https://github.com/root-project/root
Raw File
Tip revision: 1bb435ef147f40e8c477119d7791acca99f1819e authored by Philippe Canal on 12 June 2009, 18:47:18 UTC
Merge revisin 27108, 27109, 27768 from the trunk. Correct sizing and array dereferencing which were not correctly maintained during the code change to support flushing the write basket before streaming the branch)
Tip revision: 1bb435e
TVector3.h
// @(#)root/physics:$Id$
// Author: Pasha Murat, Peter Malzacher   12/02/99

/*************************************************************************
 * Copyright (C) 1995-2000, Rene Brun and Fons Rademakers.               *
 * All rights reserved.                                                  *
 *                                                                       *
 * For the licensing terms see $ROOTSYS/LICENSE.                         *
 * For the list of contributors see $ROOTSYS/README/CREDITS.             *
 *************************************************************************/
#ifndef ROOT_TVector3
#define ROOT_TVector3

#include "TError.h"
#include "TVector2.h"
#include "TMatrix.h"

class TRotation;


class TVector3 : public TObject {

public:


   TVector3(Double_t x = 0.0, Double_t y = 0.0, Double_t z = 0.0);
   // The constructor.

   TVector3(const Double_t *);
   TVector3(const Float_t *);
   // Constructors from an array

   TVector3(const TVector3 &);
   // The copy constructor.

   virtual ~TVector3();
   // Destructor

   Double_t operator () (int) const;
   inline Double_t operator [] (int) const;
   // Get components by index (Geant4).

   Double_t & operator () (int);
   inline Double_t & operator [] (int);
   // Set components by index.

   inline Double_t x()  const;
   inline Double_t y()  const;
   inline Double_t z()  const;
   inline Double_t X()  const;
   inline Double_t Y()  const;
   inline Double_t Z()  const;
   inline Double_t Px() const;
   inline Double_t Py() const;
   inline Double_t Pz() const;
   // The components in cartesian coordinate system.

   inline void SetX(Double_t);
   inline void SetY(Double_t);
   inline void SetZ(Double_t);
   inline void SetXYZ(Double_t x, Double_t y, Double_t z);
   void        SetPtEtaPhi(Double_t pt, Double_t eta, Double_t phi);
   void        SetPtThetaPhi(Double_t pt, Double_t theta, Double_t phi);
  
   inline void GetXYZ(Double_t *carray) const;
   inline void GetXYZ(Float_t *carray) const;
   // Get the components into an array
   // not checked!

   Double_t Phi() const;
   // The azimuth angle. returns phi from -pi to pi 

   Double_t Theta() const;
   // The polar angle.

   inline Double_t CosTheta() const;
   // Cosine of the polar angle.

   inline Double_t Mag2() const;
   // The magnitude squared (rho^2 in spherical coordinate system).

   Double_t Mag() const;
   // The magnitude (rho in spherical coordinate system).

   void SetPhi(Double_t);
   // Set phi keeping mag and theta constant (BaBar).

   void SetTheta(Double_t);
   // Set theta keeping mag and phi constant (BaBar).

   inline void SetMag(Double_t);
   // Set magnitude keeping theta and phi constant (BaBar).

   inline Double_t Perp2() const;
   // The transverse component squared (R^2 in cylindrical coordinate system).

   inline Double_t Pt() const;
   Double_t Perp() const;
   // The transverse component (R in cylindrical coordinate system).

   inline void SetPerp(Double_t);
   // Set the transverse component keeping phi and z constant.

   inline Double_t Perp2(const TVector3 &) const;
   // The transverse component w.r.t. given axis squared.

   inline Double_t Pt(const TVector3 &) const;
   Double_t Perp(const TVector3 &) const;
   // The transverse component w.r.t. given axis.

   inline Double_t DeltaPhi(const TVector3 &) const;
   Double_t DeltaR(const TVector3 &) const;
   inline Double_t DrEtaPhi(const TVector3 &) const;
   inline TVector2 EtaPhiVector() const;
   void SetMagThetaPhi(Double_t mag, Double_t theta, Double_t phi);

   inline TVector3 & operator = (const TVector3 &);
   // Assignment.

   inline Bool_t operator == (const TVector3 &) const;
   inline Bool_t operator != (const TVector3 &) const;
   // Comparisons (Geant4).

   inline TVector3 & operator += (const TVector3 &);
   // Addition.

   inline TVector3 & operator -= (const TVector3 &);
   // Subtraction.

   inline TVector3 operator - () const;
   // Unary minus.

   inline TVector3 & operator *= (Double_t);
   // Scaling with real numbers.

   TVector3 Unit() const;
   // Unit vector parallel to this.

   inline TVector3 Orthogonal() const;
   // Vector orthogonal to this (Geant4).

   inline Double_t Dot(const TVector3 &) const;
   // Scalar product.

   inline TVector3 Cross(const TVector3 &) const;
   // Cross product.

   Double_t Angle(const TVector3 &) const;
   // The angle w.r.t. another 3-vector.

   Double_t PseudoRapidity() const;
   // Returns the pseudo-rapidity, i.e. -ln(tan(theta/2))

   inline Double_t Eta() const;

   void RotateX(Double_t);
   // Rotates the Hep3Vector around the x-axis.

   void RotateY(Double_t);
   // Rotates the Hep3Vector around the y-axis.

   void RotateZ(Double_t);
   // Rotates the Hep3Vector around the z-axis.

   void RotateUz(const TVector3&);
   // Rotates reference frame from Uz to newUz (unit vector) (Geant4).

   void Rotate(Double_t, const TVector3 &);
   // Rotates around the axis specified by another Hep3Vector.

   TVector3 & operator *= (const TRotation &);
   TVector3 & Transform(const TRotation &);
   // Transformation with a Rotation matrix.

   inline TVector2 XYvector() const;

   void Print(Option_t* option="") const;

private:

   Double_t fX, fY, fZ;
   // The components.

   ClassDef(TVector3,3) // A 3D physics vector

};


TVector3 operator + (const TVector3 &, const TVector3 &);
// Addition of 3-vectors.

TVector3 operator - (const TVector3 &, const TVector3 &);
// Subtraction of 3-vectors.

Double_t operator * (const TVector3 &, const TVector3 &);
// Scalar product of 3-vectors.

TVector3 operator * (const TVector3 &, Double_t a);
TVector3 operator * (Double_t a, const TVector3 &);
// Scaling of 3-vectors with a real number

TVector3 operator * (const TMatrix &, const TVector3 &);


Double_t & TVector3::operator[] (int i)       { return operator()(i); }
Double_t   TVector3::operator[] (int i) const { return operator()(i); }

inline Double_t TVector3::x()  const { return fX; }
inline Double_t TVector3::y()  const { return fY; }
inline Double_t TVector3::z()  const { return fZ; }
inline Double_t TVector3::X()  const { return fX; }
inline Double_t TVector3::Y()  const { return fY; }
inline Double_t TVector3::Z()  const { return fZ; }
inline Double_t TVector3::Px() const { return fX; }
inline Double_t TVector3::Py() const { return fY; }
inline Double_t TVector3::Pz() const { return fZ; }

inline void TVector3::SetX(Double_t xx) { fX = xx; }
inline void TVector3::SetY(Double_t yy) { fY = yy; }
inline void TVector3::SetZ(Double_t zz) { fZ = zz; }

inline void TVector3::SetXYZ(Double_t xx, Double_t yy, Double_t zz) {
   fX = xx;
   fY = yy;
   fZ = zz;
}

inline void TVector3::GetXYZ(Double_t *carray) const {
   carray[0] = fX;
   carray[1] = fY;
   carray[2] = fZ;
}

inline void TVector3::GetXYZ(Float_t *carray) const {
   carray[0] = fX;
   carray[1] = fY;
   carray[2] = fZ;
}


inline TVector3 & TVector3::operator = (const TVector3 & p) {
   fX = p.fX;
   fY = p.fY;
   fZ = p.fZ;
   return *this;
}

inline Bool_t TVector3::operator == (const TVector3& v) const {
   return (v.fX==fX && v.fY==fY && v.fZ==fZ) ? kTRUE : kFALSE;
}

inline Bool_t TVector3::operator != (const TVector3& v) const {
   return (v.fX!=fX || v.fY!=fY || v.fZ!=fZ) ? kTRUE : kFALSE;
}

inline TVector3& TVector3::operator += (const TVector3 & p) {
   fX += p.fX;
   fY += p.fY;
   fZ += p.fZ;
   return *this;
}

inline TVector3& TVector3::operator -= (const TVector3 & p) {
   fX -= p.fX;
   fY -= p.fY;
   fZ -= p.fZ;
   return *this;
}

inline TVector3 TVector3::operator - () const {
   return TVector3(-fX, -fY, -fZ);
}

inline TVector3& TVector3::operator *= (Double_t a) {
   fX *= a;
   fY *= a;
   fZ *= a;
   return *this;
}

inline Double_t TVector3::Dot(const TVector3 & p) const {
   return fX*p.fX + fY*p.fY + fZ*p.fZ;
}

inline TVector3 TVector3::Cross(const TVector3 & p) const {
   return TVector3(fY*p.fZ-p.fY*fZ, fZ*p.fX-p.fZ*fX, fX*p.fY-p.fX*fY);
}

inline Double_t TVector3::Mag2() const { return fX*fX + fY*fY + fZ*fZ; }


inline TVector3 TVector3::Orthogonal() const {
   Double_t xx = fX < 0.0 ? -fX : fX;
   Double_t yy = fY < 0.0 ? -fY : fY;
   Double_t zz = fZ < 0.0 ? -fZ : fZ;
   if (xx < yy) {
      return xx < zz ? TVector3(0,fZ,-fY) : TVector3(fY,-fX,0);
   } else {
      return yy < zz ? TVector3(-fZ,0,fX) : TVector3(fY,-fX,0);
   }
}

inline Double_t TVector3::Perp2() const { return fX*fX + fY*fY; }


inline Double_t TVector3::Pt() const { return Perp(); }

inline Double_t TVector3::Perp2(const TVector3 & p)  const {
   Double_t tot = p.Mag2();
   Double_t ss  = Dot(p);
   Double_t per = Mag2();
   if (tot > 0.0) per -= ss*ss/tot;
   if (per < 0)   per = 0;
   return per;
}

inline Double_t TVector3::Pt(const TVector3 & p) const {
   return Perp(p);
}

inline Double_t TVector3::CosTheta() const {
   Double_t ptot = Mag();
   return ptot == 0.0 ? 1.0 : fZ/ptot;
}

inline void TVector3::SetMag(Double_t ma) {
   Double_t factor = Mag();
   if (factor == 0) {
      Warning("SetMag","zero vector can't be stretched");
   } else {
      factor = ma/factor;
      SetX(fX*factor);
      SetY(fY*factor);
      SetZ(fZ*factor);
   }
}

inline void TVector3::SetPerp(Double_t r) {
   Double_t p = Perp();
   if (p != 0.0) {
      fX *= r/p;
      fY *= r/p;
   }
}

inline Double_t TVector3::DeltaPhi(const TVector3 & v) const {
   return TVector2::Phi_mpi_pi(Phi()-v.Phi());
}

inline Double_t TVector3::Eta() const {
   return PseudoRapidity();
}

inline Double_t TVector3::DrEtaPhi(const TVector3 & v) const{
   return DeltaR(v);
}


inline TVector2 TVector3::EtaPhiVector() const {
   return TVector2 (Eta(),Phi());
}

inline TVector2 TVector3::XYvector() const {
   return TVector2(fX,fY);
}

#endif
back to top