https://github.com/weidai11/cryptopp
Raw File
eccrypto.h
// eccrypto.h - originally written and placed in the public domain by Wei Dai
//              deterministic signatures added by by Douglas Roark

/// \file eccrypto.h
/// \brief Classes and functions for Elliptic Curves over prime and binary fields

#ifndef CRYPTOPP_ECCRYPTO_H
#define CRYPTOPP_ECCRYPTO_H

#include "config.h"
#include "cryptlib.h"
#include "pubkey.h"
#include "integer.h"
#include "asn.h"
#include "hmac.h"
#include "sha.h"
#include "gfpcrypt.h"
#include "dh.h"
#include "mqv.h"
#include "hmqv.h"
#include "fhmqv.h"
#include "ecp.h"
#include "ec2n.h"

#include <iosfwd>

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
#endif

NAMESPACE_BEGIN(CryptoPP)

/// \brief Elliptic Curve Parameters
/// \tparam EC elliptic curve field
/// \details This class corresponds to the ASN.1 sequence of the same name
///  in ANSI X9.62 and SEC 1. EC is currently defined for ECP and EC2N.
template <class EC>
class DL_GroupParameters_EC : public DL_GroupParametersImpl<EcPrecomputation<EC> >
{
	typedef DL_GroupParameters_EC<EC> ThisClass;

public:
	typedef EC EllipticCurve;
	typedef typename EllipticCurve::Point Point;
	typedef Point Element;
	typedef IncompatibleCofactorMultiplication DefaultCofactorOption;

	virtual ~DL_GroupParameters_EC() {}

	/// \brief Construct an EC GroupParameters
	DL_GroupParameters_EC() : m_compress(false), m_encodeAsOID(true) {}

	/// \brief Construct an EC GroupParameters
	/// \param oid the OID of a curve
	DL_GroupParameters_EC(const OID &oid)
		: m_compress(false), m_encodeAsOID(true) {Initialize(oid);}

	/// \brief Construct an EC GroupParameters
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \param k the cofactor
	DL_GroupParameters_EC(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
		: m_compress(false), m_encodeAsOID(true) {Initialize(ec, G, n, k);}

	/// \brief Construct an EC GroupParameters
	/// \param bt BufferedTransformation with group parameters
	DL_GroupParameters_EC(BufferedTransformation &bt)
		: m_compress(false), m_encodeAsOID(true) {BERDecode(bt);}

	/// \brief Initialize an EC GroupParameters using {EC,G,n,k}
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \param k the cofactor
	/// \details This Initialize() function overload initializes group parameters from existing parameters.
	void Initialize(const EllipticCurve &ec, const Point &G, const Integer &n, const Integer &k = Integer::Zero())
	{
		this->m_groupPrecomputation.SetCurve(ec);
		this->SetSubgroupGenerator(G);
		m_n = n;
		m_k = k;
	}

	/// \brief Initialize a DL_GroupParameters_EC {EC,G,n,k}
	/// \param oid the OID of a curve
	/// \details This Initialize() function overload initializes group parameters from existing parameters.
	void Initialize(const OID &oid);

	// NameValuePairs
	bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const;
	void AssignFrom(const NameValuePairs &source);

	// GeneratibleCryptoMaterial interface
	/// this implementation doesn't actually generate a curve, it just initializes the parameters with existing values
	/*! parameters: (Curve, SubgroupGenerator, SubgroupOrder, Cofactor (optional)), or (GroupOID) */
	void GenerateRandom(RandomNumberGenerator &rng, const NameValuePairs &alg);

	// DL_GroupParameters
	const DL_FixedBasePrecomputation<Element> & GetBasePrecomputation() const {return this->m_gpc;}
	DL_FixedBasePrecomputation<Element> & AccessBasePrecomputation() {return this->m_gpc;}
	const Integer & GetSubgroupOrder() const {return m_n;}
	Integer GetCofactor() const;
	bool ValidateGroup(RandomNumberGenerator &rng, unsigned int level) const;
	bool ValidateElement(unsigned int level, const Element &element, const DL_FixedBasePrecomputation<Element> *precomp) const;
	bool FastSubgroupCheckAvailable() const {return false;}
	void EncodeElement(bool reversible, const Element &element, byte *encoded) const
	{
		if (reversible)
			GetCurve().EncodePoint(encoded, element, m_compress);
		else
			element.x.Encode(encoded, GetEncodedElementSize(false));
	}
	virtual unsigned int GetEncodedElementSize(bool reversible) const
	{
		if (reversible)
			return GetCurve().EncodedPointSize(m_compress);
		else
			return GetCurve().GetField().MaxElementByteLength();
	}
	Element DecodeElement(const byte *encoded, bool checkForGroupMembership) const
	{
		Point result;
		if (!GetCurve().DecodePoint(result, encoded, GetEncodedElementSize(true)))
			throw DL_BadElement();
		if (checkForGroupMembership && !ValidateElement(1, result, NULLPTR))
			throw DL_BadElement();
		return result;
	}
	Integer ConvertElementToInteger(const Element &element) const;
	Integer GetMaxExponent() const {return GetSubgroupOrder()-1;}
	bool IsIdentity(const Element &element) const {return element.identity;}
	void SimultaneousExponentiate(Element *results, const Element &base, const Integer *exponents, unsigned int exponentsCount) const;
	static std::string CRYPTOPP_API StaticAlgorithmNamePrefix() {return "EC";}

	// ASN1Key
	OID GetAlgorithmID() const;

	// used by MQV
	Element MultiplyElements(const Element &a, const Element &b) const;
	Element CascadeExponentiate(const Element &element1, const Integer &exponent1, const Element &element2, const Integer &exponent2) const;

	// non-inherited

	// enumerate OIDs for recommended parameters, use OID() to get first one
	static OID CRYPTOPP_API GetNextRecommendedParametersOID(const OID &oid);

	void BERDecode(BufferedTransformation &bt);
	void DEREncode(BufferedTransformation &bt) const;

	void SetPointCompression(bool compress) {m_compress = compress;}
	bool GetPointCompression() const {return m_compress;}

	void SetEncodeAsOID(bool encodeAsOID) {m_encodeAsOID = encodeAsOID;}
	bool GetEncodeAsOID() const {return m_encodeAsOID;}

	const EllipticCurve& GetCurve() const {return this->m_groupPrecomputation.GetCurve();}

	bool operator==(const ThisClass &rhs) const
		{return this->m_groupPrecomputation.GetCurve() == rhs.m_groupPrecomputation.GetCurve() && this->m_gpc.GetBase(this->m_groupPrecomputation) == rhs.m_gpc.GetBase(rhs.m_groupPrecomputation);}

protected:
	unsigned int FieldElementLength() const {return GetCurve().GetField().MaxElementByteLength();}
	unsigned int ExponentLength() const {return m_n.ByteCount();}

	OID m_oid;			// set if parameters loaded from a recommended curve
	Integer m_n;		// order of base point
	mutable Integer m_k;		// cofactor
	mutable bool m_compress, m_encodeAsOID;		// presentation details
};

inline std::ostream& operator<<(std::ostream& os, const DL_GroupParameters_EC<ECP>::Element& obj);

/// \brief Elliptic Curve Discrete Log (DL) public key
/// \tparam EC elliptic curve field
template <class EC>
class DL_PublicKey_EC : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
	typedef typename EC::Point Element;

	virtual ~DL_PublicKey_EC() {}

	/// \brief Initialize an EC Public Key using {GP,Q}
	/// \param params group parameters
	/// \param Q the public point
	/// \details This Initialize() function overload initializes a public key from existing parameters.
	void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
		{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}

	/// \brief Initialize an EC Public Key using {EC,G,n,Q}
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \param Q the public point
	/// \details This Initialize() function overload initializes a public key from existing parameters.
	void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
		{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}

	// X509PublicKey
	void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
	void DEREncodePublicKey(BufferedTransformation &bt) const;
};

/// \brief Elliptic Curve Discrete Log (DL) private key
/// \tparam EC elliptic curve field
template <class EC>
class DL_PrivateKey_EC : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
	typedef typename EC::Point Element;

	virtual ~DL_PrivateKey_EC();

	/// \brief Initialize an EC Private Key using {GP,x}
	/// \param params group parameters
	/// \param x the private exponent
	/// \details This Initialize() function overload initializes a private key from existing parameters.
	void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
		{this->AccessGroupParameters() = params; this->SetPrivateExponent(x);}

	/// \brief Initialize an EC Private Key using {EC,G,n,x}
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \param x the private exponent
	/// \details This Initialize() function overload initializes a private key from existing parameters.
	void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
		{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPrivateExponent(x);}

	/// \brief Create an EC private key
	/// \param rng a RandomNumberGenerator derived class
	/// \param params the EC group parameters
	/// \details This function overload of Initialize() creates a new private key because it
	///  takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
	///  then use one of the other Initialize() overloads.
	void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> &params)
		{this->GenerateRandom(rng, params);}

	/// \brief Create an EC private key
	/// \param rng a RandomNumberGenerator derived class
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \details This function overload of Initialize() creates a new private key because it
	///  takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
	///  then use one of the other Initialize() overloads.
	void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
		{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}

	// PKCS8PrivateKey
	void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
	void DEREncodePrivateKey(BufferedTransformation &bt) const;
};

// Out-of-line dtor due to AIX and GCC, http://github.com/weidai11/cryptopp/issues/499
template<class EC>
DL_PrivateKey_EC<EC>::~DL_PrivateKey_EC() {}

/// \brief Elliptic Curve Diffie-Hellman
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECDH">Elliptic Curve Diffie-Hellman, AKA ECDH</a>
/// \since Crypto++ 3.0
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECDH
{
	typedef DH_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
};

/// \brief Elliptic Curve Menezes-Qu-Vanstone
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \sa CofactorMultiplicationOption, <a href="http://www.weidai.com/scan-mirror/ka.html#ECMQV">Elliptic Curve Menezes-Qu-Vanstone, AKA ECMQV</a>
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption>
struct ECMQV
{
	typedef MQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION> Domain;
};

/// \brief Hashed Elliptic Curve Menezes-Qu-Vanstone
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \details This implementation follows Hugo Krawczyk's <a href="http://eprint.iacr.org/2005/176">HMQV: A High-Performance
///  Secure Diffie-Hellman Protocol</a>. Note: this implements HMQV only. HMQV-C with Key Confirmation is not provided.
/// \sa CofactorMultiplicationOption
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECHMQV
{
	typedef HMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
};

typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption,   SHA1 >::Domain ECHMQV160;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECHMQV256;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECHMQV384;
typedef ECHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECHMQV512;

/// \brief Fully Hashed Elliptic Curve Menezes-Qu-Vanstone
/// \tparam EC elliptic curve field
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \details This implementation follows Augustin P. Sarr and Philippe Elbaz–Vincent, and Jean–Claude Bajard's
///  <a href="http://eprint.iacr.org/2009/408">A Secure and Efficient Authenticated Diffie-Hellman Protocol</a>.
///  Note: this is FHMQV, Protocol 5, from page 11; and not FHMQV-C.
/// \sa CofactorMultiplicationOption
template <class EC, class COFACTOR_OPTION = typename DL_GroupParameters_EC<EC>::DefaultCofactorOption, class HASH = SHA256>
struct ECFHMQV
{
	typedef FHMQV_Domain<DL_GroupParameters_EC<EC>, COFACTOR_OPTION, HASH> Domain;
};

typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption,   SHA1 >::Domain ECFHMQV160;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA256 >::Domain ECFHMQV256;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA384 >::Domain ECFHMQV384;
typedef ECFHMQV< ECP, DL_GroupParameters_EC< ECP >::DefaultCofactorOption, SHA512 >::Domain ECFHMQV512;

/// \brief Elliptic Curve Discrete Log (DL) keys
/// \tparam EC elliptic curve field
template <class EC>
struct DL_Keys_EC
{
	typedef DL_PublicKey_EC<EC> PublicKey;
	typedef DL_PrivateKey_EC<EC> PrivateKey;
};

// Forward declaration; documented below
template <class EC, class H>
struct ECDSA;

/// \brief Elliptic Curve DSA keys
/// \tparam EC elliptic curve field
/// \since Crypto++ 3.2
template <class EC>
struct DL_Keys_ECDSA
{
	typedef DL_PublicKey_EC<EC> PublicKey;
	typedef DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC>, ECDSA<EC, SHA256> > PrivateKey;
};

/// \brief Elliptic Curve DSA (ECDSA) signature algorithm
/// \tparam EC elliptic curve field
/// \since Crypto++ 3.2
template <class EC>
class DL_Algorithm_ECDSA : public DL_Algorithm_GDSA<typename EC::Point>
{
public:
  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA";}
};

/// \brief Elliptic Curve DSA (ECDSA) signature algorithm based on RFC 6979
/// \tparam EC elliptic curve field
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">RFC 6979, Deterministic Usage of the
///  Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
/// \since Crypto++ 6.0
template <class EC, class H>
class DL_Algorithm_ECDSA_RFC6979 : public DL_Algorithm_DSA_RFC6979<typename EC::Point, H>
{
public:
  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECDSA-RFC6979";}
};

/// \brief Elliptic Curve NR (ECNR) signature algorithm
/// \tparam EC elliptic curve field
template <class EC>
class DL_Algorithm_ECNR : public DL_Algorithm_NR<typename EC::Point>
{
public:
  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECNR";}
};

/// \brief Elliptic Curve DSA (ECDSA) signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
/// \sa <a href="http://www.weidai.com/scan-mirror/sig.html#ECDSA">ECDSA</a>
/// \since Crypto++ 3.2
template <class EC, class H>
struct ECDSA : public DL_SS<DL_Keys_ECDSA<EC>, DL_Algorithm_ECDSA<EC>, DL_SignatureMessageEncodingMethod_DSA, H>
{
};

/// \brief Elliptic Curve DSA (ECDSA) deterministic signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
/// \sa <a href="http://tools.ietf.org/rfc/rfc6979.txt">Deterministic Usage of the
///  Digital Signature Algorithm (DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA)</a>
/// \since Crypto++ 6.0
template <class EC, class H>
struct ECDSA_RFC6979 : public DL_SS<
	DL_Keys_ECDSA<EC>,
	DL_Algorithm_ECDSA_RFC6979<EC, H>,
	DL_SignatureMessageEncodingMethod_DSA,
	H,
	ECDSA_RFC6979<EC,H> >
{
	static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECDSA-RFC6979/") + H::StaticAlgorithmName();}
};

/// \brief Elliptic Curve NR (ECNR) signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
template <class EC, class H = SHA1>
struct ECNR : public DL_SS<DL_Keys_EC<EC>, DL_Algorithm_ECNR<EC>, DL_SignatureMessageEncodingMethod_NR, H>
{
};

// ******************************************

template <class EC>
class DL_PublicKey_ECGDSA;
template <class EC>
class DL_PrivateKey_ECGDSA;

/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
class DL_PrivateKey_ECGDSA : public DL_PrivateKeyImpl<DL_GroupParameters_EC<EC> >
{
public:
	typedef typename EC::Point Element;

	virtual ~DL_PrivateKey_ECGDSA() {}

	/// \brief Initialize an EC Private Key using {GP,x}
	/// \param params group parameters
	/// \param x the private exponent
	/// \details This Initialize() function overload initializes a private key from existing parameters.
	void Initialize(const DL_GroupParameters_EC<EC> &params, const Integer &x)
	{
		this->AccessGroupParameters() = params;
		this->SetPrivateExponent(x);
		CRYPTOPP_ASSERT(x>=1 && x<=params.GetSubgroupOrder()-1);
	}

	/// \brief Initialize an EC Private Key using {EC,G,n,x}
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \param x the private exponent
	/// \details This Initialize() function overload initializes a private key from existing parameters.
	void Initialize(const EC &ec, const Element &G, const Integer &n, const Integer &x)
	{
		this->AccessGroupParameters().Initialize(ec, G, n);
		this->SetPrivateExponent(x);
		CRYPTOPP_ASSERT(x>=1 && x<=this->AccessGroupParameters().GetSubgroupOrder()-1);
	}

	/// \brief Create an EC private key
	/// \param rng a RandomNumberGenerator derived class
	/// \param params the EC group parameters
	/// \details This function overload of Initialize() creates a new private key because it
	///  takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
	///  then use one of the other Initialize() overloads.
	void Initialize(RandomNumberGenerator &rng, const DL_GroupParameters_EC<EC> &params)
		{this->GenerateRandom(rng, params);}

	/// \brief Create an EC private key
	/// \param rng a RandomNumberGenerator derived class
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \details This function overload of Initialize() creates a new private key because it
	///  takes a RandomNumberGenerator() as a parameter. If you have an existing keypair,
	///  then use one of the other Initialize() overloads.
	void Initialize(RandomNumberGenerator &rng, const EC &ec, const Element &G, const Integer &n)
		{this->GenerateRandom(rng, DL_GroupParameters_EC<EC>(ec, G, n));}

	virtual void MakePublicKey(DL_PublicKey_ECGDSA<EC> &pub) const
	{
		const DL_GroupParameters<Element>& params = this->GetAbstractGroupParameters();
		pub.AccessAbstractGroupParameters().AssignFrom(params);
		const Integer &xInv = this->GetPrivateExponent().InverseMod(params.GetSubgroupOrder());
		pub.SetPublicElement(params.ExponentiateBase(xInv));
		CRYPTOPP_ASSERT(xInv.NotZero());
	}

	virtual bool GetVoidValue(const char *name, const std::type_info &valueType, void *pValue) const
	{
		return GetValueHelper<DL_PrivateKey_ECGDSA<EC>,
			DL_PrivateKey_ECGDSA<EC> >(this, name, valueType, pValue).Assignable();
	}

	virtual void AssignFrom(const NameValuePairs &source)
	{
		AssignFromHelper<DL_PrivateKey_ECGDSA<EC>,
			DL_PrivateKey_ECGDSA<EC> >(this, source);
	}

	// PKCS8PrivateKey
	void BERDecodePrivateKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
	void DEREncodePrivateKey(BufferedTransformation &bt) const;
};

/// \brief Elliptic Curve German DSA key for ISO/IEC 15946
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
class DL_PublicKey_ECGDSA : public DL_PublicKeyImpl<DL_GroupParameters_EC<EC> >
{
	typedef DL_PublicKey_ECGDSA<EC> ThisClass;

public:
	typedef typename EC::Point Element;

	virtual ~DL_PublicKey_ECGDSA() {}

	/// \brief Initialize an EC Public Key using {GP,Q}
	/// \param params group parameters
	/// \param Q the public point
	/// \details This Initialize() function overload initializes a public key from existing parameters.
	void Initialize(const DL_GroupParameters_EC<EC> &params, const Element &Q)
		{this->AccessGroupParameters() = params; this->SetPublicElement(Q);}

	/// \brief Initialize an EC Public Key using {EC,G,n,Q}
	/// \param ec the elliptic curve
	/// \param G the base point
	/// \param n the order of the base point
	/// \param Q the public point
	/// \details This Initialize() function overload initializes a public key from existing parameters.
	void Initialize(const EC &ec, const Element &G, const Integer &n, const Element &Q)
		{this->AccessGroupParameters().Initialize(ec, G, n); this->SetPublicElement(Q);}

	virtual void AssignFrom(const NameValuePairs &source)
	{
		DL_PrivateKey_ECGDSA<EC> *pPrivateKey = NULLPTR;
		if (source.GetThisPointer(pPrivateKey))
			pPrivateKey->MakePublicKey(*this);
		else
		{
			this->AccessAbstractGroupParameters().AssignFrom(source);
			AssignFromHelper(this, source)
				CRYPTOPP_SET_FUNCTION_ENTRY(PublicElement);
		}
	}

	// DL_PublicKey<T>
	virtual void SetPublicElement(const Element &y)
		{this->AccessPublicPrecomputation().SetBase(this->GetAbstractGroupParameters().GetGroupPrecomputation(), y);}

	// X509PublicKey
	void BERDecodePublicKey(BufferedTransformation &bt, bool parametersPresent, size_t size);
	void DEREncodePublicKey(BufferedTransformation &bt) const;
};

/// \brief Elliptic Curve German DSA keys for ISO/IEC 15946
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
struct DL_Keys_ECGDSA
{
	typedef DL_PublicKey_ECGDSA<EC> PublicKey;
	typedef DL_PrivateKey_ECGDSA<EC> PrivateKey;
};

/// \brief Elliptic Curve German DSA signature algorithm
/// \tparam EC elliptic curve field
/// \sa ECGDSA
/// \since Crypto++ 6.0
template <class EC>
class DL_Algorithm_ECGDSA : public DL_Algorithm_GDSA_ISO15946<typename EC::Point>
{
public:
  CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECGDSA";}
};

/// \brief Elliptic Curve German Digital Signature Algorithm signature scheme
/// \tparam EC elliptic curve field
/// \tparam H HashTransformation derived class
/// \sa Erwin Hess, Marcus Schafheutle, and Pascale Serf <A
///  HREF="http://www.teletrust.de/fileadmin/files/oid/ecgdsa_final.pdf">The Digital Signature Scheme
///  ECGDSA (October 24, 2006)</A>
/// \since Crypto++ 6.0
template <class EC, class H>
struct ECGDSA : public DL_SS<
	DL_Keys_ECGDSA<EC>,
	DL_Algorithm_ECGDSA<EC>,
	DL_SignatureMessageEncodingMethod_DSA,
	H>
{
	static std::string CRYPTOPP_API StaticAlgorithmName() {return std::string("ECGDSA-ISO15946/") + H::StaticAlgorithmName();}
};

// ******************************************

/// \brief Elliptic Curve Integrated Encryption Scheme
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \tparam HASH HashTransformation derived class used for key derivation and MAC computation
/// \tparam DHAES_MODE flag indicating if the MAC includes additional context parameters such as <em>u·V</em>, <em>v·U</em> and label
/// \tparam LABEL_OCTETS flag indicating if the label size is specified in octets or bits
/// \details ECIES is an Elliptic Curve based Integrated Encryption Scheme (IES). The scheme combines a Key Encapsulation
///  Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
///  <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
///  You should prefer an Integrated Encryption Scheme over homegrown schemes.
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES_P1363.
///  If you desire an Integrated Encryption Scheme compatible with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
///  template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
/// \details The default template parameters ensure compatibility with Bouncy Castle 1.54 and Botan 1.11. The combination of
///  <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
///  SHA1 is used for compatibility reasons, but it can be changed if desired.
/// \sa DLIES, ECIES_P1363, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
///  Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
///  Curve Integrated Encryption Schemes</A>
/// \since Crypto++ 4.0, Crypto++ 5.7 for Bouncy Castle and Botan compatibility
template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication, bool DHAES_MODE = true, bool LABEL_OCTETS = false>
struct ECIES
	: public DL_ES<
		DL_Keys_EC<EC>,
		DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
		DL_KeyDerivationAlgorithm_P1363<typename EC::Point, DHAES_MODE, P1363_KDF2<HASH> >,
		DL_EncryptionAlgorithm_Xor<HMAC<HASH>, DHAES_MODE, LABEL_OCTETS>,
		ECIES<EC> >
{
	// TODO: fix this after name is standardized
	CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES";}
};

/// \brief Elliptic Curve Integrated Encryption Scheme for P1363
/// \tparam COFACTOR_OPTION cofactor multiplication option
/// \tparam HASH HashTransformation derived class used for key derivation and MAC computation
/// \details ECIES_P1363 is an Elliptic Curve based Integrated Encryption Scheme (IES) for P1363. The scheme combines a Key Encapsulation
///  Method (KEM) with a Data Encapsulation Method (DEM) and a MAC tag. The scheme is
///  <A HREF="http://en.wikipedia.org/wiki/ciphertext_indistinguishability">IND-CCA2</A>, which is a strong notion of security.
///  You should prefer an Integrated Encryption Scheme over homegrown schemes.
/// \details The library's original implementation is based on an early P1363 draft, which itself appears to be based on an early Certicom
///  SEC-1 draft (or an early SEC-1 draft was based on a P1363 draft). Crypto++ 4.2 used the early draft in its Integrated Enryption
///  Schemes with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=false</tt> and <tt>LABEL_OCTETS=true</tt>.
/// \details If you desire an Integrated Encryption Scheme with Crypto++ 4.2 compatibility, then use the ECIES_P1363.
///  If you desire an Integrated Encryption Scheme compatible with Bouncy Castle 1.54 and Botan 1.11 compatibility, then use the ECIES
///  template class with <tt>NoCofactorMultiplication</tt>, <tt>DHAES_MODE=true</tt> and <tt>LABEL_OCTETS=false</tt>.
/// \details The default template parameters ensure compatibility with P1363. The combination of
///  <tt>IncompatibleCofactorMultiplication</tt> and <tt>DHAES_MODE=true</tt> is recommended for best efficiency and security.
///  SHA1 is used for compatibility reasons, but it can be changed if desired.
/// \sa DLIES, ECIES, <a href="http://www.weidai.com/scan-mirror/ca.html#ECIES">Elliptic Curve Integrated Encryption Scheme (ECIES)</a>,
///  Martínez, Encinas, and Ávila's <A HREF="http://digital.csic.es/bitstream/10261/32671/1/V2-I2-P7-13.pdf">A Survey of the Elliptic
///  Curve Integrated Encryption Schemes</A>
/// \since Crypto++ 4.0
template <class EC, class HASH = SHA1, class COFACTOR_OPTION = NoCofactorMultiplication>
struct ECIES_P1363
	: public DL_ES<
		DL_Keys_EC<EC>,
		DL_KeyAgreementAlgorithm_DH<typename EC::Point, COFACTOR_OPTION>,
		DL_KeyDerivationAlgorithm_P1363<typename EC::Point, false, P1363_KDF2<HASH> >,
		DL_EncryptionAlgorithm_Xor<HMAC<HASH>, false, true>,
		ECIES<EC> >
{
	// TODO: fix this after name is standardized
	CRYPTOPP_STATIC_CONSTEXPR const char* CRYPTOPP_API StaticAlgorithmName() {return "ECIES-P1363";}
};

NAMESPACE_END

#ifdef CRYPTOPP_MANUALLY_INSTANTIATE_TEMPLATES
#include "eccrypto.cpp"
#endif

NAMESPACE_BEGIN(CryptoPP)

CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_GroupParameters_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PublicKey_ECGDSA<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<ECP> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKeyImpl<DL_GroupParameters_EC<EC2N> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_EC<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<ECP>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_ECGDSA<EC2N>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<ECP::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_Algorithm_GDSA<EC2N::Point>;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<ECP>, ECDSA<ECP, SHA256> >;
CRYPTOPP_DLL_TEMPLATE_CLASS DL_PrivateKey_WithSignaturePairwiseConsistencyTest<DL_PrivateKey_EC<EC2N>, ECDSA<EC2N, SHA256> >;

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif
back to top