https://github.com/weidai11/cryptopp
Raw File
mqv.h
// mqv.h - originally written and placed in the public domain by Wei Dai

/// \file mqv.h
/// \brief Classes for Menezes–Qu–Vanstone (MQV) key agreement
/// \since Crypto++ 3.0

#ifndef CRYPTOPP_MQV_H
#define CRYPTOPP_MQV_H

#include "cryptlib.h"
#include "gfpcrypt.h"
#include "modarith.h"
#include "integer.h"
#include "algebra.h"
#include "misc.h"

NAMESPACE_BEGIN(CryptoPP)

/// \brief MQV domain for performing authenticated key agreement
/// \tparam GROUP_PARAMETERS doamin parameters
/// \tparam COFACTOR_OPTION cofactor option
/// \details GROUP_PARAMETERS parameters include the curve coefcients and the base point.
///   Binary curves use a polynomial to represent its characteristic, while prime curves
///   use a prime number.
/// \sa MQV, HMQV, FHMQV, and AuthenticatedKeyAgreementDomain
/// \since Crypto++ 3.0
template <class GROUP_PARAMETERS, class COFACTOR_OPTION = typename GROUP_PARAMETERS::DefaultCofactorOption>
class MQV_Domain : public AuthenticatedKeyAgreementDomain
{
public:
	typedef GROUP_PARAMETERS GroupParameters;
	typedef typename GroupParameters::Element Element;
	typedef MQV_Domain<GROUP_PARAMETERS, COFACTOR_OPTION> Domain;

	/// \brief Construct a MQV domain
	MQV_Domain() {}

	/// \brief Construct a MQV domain
	/// \param params group parameters and options
	MQV_Domain(const GroupParameters &params)
		: m_groupParameters(params) {}

	/// \brief Construct a MQV domain
	/// \param bt BufferedTransformation with group parameters and options
	MQV_Domain(BufferedTransformation &bt)
		{m_groupParameters.BERDecode(bt);}

	/// \brief Construct a MQV domain
	/// \tparam T1 template parameter used as a constructor parameter
	/// \tparam T2 template parameter used as a constructor parameter
	/// \param v1 first parameter
	/// \param v2 second parameter
	/// \details v1 and v2 are passed directly to the GROUP_PARAMETERS object.
	template <class T1, class T2>
	MQV_Domain(T1 v1, T2 v2)
		{m_groupParameters.Initialize(v1, v2);}

	/// \brief Construct a MQV domain
	/// \tparam T1 template parameter used as a constructor parameter
	/// \tparam T2 template parameter used as a constructor parameter
	/// \tparam T3 template parameter used as a constructor parameter
	/// \param v1 first parameter
	/// \param v2 second parameter
	/// \param v3 third parameter
	/// \details v1, v2 and v3 are passed directly to the GROUP_PARAMETERS object.
	template <class T1, class T2, class T3>
	MQV_Domain(T1 v1, T2 v2, T3 v3)
		{m_groupParameters.Initialize(v1, v2, v3);}

	/// \brief Construct a MQV domain
	/// \tparam T1 template parameter used as a constructor parameter
	/// \tparam T2 template parameter used as a constructor parameter
	/// \tparam T3 template parameter used as a constructor parameter
	/// \tparam T4 template parameter used as a constructor parameter
	/// \param v1 first parameter
	/// \param v2 second parameter
	/// \param v3 third parameter
	/// \param v4 third parameter
	/// \details v1, v2, v3 and v4 are passed directly to the GROUP_PARAMETERS object.
	template <class T1, class T2, class T3, class T4>
	MQV_Domain(T1 v1, T2 v2, T3 v3, T4 v4)
		{m_groupParameters.Initialize(v1, v2, v3, v4);}

	/// \brief Retrieves the group parameters for this domain
	/// \return the group parameters for this domain as a const reference
	const GroupParameters & GetGroupParameters() const {return m_groupParameters;}

	/// \brief Retrieves the group parameters for this domain
	/// \return the group parameters for this domain as a non-const reference
	GroupParameters & AccessGroupParameters() {return m_groupParameters;}

	/// \brief Retrieves the crypto parameters for this domain
	/// \return the crypto parameters for this domain as a non-const reference
	CryptoParameters & AccessCryptoParameters() {return AccessAbstractGroupParameters();}

	/// \brief Provides the size of the agreed value
	/// \return size of agreed value produced in this domain
	/// \details The length is calculated using <tt>GetEncodedElementSize(false)</tt>,
	///  which means the element is encoded in a non-reversible format. A
	///  non-reversible format means its a raw byte array, and it lacks presentation
	///  format like an ASN.1 BIT_STRING or OCTET_STRING.
	unsigned int AgreedValueLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(false);}

	/// \brief Provides the size of the static private key
	/// \return size of static private keys in this domain
	/// \details The length is calculated using the byte count of the subgroup order.
	unsigned int StaticPrivateKeyLength() const {return GetAbstractGroupParameters().GetSubgroupOrder().ByteCount();}

	/// \brief Provides the size of the static public key
	/// \return size of static public keys in this domain
	/// \details The length is calculated using <tt>GetEncodedElementSize(true)</tt>,
	///  which means the element is encoded in a reversible format. A reversible
	///  format means it has a presentation format, and its an ANS.1 encoded element
	///  or point.
	unsigned int StaticPublicKeyLength() const {return GetAbstractGroupParameters().GetEncodedElementSize(true);}

	/// \brief Generate static private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \details The private key is a random scalar used as an exponent in the range
	///  <tt>[1,MaxExponent()]</tt>.
	/// \pre <tt>COUNTOF(privateKey) == PrivateStaticKeyLength()</tt>
	void GenerateStaticPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
	{
		Integer x(rng, Integer::One(), GetAbstractGroupParameters().GetMaxExponent());
		x.Encode(privateKey, StaticPrivateKeyLength());
	}

	/// \brief Generate a static public key from a private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer with the previously generated private key
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \details The public key is an element or point on the curve, and its stored
	///  in a revrsible format. A reversible format means it has a presentation
	///  format, and its an ANS.1 encoded element or point.
	/// \pre <tt>COUNTOF(publicKey) == PublicStaticKeyLength()</tt>
	void GenerateStaticPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
	{
		CRYPTOPP_UNUSED(rng);
		const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
		Integer x(privateKey, StaticPrivateKeyLength());
		Element y = params.ExponentiateBase(x);
		params.EncodeElement(true, y, publicKey);
	}

	/// \brief Provides the size of the ephemeral private key
	/// \return size of ephemeral private keys in this domain
	/// \details An ephemeral private key is a private key and public key.
	///  The serialized size is different than a static private key.
	unsigned int EphemeralPrivateKeyLength() const {return StaticPrivateKeyLength() + StaticPublicKeyLength();}

	/// \brief Provides the size of the ephemeral public key
	/// \return size of ephemeral public keys in this domain
	/// \details An ephemeral public key is a public key.
	///  The serialized size is the same as a static public key.
	unsigned int EphemeralPublicKeyLength() const {return StaticPublicKeyLength();}

	/// \brief Generate ephemeral private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer for the generated private key in this domain
	/// \pre <tt>COUNTOF(privateKey) == EphemeralPrivateKeyLength()</tt>
	void GenerateEphemeralPrivateKey(RandomNumberGenerator &rng, byte *privateKey) const
	{
		const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
		Integer x(rng, Integer::One(), params.GetMaxExponent());
		x.Encode(privateKey, StaticPrivateKeyLength());
		Element y = params.ExponentiateBase(x);
		params.EncodeElement(true, y, privateKey+StaticPrivateKeyLength());
	}

	/// \brief Generate ephemeral public key from a private key in this domain
	/// \param rng a RandomNumberGenerator derived class
	/// \param privateKey a byte buffer with the previously generated private key
	/// \param publicKey a byte buffer for the generated public key in this domain
	/// \pre <tt>COUNTOF(publicKey) == EphemeralPublicKeyLength()</tt>
	void GenerateEphemeralPublicKey(RandomNumberGenerator &rng, const byte *privateKey, byte *publicKey) const
	{
		CRYPTOPP_UNUSED(rng);
		std::memcpy(publicKey, privateKey+StaticPrivateKeyLength(), EphemeralPublicKeyLength());
	}

	/// \brief Derive agreed value or shared secret
	/// \param agreedValue the shared secret
	/// \param staticPrivateKey your long term private key
	/// \param ephemeralPrivateKey your ephemeral private key
	/// \param staticOtherPublicKey couterparty's long term public key
	/// \param ephemeralOtherPublicKey couterparty's ephemeral public key
	/// \param validateStaticOtherPublicKey flag indicating validation
	/// \return true upon success, false in case of failure
	/// \details Agree() performs the authenticated key agreement. Agree()
	///  derives a shared secret from your private keys and couterparty's
	///  public keys. Each instance or run of the protocol should use a new
	///  ephemeral key pair.
	/// \details The other's ephemeral public key will always be validated at
	///  Level 1 to ensure it is a point on the curve.
	///  <tt>validateStaticOtherPublicKey</tt> determines how thoroughly other's
	///  static public key is validated. If you have previously validated the
	///  couterparty's static public key, then use
	///  <tt>validateStaticOtherPublicKey=false</tt> to save time.
	/// \pre <tt>COUNTOF(agreedValue) == AgreedValueLength()</tt>
	/// \pre <tt>COUNTOF(staticPrivateKey) == StaticPrivateKeyLength()</tt>
	/// \pre <tt>COUNTOF(ephemeralPrivateKey) == EphemeralPrivateKeyLength()</tt>
	/// \pre <tt>COUNTOF(staticOtherPublicKey) == StaticPublicKeyLength()</tt>
	/// \pre <tt>COUNTOF(ephemeralOtherPublicKey) == EphemeralPublicKeyLength()</tt>
	bool Agree(byte *agreedValue,
		const byte *staticPrivateKey, const byte *ephemeralPrivateKey,
		const byte *staticOtherPublicKey, const byte *ephemeralOtherPublicKey,
		bool validateStaticOtherPublicKey=true) const
	{
		try
		{
			const DL_GroupParameters<Element> &params = GetAbstractGroupParameters();
			Element WW = params.DecodeElement(staticOtherPublicKey, validateStaticOtherPublicKey);
			Element VV = params.DecodeElement(ephemeralOtherPublicKey, true);

			Integer s(staticPrivateKey, StaticPrivateKeyLength());
			Integer u(ephemeralPrivateKey, StaticPrivateKeyLength());
			Element V = params.DecodeElement(ephemeralPrivateKey+StaticPrivateKeyLength(), false);

			const Integer &r = params.GetSubgroupOrder();
			Integer h2 = Integer::Power2((r.BitCount()+1)/2);
			Integer e = ((h2+params.ConvertElementToInteger(V)%h2)*s+u) % r;
			Integer tt = h2 + params.ConvertElementToInteger(VV) % h2;

			if (COFACTOR_OPTION::ToEnum() == NO_COFACTOR_MULTIPLICTION)
			{
				Element P = params.ExponentiateElement(WW, tt);
				P = m_groupParameters.MultiplyElements(P, VV);
				Element R[2];
				const Integer e2[2] = {r, e};
				params.SimultaneousExponentiate(R, P, e2, 2);
				if (!params.IsIdentity(R[0]) || params.IsIdentity(R[1]))
					return false;
				params.EncodeElement(false, R[1], agreedValue);
			}
			else
			{
				const Integer &k = params.GetCofactor();
				if (COFACTOR_OPTION::ToEnum() == COMPATIBLE_COFACTOR_MULTIPLICTION)
					e = ModularArithmetic(r).Divide(e, k);
				Element P = m_groupParameters.CascadeExponentiate(VV, k*e, WW, k*(e*tt%r));
				if (params.IsIdentity(P))
					return false;
				params.EncodeElement(false, P, agreedValue);
			}
		}
		catch (DL_BadElement &)
		{
			return false;
		}
		return true;
	}

private:
	DL_GroupParameters<Element> & AccessAbstractGroupParameters() {return m_groupParameters;}
	const DL_GroupParameters<Element> & GetAbstractGroupParameters() const {return m_groupParameters;}

	GroupParameters m_groupParameters;
};

/// Menezes-Qu-Vanstone in GF(p) with key validation, AKA <a href="http://www.weidai.com/scan-mirror/ka.html#MQV">MQV</a>
/// \sa MQV, HMQV_Domain, FHMQV_Domain, AuthenticatedKeyAgreementDomain
/// \since Crypto++ 3.0
typedef MQV_Domain<DL_GroupParameters_GFP_DefaultSafePrime> MQV;

NAMESPACE_END

#endif
back to top