https://github.com/torvalds/linux
Raw File
Tip revision: 4fe89d07dcc2804c8b562f6c7896a45643d34b2f authored by Linus Torvalds on 02 October 2022, 21:09:07 UTC
Linux 6.0
Tip revision: 4fe89d0
expr.c
// SPDX-License-Identifier: GPL-2.0
#include <stdbool.h>
#include <assert.h>
#include <errno.h>
#include <stdlib.h>
#include <string.h>
#include "metricgroup.h"
#include "cpumap.h"
#include "cputopo.h"
#include "debug.h"
#include "expr.h"
#include "expr-bison.h"
#include "expr-flex.h"
#include "smt.h"
#include "tsc.h"
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/zalloc.h>
#include <ctype.h>
#include <math.h>

#ifdef PARSER_DEBUG
extern int expr_debug;
#endif

struct expr_id_data {
	union {
		struct {
			double val;
			int source_count;
		} val;
		struct {
			double val;
			const char *metric_name;
			const char *metric_expr;
		} ref;
	};

	enum {
		/* Holding a double value. */
		EXPR_ID_DATA__VALUE,
		/* Reference to another metric. */
		EXPR_ID_DATA__REF,
		/* A reference but the value has been computed. */
		EXPR_ID_DATA__REF_VALUE,
	} kind;
};

static size_t key_hash(const void *key, void *ctx __maybe_unused)
{
	const char *str = (const char *)key;
	size_t hash = 0;

	while (*str != '\0') {
		hash *= 31;
		hash += *str;
		str++;
	}
	return hash;
}

static bool key_equal(const void *key1, const void *key2,
		    void *ctx __maybe_unused)
{
	return !strcmp((const char *)key1, (const char *)key2);
}

struct hashmap *ids__new(void)
{
	struct hashmap *hash;

	hash = hashmap__new(key_hash, key_equal, NULL);
	if (IS_ERR(hash))
		return NULL;
	return hash;
}

void ids__free(struct hashmap *ids)
{
	struct hashmap_entry *cur;
	size_t bkt;

	if (ids == NULL)
		return;

	hashmap__for_each_entry(ids, cur, bkt) {
		free((char *)cur->key);
		free(cur->value);
	}

	hashmap__free(ids);
}

int ids__insert(struct hashmap *ids, const char *id)
{
	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
	char *old_key = NULL;
	int ret;

	ret = hashmap__set(ids, id, data_ptr,
			   (const void **)&old_key, (void **)&old_data);
	if (ret)
		free(data_ptr);
	free(old_key);
	free(old_data);
	return ret;
}

struct hashmap *ids__union(struct hashmap *ids1, struct hashmap *ids2)
{
	size_t bkt;
	struct hashmap_entry *cur;
	int ret;
	struct expr_id_data *old_data = NULL;
	char *old_key = NULL;

	if (!ids1)
		return ids2;

	if (!ids2)
		return ids1;

	if (hashmap__size(ids1) <  hashmap__size(ids2)) {
		struct hashmap *tmp = ids1;

		ids1 = ids2;
		ids2 = tmp;
	}
	hashmap__for_each_entry(ids2, cur, bkt) {
		ret = hashmap__set(ids1, cur->key, cur->value,
				(const void **)&old_key, (void **)&old_data);
		free(old_key);
		free(old_data);

		if (ret) {
			hashmap__free(ids1);
			hashmap__free(ids2);
			return NULL;
		}
	}
	hashmap__free(ids2);
	return ids1;
}

/* Caller must make sure id is allocated */
int expr__add_id(struct expr_parse_ctx *ctx, const char *id)
{
	return ids__insert(ctx->ids, id);
}

/* Caller must make sure id is allocated */
int expr__add_id_val(struct expr_parse_ctx *ctx, const char *id, double val)
{
	return expr__add_id_val_source_count(ctx, id, val, /*source_count=*/1);
}

/* Caller must make sure id is allocated */
int expr__add_id_val_source_count(struct expr_parse_ctx *ctx, const char *id,
				  double val, int source_count)
{
	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
	char *old_key = NULL;
	int ret;

	data_ptr = malloc(sizeof(*data_ptr));
	if (!data_ptr)
		return -ENOMEM;
	data_ptr->val.val = val;
	data_ptr->val.source_count = source_count;
	data_ptr->kind = EXPR_ID_DATA__VALUE;

	ret = hashmap__set(ctx->ids, id, data_ptr,
			   (const void **)&old_key, (void **)&old_data);
	if (ret)
		free(data_ptr);
	free(old_key);
	free(old_data);
	return ret;
}

int expr__add_ref(struct expr_parse_ctx *ctx, struct metric_ref *ref)
{
	struct expr_id_data *data_ptr = NULL, *old_data = NULL;
	char *old_key = NULL;
	char *name, *p;
	int ret;

	data_ptr = zalloc(sizeof(*data_ptr));
	if (!data_ptr)
		return -ENOMEM;

	name = strdup(ref->metric_name);
	if (!name) {
		free(data_ptr);
		return -ENOMEM;
	}

	/*
	 * The jevents tool converts all metric expressions
	 * to lowercase, including metric references, hence
	 * we need to add lowercase name for metric, so it's
	 * properly found.
	 */
	for (p = name; *p; p++)
		*p = tolower(*p);

	/*
	 * Intentionally passing just const char pointers,
	 * originally from 'struct pmu_event' object.
	 * We don't need to change them, so there's no
	 * need to create our own copy.
	 */
	data_ptr->ref.metric_name = ref->metric_name;
	data_ptr->ref.metric_expr = ref->metric_expr;
	data_ptr->kind = EXPR_ID_DATA__REF;

	ret = hashmap__set(ctx->ids, name, data_ptr,
			   (const void **)&old_key, (void **)&old_data);
	if (ret)
		free(data_ptr);

	pr_debug2("adding ref metric %s: %s\n",
		  ref->metric_name, ref->metric_expr);

	free(old_key);
	free(old_data);
	return ret;
}

int expr__get_id(struct expr_parse_ctx *ctx, const char *id,
		 struct expr_id_data **data)
{
	return hashmap__find(ctx->ids, id, (void **)data) ? 0 : -1;
}

bool expr__subset_of_ids(struct expr_parse_ctx *haystack,
			 struct expr_parse_ctx *needles)
{
	struct hashmap_entry *cur;
	size_t bkt;
	struct expr_id_data *data;

	hashmap__for_each_entry(needles->ids, cur, bkt) {
		if (expr__get_id(haystack, cur->key, &data))
			return false;
	}
	return true;
}


int expr__resolve_id(struct expr_parse_ctx *ctx, const char *id,
		     struct expr_id_data **datap)
{
	struct expr_id_data *data;

	if (expr__get_id(ctx, id, datap) || !*datap) {
		pr_debug("%s not found\n", id);
		return -1;
	}

	data = *datap;

	switch (data->kind) {
	case EXPR_ID_DATA__VALUE:
		pr_debug2("lookup(%s): val %f\n", id, data->val.val);
		break;
	case EXPR_ID_DATA__REF:
		pr_debug2("lookup(%s): ref metric name %s\n", id,
			data->ref.metric_name);
		pr_debug("processing metric: %s ENTRY\n", id);
		data->kind = EXPR_ID_DATA__REF_VALUE;
		if (expr__parse(&data->ref.val, ctx, data->ref.metric_expr)) {
			pr_debug("%s failed to count\n", id);
			return -1;
		}
		pr_debug("processing metric: %s EXIT: %f\n", id, data->ref.val);
		break;
	case EXPR_ID_DATA__REF_VALUE:
		pr_debug2("lookup(%s): ref val %f metric name %s\n", id,
			data->ref.val, data->ref.metric_name);
		break;
	default:
		assert(0);  /* Unreachable. */
	}

	return 0;
}

void expr__del_id(struct expr_parse_ctx *ctx, const char *id)
{
	struct expr_id_data *old_val = NULL;
	char *old_key = NULL;

	hashmap__delete(ctx->ids, id,
			(const void **)&old_key, (void **)&old_val);
	free(old_key);
	free(old_val);
}

struct expr_parse_ctx *expr__ctx_new(void)
{
	struct expr_parse_ctx *ctx;

	ctx = malloc(sizeof(struct expr_parse_ctx));
	if (!ctx)
		return NULL;

	ctx->ids = hashmap__new(key_hash, key_equal, NULL);
	if (IS_ERR(ctx->ids)) {
		free(ctx);
		return NULL;
	}
	ctx->runtime = 0;

	return ctx;
}

void expr__ctx_clear(struct expr_parse_ctx *ctx)
{
	struct hashmap_entry *cur;
	size_t bkt;

	hashmap__for_each_entry(ctx->ids, cur, bkt) {
		free((char *)cur->key);
		free(cur->value);
	}
	hashmap__clear(ctx->ids);
}

void expr__ctx_free(struct expr_parse_ctx *ctx)
{
	struct hashmap_entry *cur;
	size_t bkt;

	hashmap__for_each_entry(ctx->ids, cur, bkt) {
		free((char *)cur->key);
		free(cur->value);
	}
	hashmap__free(ctx->ids);
	free(ctx);
}

static int
__expr__parse(double *val, struct expr_parse_ctx *ctx, const char *expr,
	      bool compute_ids)
{
	struct expr_scanner_ctx scanner_ctx = {
		.runtime = ctx->runtime,
	};
	YY_BUFFER_STATE buffer;
	void *scanner;
	int ret;

	pr_debug2("parsing metric: %s\n", expr);

	ret = expr_lex_init_extra(&scanner_ctx, &scanner);
	if (ret)
		return ret;

	buffer = expr__scan_string(expr, scanner);

#ifdef PARSER_DEBUG
	expr_debug = 1;
	expr_set_debug(1, scanner);
#endif

	ret = expr_parse(val, ctx, compute_ids, scanner);

	expr__flush_buffer(buffer, scanner);
	expr__delete_buffer(buffer, scanner);
	expr_lex_destroy(scanner);
	return ret;
}

int expr__parse(double *final_val, struct expr_parse_ctx *ctx,
		const char *expr)
{
	return __expr__parse(final_val, ctx, expr, /*compute_ids=*/false) ? -1 : 0;
}

int expr__find_ids(const char *expr, const char *one,
		   struct expr_parse_ctx *ctx)
{
	int ret = __expr__parse(NULL, ctx, expr, /*compute_ids=*/true);

	if (one)
		expr__del_id(ctx, one);

	return ret;
}

double expr_id_data__value(const struct expr_id_data *data)
{
	if (data->kind == EXPR_ID_DATA__VALUE)
		return data->val.val;
	assert(data->kind == EXPR_ID_DATA__REF_VALUE);
	return data->ref.val;
}

double expr_id_data__source_count(const struct expr_id_data *data)
{
	assert(data->kind == EXPR_ID_DATA__VALUE);
	return data->val.source_count;
}

#if !defined(__i386__) && !defined(__x86_64__)
double arch_get_tsc_freq(void)
{
	return 0.0;
}
#endif

double expr__get_literal(const char *literal)
{
	static struct cpu_topology *topology;
	double result = NAN;

	if (!strcasecmp("#smt_on", literal)) {
		result = smt_on() > 0 ? 1.0 : 0.0;
		goto out;
	}

	if (!strcmp("#num_cpus", literal)) {
		result = cpu__max_present_cpu().cpu;
		goto out;
	}

	if (!strcasecmp("#system_tsc_freq", literal)) {
		result = arch_get_tsc_freq();
		goto out;
	}

	/*
	 * Assume that topology strings are consistent, such as CPUs "0-1"
	 * wouldn't be listed as "0,1", and so after deduplication the number of
	 * these strings gives an indication of the number of packages, dies,
	 * etc.
	 */
	if (!topology) {
		topology = cpu_topology__new();
		if (!topology) {
			pr_err("Error creating CPU topology");
			goto out;
		}
	}
	if (!strcmp("#num_packages", literal)) {
		result = topology->package_cpus_lists;
		goto out;
	}
	if (!strcmp("#num_dies", literal)) {
		result = topology->die_cpus_lists;
		goto out;
	}
	if (!strcmp("#num_cores", literal)) {
		result = topology->core_cpus_lists;
		goto out;
	}

	pr_err("Unrecognized literal '%s'", literal);
out:
	pr_debug2("literal: %s = %f\n", literal, result);
	return result;
}
back to top