no flag files submitted. Rerun with flag files \
                             or use_cotter_flags=False')

        # first set parameters that are always true
        self.Nspws = 1
        self.spw_array = np.array([0])
        self.phase_type = 'drift'
        self.vis_units = 'uncalib'
        self.Npols = 4
        self.xorientation = 'east'

        # get information from metafits file
        with fits.open(metafits_file, memmap=True) as meta:
            meta_hdr = meta[0].header

            # get a list of coarse channels
            coarse_chans = meta_hdr['CHANNELS'].split(',')
            coarse_chans = np.array(sorted([int(i) for i in coarse_chans]))

            # integration time in seconds
            int_time = meta_hdr['INTTIME']

            # pointing center in degrees
            ra_deg = meta_hdr['RA']
            dec_deg = meta_hdr['DEC']
            ra_rad = np.pi * ra_deg / 180
            dec_rad = np.pi * dec_deg / 180

            # get parameters from header
            # this assumes no averaging by this code so will need to be updated
            self.channel_width = float(meta_hdr.pop('FINECHAN') * 1000)
            self.history = str(meta_hdr['HISTORY'])
            if not uvutils._check_history_version(self.history,
                                                  self.pyuvdata_version_str):
                self.history += self.pyuvdata_version_str
            meta_hdr.remove('HISTORY', remove_all=True)
            self.instrument = meta_hdr['TELESCOP']
            self.telescope_name = meta_hdr.pop('TELESCOP')
            self.object_name = meta_hdr.pop('FILENAME')

            # get rid of the instrument keyword so it doesn't get put back in
            meta_hdr.remove('INSTRUME')
            # get rid of keywords that uvfits.py gets rid of
            bad_keys = ['SIMPLE', 'EXTEND', 'BITPIX', 'NAXIS', 'DATE-OBS']
            for key in bad_keys:
                meta_hdr.remove(key, remove_all=True)
            # store remaining keys in extra keywords
            for key in meta_hdr:
                if key == 'COMMENT':
                    self.extra_keywords[key] = str(meta_hdr.get(key))
                elif key != '':
                    self.extra_keywords[key] = meta_hdr.get(key)

            # get antenna data from metafits file table
            meta_tbl = meta[1].data

            # because of polarization, each antenna # is listed twice
            antenna_numbers = meta_tbl['Antenna'][1::2]
            antenna_names = meta_tbl['TileName'][1::2]
            antenna_flags = meta_tbl['Flag'][1::2]
            cable_lens = meta_tbl['Length'][1::2]

            # get antenna postions in enu coordinates
            antenna_positions = np.zeros((len(antenna_numbers), 3))
            antenna_positions[:, 0] = meta_tbl['East'][1::2]
            antenna_positions[:, 1] = meta_tbl['North'][1::2]
            antenna_positions[:, 2] = meta_tbl['Height'][1::2]

        # reorder antenna parameters from metafits ordering
        reordered_inds = antenna_numbers.argsort()
        self.antenna_numbers = antenna_numbers[reordered_inds]
        self.antenna_names = list(antenna_names[reordered_inds])
        antenna_positions = antenna_positions[reordered_inds, :]
        antenna_flags = antenna_flags[reordered_inds]
        cable_lens = cable_lens[reordered_inds]

        # find flagged antenna
        flagged_ants = self.antenna_numbers[np.where(antenna_flags == 1)]

        # set parameters from other parameters
        self.Nants_data = len(self.antenna_numbers)
        self.Nants_telescope = len(self.antenna_numbers)
        self.Nbls = int(len(self.antenna_numbers) * (len(self.antenna_numbers) + 1) / 2.0)

        # get telescope parameters
        self.set_telescope_params()

        # build time array of centers
        time_array = np.arange(start_time + int_time / 2.0, end_time
                               + int_time / 2.0 + int_time, int_time)

        # convert from unix to julian times
        julian_time_array = [Time(i, format='unix', scale='utc').jd
                             for i in time_array]

        # convert to integers
        float_time_array = np.array([float(i) for i in julian_time_array])
        # build into time array
        self.time_array = np.repeat(float_time_array, self.Nbls)

        self.Ntimes = len(time_array)

        self.Nblts = int(self.Nbls * self.Ntimes)

        # convert times to lst
        self.lst_array = uvutils.get_lst_for_time(self.time_array,
                                                  *self.telescope_location_lat_lon_alt_degrees)

        self.integration_time = np.array([int_time for i in range(self.Nblts)])

        # convert antenna positions from enu to ecef
        # antenna positions are "relative to
        # the centre of the array in local topocentric \"east\", \"north\",
        # \"height\". Units are meters."
        antenna_positions_ecef = uvutils.ECEF_from_ENU(antenna_positions,
                                                       *self.telescope_location_lat_lon_alt)
        # make antenna positions relative to telescope location
        self.antenna_positions = antenna_positions_ecef - self.telescope_location

        # make initial antenna arrays, where ant_1 <= ant_2
        ant_1_array = []
        ant_2_array = []
        for i in range(self.Nants_telescope):
            for j in range(i, self.Nants_telescope):
                ant_1_array.append(i)
                ant_2_array.append(j)

        self.ant_1_array = np.tile(np.array(ant_1_array), self.Ntimes)
        self.ant_2_array = np.tile(np.array(ant_2_array), self.Ntimes)

        self.baseline_array = \
            self.antnums_to_baseline(self.ant_1_array, self.ant_2_array)

        # create self.uvw_array
        self.set_uvws_from_antenna_positions(allow_phasing=False)

        # coarse channel mapping:
        # channels in group 0-128 go in order; channels in group 129-155 go in
        # reverse order
        # that is, if the lowest channel is 127, it will be assigned to the
        # first file
        # channel 128 will be assigned to the second file
        # then the highest channel will be assigned to the third file
        # and the next hightest channel assigned to the fourth file, and so on
        count = 0
        # count the number of channels that are in group 0-128
        for i in coarse_chans:
            if i <= 128:
                count += 1
        # map all file numbers to coarse channel numbers
        file_nums_to_coarse = {i + 1: coarse_chans[i] if i < count else
                               coarse_chans[(len(coarse_chans) + count - i - 1)]
                               for i in range(len(coarse_chans))}
        # map included coarse channels to file numbers
        coarse_to_incl_files = {}
        for i in included_file_nums:
            coarse_to_incl_files[file_nums_to_coarse[i]] = i
        # sort included coarse channels
        included_coarse_chans = sorted(coarse_to_incl_files.keys())
        # map included file numbers to an index that orders them
        file_nums_to_index = {}
        for i in included_coarse_chans:
            file_nums_to_index[coarse_to_incl_files[i]] = included_coarse_chans.index(i)
        # check that coarse channels are contiguous.
        chans = np.array(included_coarse_chans)
        for i in np.diff(chans):
            if i != 1:
                warnings.warn('coarse channels are not contiguous for this observation')
                break

        # warn user if not all coarse channels are included
        if len(included_coarse_chans) != len(coarse_chans):
            warnings.warn('some coarse channel files were not submitted')

        # build frequency array
        self.Nfreqs = len(included_coarse_chans) * num_fine_chans
        self.freq_array = np.zeros((self.Nspws, self.Nfreqs))

        # each coarse channel is split into 128 fine channels of width 10 kHz.
        # The first fine channel for each coarse channel is centered on the
        # lower bound frequency of that channel and its center frequency is
        # computed as fine_center = coarse_channel_number * 1280-640 (kHz).
        # If the fine channels have been averaged (added) by some factor, the
        # center of the resulting channel is found by averaging the centers of
        # the first and last fine channels it is made up of.
        # That is, avg_fine_center=(lowest_fine_center+highest_fine_center)/2
        # where highest_fine_center=lowest_fine_center+(avg_factor-1)*10 kHz
        # so avg_fine_center=(lowest_fine_center+lowest_fine_center+(avg_factor-1)*10)/2
        #                   =lowest_fine_center+((avg_factor-1)*10)/2
        #                   =lowest_fine_center+offset
        # Calculate offset=((avg_factor-1)*10)/2 to build the frequency array
        avg_factor = self.channel_width / 10000
        width = self.channel_width / 1000
        offset = (avg_factor - 1) * 10 / 2.0

        for i in range(len(included_coarse_chans)):
            # get the lowest fine freq of the coarse channel (kHz)
            lower_fine_freq = included_coarse_chans[i] * 1280 - 640
            # find the center of the lowest averaged channel
            first_center = lower_fine_freq + offset
            # add the channel centers for this coarse channel into
            # the frequency array (converting from kHz to Hz)
            self.freq_array[0, int(i * num_fine_chans):int((i + 1) * num_fine_chans)] = \
                np.arange(first_center, first_center + num_fine_chans * width, width) * 1000

        # read data into an array with dimensions (time, uv, baselines*pols)
        data_dump = np.zeros((self.Ntimes, self.Nfreqs, self.Nbls * self.Npols), dtype=np.complex64)
        # read data files
        for file in file_dict['data']:
            # get the file number from the file name
            file_num = int(file.split('_')[-2][-2:])
            # map file number to frequency index
            freq_ind = file_nums_to_index[file_num] * num_fine_chans
            with fits.open(file, memmap=False, do_not_scale_image_data=False) as hdu_list:
                # count number of times
                end_list = len(hdu_list)
                for i in range(1, end_list):
                    time = hdu_list[i].header['TIME'] + hdu_list[i].header['MILLITIM'] / 1000.0 + int_time / 2.0
                    time_ind = np.where(time_array == time)[0][0]
                    # dump data into matrix
                    # and take data from real to complex numbers
                    data_dump[time_ind, freq_ind:freq_ind + num_fine_chans, :] = \
                        hdu_list[i].data[:, 0::2] + 1j * hdu_list[i].data[:, 1::2]

        # polarizations are ordered yy, yx, xy, xx
        self.polarization_array = np.array([-6, -8, -7, -5])

        # initialize matrices for data reordering
        self.nsample_array = np.zeros((self.Ntimes, self.Nbls, self.Nfreqs, self.Npols), dtype=np.float32)
        self.data_array = np.zeros((self.Ntimes, self.Nbls, self.Nfreqs, self.Npols), dtype=np.complex64)
        self.flag_array = np.full((self.Ntimes, self.Nbls, self.Nfreqs, self.Npols), True)
        # build mapper from antenna numbers and polarizations to pfb inputs
        corr_ants_to_pfb_inputs = {}
        for i in range(len(antenna_numbers)):
            for p in range(2):
                corr_ants_to_pfb_inputs[(antenna_numbers[i], p)] = 2 * i + p

        # for mapping, start with a pair of antennas/polarizations
        # this is the pair we want to find the data for
        # map the pair to the corresponding pfb input indices
        # map the pfb input indices to the pfb output indices
        # these are the indices for the data corresponding to the initial antenna/pol pair
        pfb_inputs_to_outputs = input_output_mapping()
        for ant1 in range(128):
            for ant2 in range(ant1, 128):
                for p1 in range(2):
                    for p2 in range(2):
                        # generate the indices in self.data_array for this combination
                        # baselines are ordered (0,0),(0,1),...,(0,127),(1,1),.....
                        # polarizion of 0 (1) corresponds to y (x)
                        pol_ind = int(2 * p1 + p2)
                        bls_ind = int(128 * ant1 - ant1 * (ant1 + 1) / 2 + ant2)
                        # find the pfb input indices for this combination
                        (ind1_1, ind1_2) = (corr_ants_to_pfb_inputs[(ant1, p1)],
                                            corr_ants_to_pfb_inputs[(ant2, p2)])
                        # find the pfb output indices
                        (ind2_1, ind2_2) = (pfb_inputs_to_outputs[(ind1_1)],
                                            pfb_inputs_to_outputs[(ind1_2)])
                        out_ant1 = int(ind2_1 / 2)
                        out_ant2 = int(ind2_2 / 2)
                        out_p1 = ind2_1 % 2
                        out_p2 = ind2_2 % 2
                        # the correlator has ind2_2 <= ind2_1 except for
                        # redundant data. The redundant data is not perfectly
                        # redundant; sometimes the values of redundant data
                        # are off by one in the imaginary part.
                        # For consistency, we are ignoring the redundant values
                        # that have ind2_2 > ind2_1
                        if ind2_2 > ind2_1:
                            # get the index for the data
                            data_index = int(2 * out_ant2 * (out_ant2 + 1) + 4 * out_ant1 + 2 * out_p2 + out_p1)
                            # need to take the complex conjugate of the data
                            self.data_array[:, bls_ind, :, pol_ind] = np.conj(data_dump[:, :, data_index])
                        else:
                            data_index = int(2 * out_ant1 * (out_ant1 + 1) + 4 * out_ant2 + 2 * out_p1 + out_p2)
                            self.data_array[:, bls_ind, :, pol_ind] = data_dump[:, :, data_index]
                        # unflag where the data is
                        self.flag_array[:, bls_ind, :, pol_ind] = False
                        # nsamples = 1 where the data is
                        self.nsample_array[:, bls_ind, :, pol_ind] = 1.0

        # generage baseline flags for flagged ants
        bad_ant_inds = []
        for ant1 in range(128):
            for ant2 in range(ant1, 128):
                if ant1 in flagged_ants or ant2 in flagged_ants:
                    bad_ant_inds.append(int(128 * ant1 - ant1 * (ant1 + 1) / 2 + ant2))

        self.flag_array[:, bad_ant_inds, :, :] = True

        # combine baseline and time axes
        self.data_array = self.data_array.reshape((self.Nblts, self.Nfreqs, self.Npols))
        self.flag_array = self.flag_array.reshape((self.Nblts, self.Nfreqs, self.Npols))
        self.nsample_array = self.nsample_array.reshape((self.Nblts, self.Nfreqs, self.Npols))

        # cable delay corrections
        if correct_cable_len:
            self.correct_cable_length(cable_lens)

        # add spectral window index
        self.data_array = self.data_array[:, np.newaxis, :, :]
        self.flag_array = self.flag_array[:, np.newaxis, :, :]
        self.nsample_array = self.nsample_array[:, np.newaxis, :, :]

        # because of an annoying discrepancy between file conventions, in order
        # to be consistent with the uvw vector direction, all the data must
        # be conjugated
        self.data_array = np.conj(self.data_array)

        # reorder polarizations
        self.reorder_pols()

        # phasing
        if phase_to_pointing_center:
            self.phase(ra_rad, dec_rad)

        if use_cotter_flags:
            raise NotImplementedError('reading in cotter flag files is not yet available')
back to top