https://github.com/weidai11/cryptopp
Raw File
iterhash.h
// iterhash.h - originally written and placed in the public domain by Wei Dai

/// \file iterhash.h
/// \brief Base classes for iterated hashes

#ifndef CRYPTOPP_ITERHASH_H
#define CRYPTOPP_ITERHASH_H

#include "cryptlib.h"
#include "secblock.h"
#include "misc.h"
#include "simple.h"

#if CRYPTOPP_MSC_VERSION
# pragma warning(push)
# pragma warning(disable: 4231 4275)
# if (CRYPTOPP_MSC_VERSION >= 1400)
#  pragma warning(disable: 6011 6386 28193)
# endif
#endif

NAMESPACE_BEGIN(CryptoPP)

/// \brief Exception thrown when trying to hash more data than is allowed by a hash function
class CRYPTOPP_DLL HashInputTooLong : public InvalidDataFormat
{
public:
	explicit HashInputTooLong(const std::string &alg)
		: InvalidDataFormat("IteratedHashBase: input data exceeds maximum allowed by hash function " + alg) {}
};

/// \brief Iterated hash base class
/// \tparam T Hash word type
/// \tparam BASE HashTransformation derived class
/// \details IteratedHashBase provides an interface for block-based iterated hashes
/// \sa HashTransformation, MessageAuthenticationCode
template <class T, class BASE>
class CRYPTOPP_NO_VTABLE IteratedHashBase : public BASE
{
public:
	typedef T HashWordType;

	virtual ~IteratedHashBase() {}

	/// \brief Construct an IteratedHashBase
	IteratedHashBase() : m_countLo(0), m_countHi(0) {}

	/// \brief Provides the input block size most efficient for this cipher.
	/// \return The input block size that is most efficient for the cipher
	/// \details The base class implementation returns MandatoryBlockSize().
	/// \note Optimal input length is
	///   <tt>n * OptimalBlockSize() - GetOptimalBlockSizeUsed()</tt> for any <tt>n \> 0</tt>.
	unsigned int OptimalBlockSize() const {return this->BlockSize();}

	/// \brief Provides input and output data alignment for optimal performance.
	/// \return the input data alignment that provides optimal performance
	/// \details OptimalDataAlignment returns the natural alignment of the hash word.
	unsigned int OptimalDataAlignment() const {return GetAlignmentOf<T>();}

	/// \brief Updates a hash with additional input
	/// \param input the additional input as a buffer
	/// \param length the size of the buffer, in bytes
	void Update(const byte *input, size_t length);

	/// \brief Requests space which can be written into by the caller
	/// \param size the requested size of the buffer
	/// \details The purpose of this method is to help avoid extra memory allocations.
	/// \details size is an \a IN and \a OUT parameter and used as a hint. When the call is made,
	///   size is the requested size of the buffer. When the call returns, size is the size of
	///   the array returned to the caller.
	/// \details The base class implementation sets  size to 0 and returns  NULL.
	/// \note Some objects, like ArraySink, cannot create a space because its fixed.
	byte * CreateUpdateSpace(size_t &size);

	/// \brief Restart the hash
	/// \details Discards the current state, and restart for a new message
	void Restart();

	/// \brief Computes the hash of the current message
	/// \param digest a pointer to the buffer to receive the hash
	/// \param digestSize the size of the truncated digest, in bytes
	/// \details TruncatedFinal() calls Final() and then copies digestSize bytes to digest.
	///   The hash is restarted the hash for the next message.
	void TruncatedFinal(byte *digest, size_t digestSize);

	/// \brief Retrieve the provider of this algorithm
	/// \return the algorithm provider
	/// \details The algorithm provider can be a name like "C++", "SSE", "NEON", "AESNI",
	///    "ARMv8" and "Power8". C++ is standard C++ code. Other labels, like SSE,
	///    usually indicate a specialized implementation using instructions from a higher
	///    instruction set architecture (ISA). Future labels may include external hardware
	///    like a hardware security module (HSM).
	/// \note  Provider is not universally implemented yet.
	virtual std::string AlgorithmProvider() const { return "C++"; }

protected:
	inline T GetBitCountHi() const
		{return (m_countLo >> (8*sizeof(T)-3)) + (m_countHi << 3);}
	inline T GetBitCountLo() const
		{return m_countLo << 3;}

	void PadLastBlock(unsigned int lastBlockSize, byte padFirst=0x80);
	virtual void Init() =0;

	virtual ByteOrder GetByteOrder() const =0;
	virtual void HashEndianCorrectedBlock(const HashWordType *data) =0;
	virtual size_t HashMultipleBlocks(const T *input, size_t length);
	void HashBlock(const HashWordType *input)
		{HashMultipleBlocks(input, this->BlockSize());}

	virtual T* DataBuf() =0;
	virtual T* StateBuf() =0;

private:
	T m_countLo, m_countHi;
};

/// \brief Iterated hash base class
/// \tparam T_HashWordType Hash word type
/// \tparam T_Endianness Endianness type of hash
/// \tparam T_BlockSize Block size of the hash
/// \tparam T_Base HashTransformation derived class
/// \details IteratedHash provides a default implementation for block-based iterated hashes
/// \sa HashTransformation, MessageAuthenticationCode
template <class T_HashWordType, class T_Endianness, unsigned int T_BlockSize, class T_Base = HashTransformation>
class CRYPTOPP_NO_VTABLE IteratedHash : public IteratedHashBase<T_HashWordType, T_Base>
{
public:
	typedef T_Endianness ByteOrderClass;
	typedef T_HashWordType HashWordType;

	CRYPTOPP_CONSTANT(BLOCKSIZE = T_BlockSize);
	// BCB2006 workaround: can't use BLOCKSIZE here
	CRYPTOPP_COMPILE_ASSERT((T_BlockSize & (T_BlockSize - 1)) == 0);	// blockSize is a power of 2

	virtual ~IteratedHash() {}

	/// \brief Provides the block size of the hash
	/// \return the block size of the hash, in bytes
	/// \details BlockSize() returns <tt>T_BlockSize</tt>.
	unsigned int BlockSize() const {return T_BlockSize;}

	/// \brief Provides the byte order of the hash
	/// \return the byte order of the hash as an enumeration
	/// \details GetByteOrder() returns <tt>T_Endianness::ToEnum()</tt>.
	/// \sa ByteOrder()
	ByteOrder GetByteOrder() const {return T_Endianness::ToEnum();}

	/// \brief Adjusts the byte ordering of the hash
	/// \param out the output buffer
	/// \param in the input buffer
	/// \param byteCount the size of the buffers, in bytes
	/// \details CorrectEndianess() calls ConditionalByteReverse() using <tt>T_Endianness</tt>.
	inline void CorrectEndianess(HashWordType *out, const HashWordType *in, size_t byteCount)
	{
		CRYPTOPP_ASSERT(in != NULLPTR);
		CRYPTOPP_ASSERT(out != NULLPTR);
		CRYPTOPP_ASSERT(IsAligned<T_HashWordType>(in));
		CRYPTOPP_ASSERT(IsAligned<T_HashWordType>(out));

		ConditionalByteReverse(T_Endianness::ToEnum(), out, in, byteCount);
	}

protected:
	enum { Blocks = T_BlockSize/sizeof(T_HashWordType) };
	T_HashWordType* DataBuf() {return this->m_data;}
	FixedSizeSecBlock<T_HashWordType, Blocks> m_data;
};

/// \brief Iterated hash with a static transformation function
/// \tparam T_HashWordType Hash word type
/// \tparam T_Endianness Endianness type of hash
/// \tparam T_BlockSize Block size of the hash
/// \tparam T_StateSize Internal state size of the hash
/// \tparam T_Transform HashTransformation derived class
/// \tparam T_DigestSize Digest size of the hash
/// \tparam T_StateAligned Flag indicating if state is 16-byte aligned
/// \sa HashTransformation, MessageAuthenticationCode
template <class T_HashWordType, class T_Endianness, unsigned int T_BlockSize, unsigned int T_StateSize, class T_Transform, unsigned int T_DigestSize = 0, bool T_StateAligned = false>
class CRYPTOPP_NO_VTABLE IteratedHashWithStaticTransform
	: public ClonableImpl<T_Transform, AlgorithmImpl<IteratedHash<T_HashWordType, T_Endianness, T_BlockSize>, T_Transform> >
{
public:
	CRYPTOPP_CONSTANT(DIGESTSIZE = T_DigestSize ? T_DigestSize : T_StateSize);

	virtual ~IteratedHashWithStaticTransform() {}

	/// \brief Provides the digest size of the hash
	/// \return the digest size of the hash, in bytes
	/// \details DigestSize() returns <tt>DIGESTSIZE</tt>.
	unsigned int DigestSize() const {return DIGESTSIZE;}

protected:
	// https://github.com/weidai11/cryptopp/issues/147#issuecomment-766231864
	IteratedHashWithStaticTransform() {IteratedHashWithStaticTransform::Init();}
	void HashEndianCorrectedBlock(const T_HashWordType *data) {T_Transform::Transform(this->m_state, data);}
	void Init() {T_Transform::InitState(this->m_state);}

	enum { Blocks = T_BlockSize/sizeof(T_HashWordType) };
	T_HashWordType* StateBuf() {return this->m_state;}
	FixedSizeAlignedSecBlock<T_HashWordType, Blocks, T_StateAligned> m_state;
};

#if !defined(__GNUC__) && !defined(__clang__)
	CRYPTOPP_DLL_TEMPLATE_CLASS IteratedHashBase<word64, HashTransformation>;
	CRYPTOPP_STATIC_TEMPLATE_CLASS IteratedHashBase<word64, MessageAuthenticationCode>;

	CRYPTOPP_DLL_TEMPLATE_CLASS IteratedHashBase<word32, HashTransformation>;
	CRYPTOPP_STATIC_TEMPLATE_CLASS IteratedHashBase<word32, MessageAuthenticationCode>;
#endif

NAMESPACE_END

#if CRYPTOPP_MSC_VERSION
# pragma warning(pop)
#endif

#endif
back to top