https://github.com/geodynamics/citcoms
Raw File
Tip revision: c59234914a80773a2b9b69b63279df4dddff34ad authored by Eh Tan on 26 April 2007, 01:19:04 UTC
Move branches/CitcomS/ to tags/pre-2.0 since no development will be done in this branch.
Tip revision: c592349
Stokes_flow_Incomp.c
/*   Functions which solve for the velocity and pressure fields using Uzawa-type iteration loop.  */

#include <math.h>
#include <sys/types.h>
#include "element_definitions.h"
#include "global_defs.h"
#include <stdlib.h>

extern int Emergency_stop;

/* Master loop for pressure and (hence) velocity field */


void solve_constrained_flow_iterative(E)
     struct All_variables *E;

{ 
    double *D1;
    double *u;
    double *R,*Bp;
    double residual_ddash;
    double vmag;
    double global_vdot(),global_pdot();

    static int been_here = 0;
   
    float solve_Ahat_p_fhat();
    void assemble_del2_u();
    void assemble_grad_p();
    void assemble_div_u();
    void v_from_vector();
    void p_to_nodes();   
    void strip_bcs_from_residual();
    void velocities_conform_bcs();
   
    int steps,cycles;
    int i,j,k,doff,vel_cycles_previous,vel_calls_previous;
  
    double time,CPU_time0();
 
    const int npno = E->lmesh.npno;
    const int gnpno = E->mesh.npno;
    const int nno = E->lmesh.nno;
    const int dims = E->mesh.nsd;
    const int neq = E->lmesh.neq;
    const int gneq = E->mesh.neq;
    const int addi_dof = additional_dof[dims];

    time=CPU_time0();
    
    cycles=E->control.p_iterations;
   
    /* Solve for velocity and pressure, correct for bc's */

    residual_ddash=solve_Ahat_p_fhat(E,E->U,E->P,E->F,E->control.accuracy,&cycles);

    been_here=1;

    v_from_vector(E); 
    p_to_nodes(E,E->P,E->NP,E->mesh.levmax);   

/* */

  return; 
}



/*  ==========================================================================  */

float solve_Ahat_p_fhat(E,V,P,F,imp,steps_max)

     struct All_variables *E;
     double **V,**P,**F;
     double imp;
     int *steps_max;
    
{ 
  int m,i,j,k,ii,count,convergent,valid,problems,lev,lev_low,npno,neq,steps;
  int gnpno,gneq;
  
  static int been_here = 0;
  double *r1[NCS],*R[NCS];
  double *r0[NCS],*r2[NCS],*z0[NCS],*z1[NCS],*s1[NCS],*s2[NCS],*Ah[NCS];
  double *shuffle[NCS];
  double alpha,delta,s2dotAhat,r0dotr0,r1dotz1;
  double residual, initial_residual, last_residual,v_res;
  
  double global_vdot(),global_pdot();
  double *dvector();

  double time0,time,CPU_time0();

  void assemble_div_u();
  void assemble_del2_u();
  void assemble_grad_p();
  void strip_bcs_from_residual();
  int  solve_del2_u();
  void parallel_process_termination();
   
  const int dims=E->mesh.nsd;
  const int n=loc_mat_size[E->mesh.nsd];

  gnpno=E->mesh.npno;
  gneq=E->mesh.neq;

  for (m=1;m<=E->sphere.caps_per_proc;m++)   {
    npno=E->lmesh.npno;
    neq=E->lmesh.neq;
    r0[m] = (double *)malloc((npno+1)*sizeof(double));
    r1[m] = (double *)malloc((npno+1)*sizeof(double));
    r2[m] = (double *)malloc((npno+1)*sizeof(double));
    z0[m] = (double *)malloc((npno+1)*sizeof(double));
    z1[m] = (double *)malloc((npno+1)*sizeof(double));
    s1[m] = (double *)malloc((npno+1)*sizeof(double));
    s2[m] = (double *)malloc((npno+1)*sizeof(double));
    }


  problems=0;
  time0=time=CPU_time0();

  been_here ++;
 
  /* calculate the velocity residual, note there are tricks involved here */

  lev=E->mesh.levmax;


  v_res=sqrt(global_vdot(E,F,F,lev)/gneq);


if (E->parallel.me==0)  {
  fprintf(E->fp,"initial residue of momentum equation F %.9e %d\n",v_res,gneq);
  fprintf(stderr,"initial residue of momentum equation F %.9e %d\n",v_res,gneq);
  }


  assemble_grad_p(E,P,E->u1,lev);


  for (m=1;m<=E->sphere.caps_per_proc;m++)    
    for(i=0;i<neq;i++)
      F[m][i] = F[m][i] - E->u1[m][i]; 

  assemble_del2_u(E,V,E->u1,lev,1);
 
  for (m=1;m<=E->sphere.caps_per_proc;m++)    
    for(i=0;i<neq;i++) 
      F[m][i] = F[m][i] - E->u1[m][i]; 

  strip_bcs_from_residual(E,F,lev);

  valid=solve_del2_u(E,E->u1,F,imp*v_res,E->mesh.levmax);
  strip_bcs_from_residual(E,E->u1,lev);

  for (m=1;m<=E->sphere.caps_per_proc;m++)    
    for(i=0;i<neq;i++) 
      V[m][i] += E->u1[m][i];

  assemble_div_u(E,V,r1,lev);

  residual = initial_residual = sqrt(global_pdot(E,r1,r1,lev)/gnpno);

  E->monitor.vdotv = sqrt(global_vdot(E,V,V,lev)/gneq);

  E->monitor.incompressibility = residual/E->monitor.vdotv;
         
   count = 0;
   convergent=0;

   if (E->control.print_convergence && E->parallel.me==0)  {
         fprintf(E->fp,"AhatP (%03d) after %g seconds with div/v=%.3e for step %d\n",count,CPU_time0()-time0,E->monitor.incompressibility,E->monitor.solution_cycles); /**/
         fflush(E->fp);
         fprintf(stderr,"AhatP (%03d) after %g seconds with div/v=%.3e for step %d\n",count,CPU_time0()-time0,E->monitor.incompressibility,E->monitor.solution_cycles); /**/
         }         


   while( (valid) && (count < *steps_max) && ( E->monitor.incompressibility >= E->control.tole_comp ) )  {   

     for (m=1;m<=E->sphere.caps_per_proc;m++)    
       for(j=1;j<=npno;j++)
         z1[m][j] = E->BPI[lev][m][j]*r1[m][j];
     
     r1dotz1 = global_pdot(E,r1,z1,lev);

     if ((count == 0))
       for (m=1;m<=E->sphere.caps_per_proc;m++)    
         for(j=1;j<=npno;j++)
           s2[m][j] = z1[m][j];
     else {
       r0dotr0=global_pdot(E,r0,z0,lev);
       assert(r0dotr0 != 0.0  /* Division by zero in head of incompressibility iteration */);
       delta = r1dotz1/r0dotr0;
       for (m=1;m<=E->sphere.caps_per_proc;m++)    
         for(j=1;j<=npno;j++)
           s2[m][j] = z1[m][j] + delta * s1[m][j];
       }
      
     assemble_grad_p(E,s2,F,lev); 

     valid=solve_del2_u(E,E->u1,F,imp*v_res,lev);  
     strip_bcs_from_residual(E,E->u1,lev);

     assemble_div_u(E,E->u1,F,lev);

     s2dotAhat=global_pdot(E,s2,F,lev);
      
     if (valid)    
	                 /* alpha defined this way is the same as R&W */
       alpha = r1dotz1/s2dotAhat; 
     else 
       alpha = 0.0;
      
     for (m=1;m<=E->sphere.caps_per_proc;m++)    
       for(j=1;j<=npno;j++)   {
         r2[m][j] = r1[m][j] - alpha * F[m][j];
         P[m][j] += alpha * s2[m][j];
         }
     
     for (m=1;m<=E->sphere.caps_per_proc;m++)    
       for(j=0;j<neq;j++)
         V[m][j] -= alpha * E->u1[m][j];

      
     assemble_div_u(E,V,F,lev);
     E->monitor.vdotv = global_vdot(E,V,V,E->mesh.levmax);
     E->monitor.incompressibility = sqrt((gneq/gnpno)*(1.0e-32+global_pdot(E,F,F,lev)/(1.0e-32+E->monitor.vdotv)));
         
     count++;
     if (E->control.print_convergence && E->parallel.me==0)  {
       fprintf(E->fp,"AhatP (%03d) after %g seconds with div/v=%.3e for step %d\n",count,CPU_time0()-time0,E->monitor.incompressibility,E->monitor.solution_cycles); /**/
       fflush(E->fp);
       fprintf(stderr,"AhatP (%03d) after %g seconds with div/v=%.3e for step %d\n",count,CPU_time0()-time0,E->monitor.incompressibility,E->monitor.solution_cycles); /**/
       }         

     for (m=1;m<=E->sphere.caps_per_proc;m++)    {
       shuffle[m]=s1[m];s1[m]=s2[m];s2[m]=shuffle[m];
       shuffle[m]=r0[m];r0[m]=r1[m];r1[m]=r2[m];r2[m]=shuffle[m];
       shuffle[m]=z0[m];z0[m]=z1[m];z1[m]=shuffle[m];
       }

     }       /* end loop for conjugate gradient   */

    if(problems) {
      fprintf(E->fp,"Convergence of velocity solver may affect continuity\n");
      fprintf(E->fp,"Consider running with the `see_convergence=on' option\n");
      fprintf(E->fp,"To evaluate the performance of the current relaxation parameters\n");
      fflush(E->fp);
      }
 
  for (m=1;m<=E->sphere.caps_per_proc;m++)    {
    free((void *) r0[m]);
    free((void *) r1[m]);       
    free((void *) r2[m]);
    free((void *) z0[m]);
    free((void *) z1[m]);
    free((void *) s1[m]);
    free((void *) s2[m]);
    }

    *steps_max=count;

    return(residual);
 }

/*  ==========================================================================  */

 


void v_from_vector(E)
     struct All_variables *E;
{
  int i,eqn1,eqn2,eqn3,m,node,d;
  unsigned int type;
  float sint,cost,sinf,cosf;

  const int nno = E->lmesh.nno;
  const int dofs = E->mesh.dof;
  const int level=E->mesh.levmax;

  for (m=1;m<=E->sphere.caps_per_proc;m++)   {
    for(node=1;node<=nno;node++)     {
     
      E->sphere.cap[m].V[1][node] = E->U[m][E->id[m][node].doff[1]]; 
      E->sphere.cap[m].V[2][node] = E->U[m][E->id[m][node].doff[2]]; 
      E->sphere.cap[m].V[3][node] = E->U[m][E->id[m][node].doff[3]]; 
      if (E->node[m][node] & VBX)
        E->sphere.cap[m].V[1][node] = E->sphere.cap[m].VB[1][node]; 
      if (E->node[m][node] & VBY)
        E->sphere.cap[m].V[2][node] = E->sphere.cap[m].VB[2][node]; 
      if (E->node[m][node] & VBZ)
        E->sphere.cap[m].V[3][node] = E->sphere.cap[m].VB[3][node]; 

    }

    for (i=1;i<=E->lmesh.nno;i++)  {
      eqn1 = E->id[m][i].doff[1];
      eqn2 = E->id[m][i].doff[2];
      eqn3 = E->id[m][i].doff[3];
      sint = E->SinCos[level][m][0][i];
      sinf = E->SinCos[level][m][1][i];
      cost = E->SinCos[level][m][2][i];
      cosf = E->SinCos[level][m][3][i];
      E->temp[m][eqn1] = E->sphere.cap[m].V[1][i]*cost*cosf
                       - E->sphere.cap[m].V[2][i]*sinf
                       + E->sphere.cap[m].V[3][i]*sint*cosf;
      E->temp[m][eqn2] = E->sphere.cap[m].V[1][i]*cost*sinf
                       + E->sphere.cap[m].V[2][i]*cosf
                       + E->sphere.cap[m].V[3][i]*sint*sinf;
      E->temp[m][eqn3] = -E->sphere.cap[m].V[1][i]*sint
                        + E->sphere.cap[m].V[3][i]*cost;

      }
   }

  return;
}

void velo_from_element(E,VV,m,el,sphere_key)
  struct All_variables *E;
  float VV[4][9];
  int el,m,sphere_key;
  {

  int a, node;
  const int dims=E->mesh.nsd;
  const int ends=enodes[E->mesh.nsd];
  const int nno=E->lmesh.nno;
  const int lev=E->mesh.levmax;

  if (sphere_key)
    for(a=1;a<=ends;a++)   {
      node = E->ien[m][el].node[a];
      VV[1][a] = E->sphere.cap[m].V[1][node];
      VV[2][a] = E->sphere.cap[m].V[2][node];
      VV[3][a] = E->sphere.cap[m].V[3][node];
      }
  else
    for(a=1;a<=ends;a++)   {
      node = E->ien[m][el].node[a];
      VV[1][a] = E->temp[m][E->id[m][node].doff[1]];
      VV[2][a] = E->temp[m][E->id[m][node].doff[2]];
      VV[3][a] = E->temp[m][E->id[m][node].doff[3]];
      }

  return;
  }
back to top