Revision 00d8689b85a7bb37cc57ba4c40bd46325f51ced4 authored by Thomas Petazzoni on 11 December 2014, 16:33:46 UTC, committed by Wolfram Sang on 17 December 2014, 18:26:03 UTC
Originally, the I2C controller supported by the i2c-mv64xxx driver
requires a lot of software support: an interrupt is generated at each
step of an I2C transaction (after the start bit, after sending the
address, etc.) and the driver is in charge of re-programming the I2C
controller to do the next step of the I2C transaction. This explains
the fairly complex state machine that the driver has.

On Marvell Armada XP and later processors (Armada 375, 38x, etc.), the
I2C controller was extended with a part called the "I2C Bridge", which
allows to offload the I2C transaction completely to the
hardware. Initial support for this mechanism was added in commit
930ab3d403a ("i2c: mv64xxx: Add I2C Transaction Generator support").

However, the implementation done in this commit has two related
issues, which this commit fixes by completely changing how the offload
implementation is done:

 * SMBus read transfers, where there is one write to select the
   register immediately followed in the same transaction by one read,
   were making the processor hang. This was easier visible on the
   Marvell Armada XP WRT1900AC platform using a driver for an I2C LED
   controller, or on other Armada XP platforms by using a simple
   'i2cget' command to read an I2C EEPROM.

 * The implementation was based on the fact that the offload engine
   was re-programmed to transfer each message of an I2C xfer: this
   meant that each message sent with the offload engine was starting
   with a normal I2C start sequence. However, the I2C subsystem
   assumes that all messages belonging to the same xfer will use the
   so-called "repeated start" so that the entire I2C xfer is seen as
   one transfer by the I2C devices and cannot be interrupt by other
   I2C masters on the same bus.

In fact, the "I2C Bridge" allows to offload three types of xfer:

 - xfer of one write message
 - xfer of one read message
 - xfer of one write message followed by one read message

For all other situations, we have to fallback to not using the "I2C
Bridge" in order to get proper I2C semantics.

Therefore, this commit reworks the offload implementation to put it
not at the message level, but at the xfer level: in the
mv64xxx_i2c_xfer() function, we decide if the transaction can be
offloaded (in which case it is handled by the
mv64xxx_i2c_offload_xfer() function), or otherwise it is handled by
the slow path (implemented in the existing mv64xxx_i2c_execute_msg()).

This allows to simplify the state machine, which no longer needs to
have any state related to the offload implementation: the offload
implementation is now completely separated from the slow path (with
the exception of the interrupt handler, of course).

In summary:

 - mv64xxx_i2c_can_offload() will analyze an I2C xfer and decided of
   the "I2C Bridge" can be used to offload it or not.

 - mv64xxx_i2c_offload_xfer() will actually program the "I2C Bridge"
   to offload one xfer (of either one or two messages), and block
   using mv64xxx_i2c_wait_for_completion() until the xfer completes.

 - The interrupt handler mv64xxx_i2c_intr() is modified to push the
   offload related code to a separate function,
   mv64xxx_i2c_intr_offload(). It will take care of reading the
   received data if needed.

This commit was tested on:

 - Armada XP OpenBlocks AX3-4 (EEPROM on I2C and RTC on I2C)
 - Armada XP WRT1900AC (LED controller on I2C)
 - Armada XP GP (EEPROM on I2C)

Fixes: 930ab3d403ae ("i2c: mv64xxx: Add I2C Transaction Generator support")
Cc: <stable@vger.kernel.org> # v3.12+
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
[wsa: fixed checkpatch warnings]
Signed-off-by: Wolfram Sang <wsa@the-dreams.de>
1 parent 1259869
Raw File
ahash.c
/*
 * Asynchronous Cryptographic Hash operations.
 *
 * This is the asynchronous version of hash.c with notification of
 * completion via a callback.
 *
 * Copyright (c) 2008 Loc Ho <lho@amcc.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation; either version 2 of the License, or (at your option)
 * any later version.
 *
 */

#include <crypto/internal/hash.h>
#include <crypto/scatterwalk.h>
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/seq_file.h>
#include <linux/cryptouser.h>
#include <net/netlink.h>

#include "internal.h"

struct ahash_request_priv {
	crypto_completion_t complete;
	void *data;
	u8 *result;
	void *ubuf[] CRYPTO_MINALIGN_ATTR;
};

static inline struct ahash_alg *crypto_ahash_alg(struct crypto_ahash *hash)
{
	return container_of(crypto_hash_alg_common(hash), struct ahash_alg,
			    halg);
}

static int hash_walk_next(struct crypto_hash_walk *walk)
{
	unsigned int alignmask = walk->alignmask;
	unsigned int offset = walk->offset;
	unsigned int nbytes = min(walk->entrylen,
				  ((unsigned int)(PAGE_SIZE)) - offset);

	if (walk->flags & CRYPTO_ALG_ASYNC)
		walk->data = kmap(walk->pg);
	else
		walk->data = kmap_atomic(walk->pg);
	walk->data += offset;

	if (offset & alignmask) {
		unsigned int unaligned = alignmask + 1 - (offset & alignmask);
		if (nbytes > unaligned)
			nbytes = unaligned;
	}

	walk->entrylen -= nbytes;
	return nbytes;
}

static int hash_walk_new_entry(struct crypto_hash_walk *walk)
{
	struct scatterlist *sg;

	sg = walk->sg;
	walk->pg = sg_page(sg);
	walk->offset = sg->offset;
	walk->entrylen = sg->length;

	if (walk->entrylen > walk->total)
		walk->entrylen = walk->total;
	walk->total -= walk->entrylen;

	return hash_walk_next(walk);
}

int crypto_hash_walk_done(struct crypto_hash_walk *walk, int err)
{
	unsigned int alignmask = walk->alignmask;
	unsigned int nbytes = walk->entrylen;

	walk->data -= walk->offset;

	if (nbytes && walk->offset & alignmask && !err) {
		walk->offset = ALIGN(walk->offset, alignmask + 1);
		walk->data += walk->offset;

		nbytes = min(nbytes,
			     ((unsigned int)(PAGE_SIZE)) - walk->offset);
		walk->entrylen -= nbytes;

		return nbytes;
	}

	if (walk->flags & CRYPTO_ALG_ASYNC)
		kunmap(walk->pg);
	else {
		kunmap_atomic(walk->data);
		/*
		 * The may sleep test only makes sense for sync users.
		 * Async users don't need to sleep here anyway.
		 */
		crypto_yield(walk->flags);
	}

	if (err)
		return err;

	if (nbytes) {
		walk->offset = 0;
		walk->pg++;
		return hash_walk_next(walk);
	}

	if (!walk->total)
		return 0;

	walk->sg = scatterwalk_sg_next(walk->sg);

	return hash_walk_new_entry(walk);
}
EXPORT_SYMBOL_GPL(crypto_hash_walk_done);

int crypto_hash_walk_first(struct ahash_request *req,
			   struct crypto_hash_walk *walk)
{
	walk->total = req->nbytes;

	if (!walk->total) {
		walk->entrylen = 0;
		return 0;
	}

	walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
	walk->sg = req->src;
	walk->flags = req->base.flags & CRYPTO_TFM_REQ_MASK;

	return hash_walk_new_entry(walk);
}
EXPORT_SYMBOL_GPL(crypto_hash_walk_first);

int crypto_ahash_walk_first(struct ahash_request *req,
			    struct crypto_hash_walk *walk)
{
	walk->total = req->nbytes;

	if (!walk->total) {
		walk->entrylen = 0;
		return 0;
	}

	walk->alignmask = crypto_ahash_alignmask(crypto_ahash_reqtfm(req));
	walk->sg = req->src;
	walk->flags = req->base.flags & CRYPTO_TFM_REQ_MASK;
	walk->flags |= CRYPTO_ALG_ASYNC;

	BUILD_BUG_ON(CRYPTO_TFM_REQ_MASK & CRYPTO_ALG_ASYNC);

	return hash_walk_new_entry(walk);
}
EXPORT_SYMBOL_GPL(crypto_ahash_walk_first);

int crypto_hash_walk_first_compat(struct hash_desc *hdesc,
				  struct crypto_hash_walk *walk,
				  struct scatterlist *sg, unsigned int len)
{
	walk->total = len;

	if (!walk->total) {
		walk->entrylen = 0;
		return 0;
	}

	walk->alignmask = crypto_hash_alignmask(hdesc->tfm);
	walk->sg = sg;
	walk->flags = hdesc->flags & CRYPTO_TFM_REQ_MASK;

	return hash_walk_new_entry(walk);
}

static int ahash_setkey_unaligned(struct crypto_ahash *tfm, const u8 *key,
				unsigned int keylen)
{
	unsigned long alignmask = crypto_ahash_alignmask(tfm);
	int ret;
	u8 *buffer, *alignbuffer;
	unsigned long absize;

	absize = keylen + alignmask;
	buffer = kmalloc(absize, GFP_KERNEL);
	if (!buffer)
		return -ENOMEM;

	alignbuffer = (u8 *)ALIGN((unsigned long)buffer, alignmask + 1);
	memcpy(alignbuffer, key, keylen);
	ret = tfm->setkey(tfm, alignbuffer, keylen);
	kzfree(buffer);
	return ret;
}

int crypto_ahash_setkey(struct crypto_ahash *tfm, const u8 *key,
			unsigned int keylen)
{
	unsigned long alignmask = crypto_ahash_alignmask(tfm);

	if ((unsigned long)key & alignmask)
		return ahash_setkey_unaligned(tfm, key, keylen);

	return tfm->setkey(tfm, key, keylen);
}
EXPORT_SYMBOL_GPL(crypto_ahash_setkey);

static int ahash_nosetkey(struct crypto_ahash *tfm, const u8 *key,
			  unsigned int keylen)
{
	return -ENOSYS;
}

static inline unsigned int ahash_align_buffer_size(unsigned len,
						   unsigned long mask)
{
	return len + (mask & ~(crypto_tfm_ctx_alignment() - 1));
}

static int ahash_save_req(struct ahash_request *req, crypto_completion_t cplt)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	unsigned long alignmask = crypto_ahash_alignmask(tfm);
	unsigned int ds = crypto_ahash_digestsize(tfm);
	struct ahash_request_priv *priv;

	priv = kmalloc(sizeof(*priv) + ahash_align_buffer_size(ds, alignmask),
		       (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
		       GFP_KERNEL : GFP_ATOMIC);
	if (!priv)
		return -ENOMEM;

	/*
	 * WARNING: Voodoo programming below!
	 *
	 * The code below is obscure and hard to understand, thus explanation
	 * is necessary. See include/crypto/hash.h and include/linux/crypto.h
	 * to understand the layout of structures used here!
	 *
	 * The code here will replace portions of the ORIGINAL request with
	 * pointers to new code and buffers so the hashing operation can store
	 * the result in aligned buffer. We will call the modified request
	 * an ADJUSTED request.
	 *
	 * The newly mangled request will look as such:
	 *
	 * req {
	 *   .result        = ADJUSTED[new aligned buffer]
	 *   .base.complete = ADJUSTED[pointer to completion function]
	 *   .base.data     = ADJUSTED[*req (pointer to self)]
	 *   .priv          = ADJUSTED[new priv] {
	 *           .result   = ORIGINAL(result)
	 *           .complete = ORIGINAL(base.complete)
	 *           .data     = ORIGINAL(base.data)
	 *   }
	 */

	priv->result = req->result;
	priv->complete = req->base.complete;
	priv->data = req->base.data;
	/*
	 * WARNING: We do not backup req->priv here! The req->priv
	 *          is for internal use of the Crypto API and the
	 *          user must _NOT_ _EVER_ depend on it's content!
	 */

	req->result = PTR_ALIGN((u8 *)priv->ubuf, alignmask + 1);
	req->base.complete = cplt;
	req->base.data = req;
	req->priv = priv;

	return 0;
}

static void ahash_restore_req(struct ahash_request *req)
{
	struct ahash_request_priv *priv = req->priv;

	/* Restore the original crypto request. */
	req->result = priv->result;
	req->base.complete = priv->complete;
	req->base.data = priv->data;
	req->priv = NULL;

	/* Free the req->priv.priv from the ADJUSTED request. */
	kzfree(priv);
}

static void ahash_op_unaligned_finish(struct ahash_request *req, int err)
{
	struct ahash_request_priv *priv = req->priv;

	if (err == -EINPROGRESS)
		return;

	if (!err)
		memcpy(priv->result, req->result,
		       crypto_ahash_digestsize(crypto_ahash_reqtfm(req)));

	ahash_restore_req(req);
}

static void ahash_op_unaligned_done(struct crypto_async_request *req, int err)
{
	struct ahash_request *areq = req->data;

	/*
	 * Restore the original request, see ahash_op_unaligned() for what
	 * goes where.
	 *
	 * The "struct ahash_request *req" here is in fact the "req.base"
	 * from the ADJUSTED request from ahash_op_unaligned(), thus as it
	 * is a pointer to self, it is also the ADJUSTED "req" .
	 */

	/* First copy req->result into req->priv.result */
	ahash_op_unaligned_finish(areq, err);

	/* Complete the ORIGINAL request. */
	areq->base.complete(&areq->base, err);
}

static int ahash_op_unaligned(struct ahash_request *req,
			      int (*op)(struct ahash_request *))
{
	int err;

	err = ahash_save_req(req, ahash_op_unaligned_done);
	if (err)
		return err;

	err = op(req);
	ahash_op_unaligned_finish(req, err);

	return err;
}

static int crypto_ahash_op(struct ahash_request *req,
			   int (*op)(struct ahash_request *))
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	unsigned long alignmask = crypto_ahash_alignmask(tfm);

	if ((unsigned long)req->result & alignmask)
		return ahash_op_unaligned(req, op);

	return op(req);
}

int crypto_ahash_final(struct ahash_request *req)
{
	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->final);
}
EXPORT_SYMBOL_GPL(crypto_ahash_final);

int crypto_ahash_finup(struct ahash_request *req)
{
	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->finup);
}
EXPORT_SYMBOL_GPL(crypto_ahash_finup);

int crypto_ahash_digest(struct ahash_request *req)
{
	return crypto_ahash_op(req, crypto_ahash_reqtfm(req)->digest);
}
EXPORT_SYMBOL_GPL(crypto_ahash_digest);

static void ahash_def_finup_finish2(struct ahash_request *req, int err)
{
	struct ahash_request_priv *priv = req->priv;

	if (err == -EINPROGRESS)
		return;

	if (!err)
		memcpy(priv->result, req->result,
		       crypto_ahash_digestsize(crypto_ahash_reqtfm(req)));

	ahash_restore_req(req);
}

static void ahash_def_finup_done2(struct crypto_async_request *req, int err)
{
	struct ahash_request *areq = req->data;

	ahash_def_finup_finish2(areq, err);

	areq->base.complete(&areq->base, err);
}

static int ahash_def_finup_finish1(struct ahash_request *req, int err)
{
	if (err)
		goto out;

	req->base.complete = ahash_def_finup_done2;
	req->base.flags &= ~CRYPTO_TFM_REQ_MAY_SLEEP;
	err = crypto_ahash_reqtfm(req)->final(req);

out:
	ahash_def_finup_finish2(req, err);
	return err;
}

static void ahash_def_finup_done1(struct crypto_async_request *req, int err)
{
	struct ahash_request *areq = req->data;

	err = ahash_def_finup_finish1(areq, err);

	areq->base.complete(&areq->base, err);
}

static int ahash_def_finup(struct ahash_request *req)
{
	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
	int err;

	err = ahash_save_req(req, ahash_def_finup_done1);
	if (err)
		return err;

	err = tfm->update(req);
	return ahash_def_finup_finish1(req, err);
}

static int ahash_no_export(struct ahash_request *req, void *out)
{
	return -ENOSYS;
}

static int ahash_no_import(struct ahash_request *req, const void *in)
{
	return -ENOSYS;
}

static int crypto_ahash_init_tfm(struct crypto_tfm *tfm)
{
	struct crypto_ahash *hash = __crypto_ahash_cast(tfm);
	struct ahash_alg *alg = crypto_ahash_alg(hash);

	hash->setkey = ahash_nosetkey;
	hash->export = ahash_no_export;
	hash->import = ahash_no_import;

	if (tfm->__crt_alg->cra_type != &crypto_ahash_type)
		return crypto_init_shash_ops_async(tfm);

	hash->init = alg->init;
	hash->update = alg->update;
	hash->final = alg->final;
	hash->finup = alg->finup ?: ahash_def_finup;
	hash->digest = alg->digest;

	if (alg->setkey)
		hash->setkey = alg->setkey;
	if (alg->export)
		hash->export = alg->export;
	if (alg->import)
		hash->import = alg->import;

	return 0;
}

static unsigned int crypto_ahash_extsize(struct crypto_alg *alg)
{
	if (alg->cra_type == &crypto_ahash_type)
		return alg->cra_ctxsize;

	return sizeof(struct crypto_shash *);
}

#ifdef CONFIG_NET
static int crypto_ahash_report(struct sk_buff *skb, struct crypto_alg *alg)
{
	struct crypto_report_hash rhash;

	strncpy(rhash.type, "ahash", sizeof(rhash.type));

	rhash.blocksize = alg->cra_blocksize;
	rhash.digestsize = __crypto_hash_alg_common(alg)->digestsize;

	if (nla_put(skb, CRYPTOCFGA_REPORT_HASH,
		    sizeof(struct crypto_report_hash), &rhash))
		goto nla_put_failure;
	return 0;

nla_put_failure:
	return -EMSGSIZE;
}
#else
static int crypto_ahash_report(struct sk_buff *skb, struct crypto_alg *alg)
{
	return -ENOSYS;
}
#endif

static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
	__attribute__ ((unused));
static void crypto_ahash_show(struct seq_file *m, struct crypto_alg *alg)
{
	seq_printf(m, "type         : ahash\n");
	seq_printf(m, "async        : %s\n", alg->cra_flags & CRYPTO_ALG_ASYNC ?
					     "yes" : "no");
	seq_printf(m, "blocksize    : %u\n", alg->cra_blocksize);
	seq_printf(m, "digestsize   : %u\n",
		   __crypto_hash_alg_common(alg)->digestsize);
}

const struct crypto_type crypto_ahash_type = {
	.extsize = crypto_ahash_extsize,
	.init_tfm = crypto_ahash_init_tfm,
#ifdef CONFIG_PROC_FS
	.show = crypto_ahash_show,
#endif
	.report = crypto_ahash_report,
	.maskclear = ~CRYPTO_ALG_TYPE_MASK,
	.maskset = CRYPTO_ALG_TYPE_AHASH_MASK,
	.type = CRYPTO_ALG_TYPE_AHASH,
	.tfmsize = offsetof(struct crypto_ahash, base),
};
EXPORT_SYMBOL_GPL(crypto_ahash_type);

struct crypto_ahash *crypto_alloc_ahash(const char *alg_name, u32 type,
					u32 mask)
{
	return crypto_alloc_tfm(alg_name, &crypto_ahash_type, type, mask);
}
EXPORT_SYMBOL_GPL(crypto_alloc_ahash);

static int ahash_prepare_alg(struct ahash_alg *alg)
{
	struct crypto_alg *base = &alg->halg.base;

	if (alg->halg.digestsize > PAGE_SIZE / 8 ||
	    alg->halg.statesize > PAGE_SIZE / 8)
		return -EINVAL;

	base->cra_type = &crypto_ahash_type;
	base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
	base->cra_flags |= CRYPTO_ALG_TYPE_AHASH;

	return 0;
}

int crypto_register_ahash(struct ahash_alg *alg)
{
	struct crypto_alg *base = &alg->halg.base;
	int err;

	err = ahash_prepare_alg(alg);
	if (err)
		return err;

	return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_ahash);

int crypto_unregister_ahash(struct ahash_alg *alg)
{
	return crypto_unregister_alg(&alg->halg.base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_ahash);

int ahash_register_instance(struct crypto_template *tmpl,
			    struct ahash_instance *inst)
{
	int err;

	err = ahash_prepare_alg(&inst->alg);
	if (err)
		return err;

	return crypto_register_instance(tmpl, ahash_crypto_instance(inst));
}
EXPORT_SYMBOL_GPL(ahash_register_instance);

void ahash_free_instance(struct crypto_instance *inst)
{
	crypto_drop_spawn(crypto_instance_ctx(inst));
	kfree(ahash_instance(inst));
}
EXPORT_SYMBOL_GPL(ahash_free_instance);

int crypto_init_ahash_spawn(struct crypto_ahash_spawn *spawn,
			    struct hash_alg_common *alg,
			    struct crypto_instance *inst)
{
	return crypto_init_spawn2(&spawn->base, &alg->base, inst,
				  &crypto_ahash_type);
}
EXPORT_SYMBOL_GPL(crypto_init_ahash_spawn);

struct hash_alg_common *ahash_attr_alg(struct rtattr *rta, u32 type, u32 mask)
{
	struct crypto_alg *alg;

	alg = crypto_attr_alg2(rta, &crypto_ahash_type, type, mask);
	return IS_ERR(alg) ? ERR_CAST(alg) : __crypto_hash_alg_common(alg);
}
EXPORT_SYMBOL_GPL(ahash_attr_alg);

MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Asynchronous cryptographic hash type");
back to top