Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 0239ae5607dd869ef6ad18aa41b2a27ed5e0ed5d authored by Jarl G. Taxerås Flaten on 10 August 2023, 11:37:38 UTC, committed by GitHub on 10 August 2023, 11:37:38 UTC
add doi to README.md
1 parent 0d8bfe8
  • Files
  • Changes
  • 0316bec
  • /
  • LES.v
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:0239ae5607dd869ef6ad18aa41b2a27ed5e0ed5d
directory badge Iframe embedding
swh:1:dir:0316becdb6490aaf3f90d4626351c5e52016464e
content badge Iframe embedding
swh:1:cnt:0a1c37687fdecd23d837ac4cb0d046a741912d6f

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
LES.v
From HoTT Require Import Basics Types WildCat Pointed Truncations
  ExactSequence AbGroups AbSES AbSES.SixTerm.

Require Import Lemmas EquivalenceRelation Ext ES HigherExt XII_5.

Local Open Scope pointed_scope.
Local Open Scope type_scope.


(** * The long exact sequence of Ext groups *)

(** Currently [Ext n] is only a pointed set, but the notion of exactness abelian groups is the same. *)

(** Exactness at the domain of the connecting map, for all n. *)
Global Instance isexact_extn_inclusion_splice `{Univalence} {n : nat}
  {B A G : AbGroup} (E : ES 1 B A)
  : IsExact (Tr (-1))
      (ext_pullback (n:=n) (A:=G) (inclusion E))
      (abses_ext_splice E).
Proof.
  destruct n as [|n].
  (* The case [n=0] follows from [isexact_ext_contra_sixterm_iii]. *)
  { rapply isexact_homotopic_f.
    by apply phomotopy_homotopy_hset. }
  unshelve econstructor.
  { hnf.
    refine (splice_pullback_to_pushout_phomotopy _ _ @* _).
    rewrite abses_pushout_inclusion.
    apply abses_ext_splice_pt. }
  intros [S p]; revert dependent S.
  (** TODO make a tactic for the following. *)
  destruct n.
  1: rapply Trunc_ind; intros S p;
       rapply contr_inhabited_hprop;
       pose proof (K := snd (ext_XII_5_5 (S : ES 1 A G) E) p^).
  2: rapply Quotient_ind_hprop; intros S p;
       rapply contr_inhabited_hprop;
       pose proof (K := snd (ext_XII_5_5 S E) p^).
  all: strip_truncations; destruct K as [K q];
    refine (tr (K; _));
    apply path_sigma_hprop;
    exact q.
Defined.

(** Exactness at the domain of the connecting map, for all n. *)
(** The proof writes out the first part of Lemma XII.5.2. *)
Global Instance isexact_extn_splice_pullback `{Univalence} {n : nat}
  {B A G : AbGroup} (E : AbSES B A)
  : IsExact (Tr (-1))
      (abses_ext_splice (n:=n) (M:=G) E)
      (ext_pullback (projection E)).
Proof.
  destruct n as [|n].
  { rapply isexact_homotopic_if.
    all: by apply phomotopy_homotopy_hset. }
  srapply Build_IsExact.
  { refine (splice_pullback_commute _ _ @* _).
    rewrite <- abses_pullback_projection.
    apply abses_ext_splice_pt. }
  hnf.
  intros [S p]; revert dependent S.
  rapply Quotient_ind_hprop; intros [C [T F]] p.
  rapply contr_inhabited_hprop.
  pose (Fs := abses_pullback (projection E) F).
  assert (U : merely (hfiber (ext_pullback (inclusion Fs)) (es_in T))).
  { rapply isexact_preimage.
    1: apply isexact_extn_inclusion_splice.
    refine ((splice_pullback_commute _ _ _)^ @ _).
    destruct n; exact p. }
  strip_truncations; destruct U as [U q].
  pose (F' := abses_pushout (inclusion Fs) F).
  assert (alpha : merely (hfiber (abses_pushout_ext E)
                            (es_in (F' : ES 1 B Fs)))).
  { rapply (isexact_preimage _ (abses_pushout_ext E)).
    (* TODO Why do we have to specify the map above? *)
    apply (ap tr).
    refine ((abses_pushout_pullback_reorder _ _ _)^ @ _).
    apply abses_pushout_inclusion. }
  strip_truncations; destruct alpha as [alpha r].
  pose proof (r' := (equiv_path_Tr _ _)^-1 r);
    strip_truncations.
  refine (tr (ext_pullback alpha U; _)).
  apply path_sigma_hprop.
  unfold cxfib, Build_pMap, pointed_fun, pr1.
  refine (splice_pullback_to_pushout _ _ _ @ _).
  refine (ap (ext_abses_splice U) r' @ _); clear r'.
  unfold F'.
  refine ((splice_pullback_to_pushout _ _ _)^ @ _).
  rewrite q.
  destruct n; reflexivity.
Defined.

(** Exactness at the middle term, for n > 0. The zeroth level is covered by [isexact_ext_sixterm_ii]. *)
Global Instance isexact_extn_pullback_pullback `{Univalence} {n : nat}
  {B A G : AbGroup} (E : AbSES B A)
  : IsExact (Tr (-1))
      (ext_pullback (n:=n.+1) (A:=G) (projection E))
      (ext_pullback (inclusion E)).
Proof.
  destruct n.
  { rapply isexact_homotopic_if.
    all: by apply phomotopy_homotopy_hset. }
  srapply Build_IsExact.
  { apply phomotopy_homotopy_hset.
    rapply Quotient_ind_hprop; intro F.
    apply qglue.
    refine (transport (fun X => es_meqrel X pt) _^ _).
    { refine (es_pullback_compose _ _ _ @ _).
      refine (es_pullback_homotopic _ _ (f':=grp_homo_const)).
      intro; apply isexact_inclusion_projection. }
    apply zag_to_meqrel.
    apply es_pullback_const_zig. }
  hnf.
  intros [S p]; revert dependent S.
  rapply Quotient_ind_hprop; intros [C [T F]] p.
  rapply contr_inhabited_hprop.
  pose (Fs := abses_pullback (inclusion E) F).
  assert (U : merely (hfiber (ext_pullback (inclusion Fs)) (es_in T))).
  { rapply isexact_preimage.
    1: apply isexact_extn_inclusion_splice.
    refine ((splice_pullback_commute _ _ _)^ @ _).
    destruct n; exact p. }
  strip_truncations; destruct U as [U q].
  pose (iF := abses_pushout (inclusion Fs) F).
  assert (F' : (hfiber
                  (abses_pullback_pmap (projection E))
                  iF)).
  { (* Uses [isexact_abses_pullback]. *)
    rapply (isexact_preimage _ (abses_pullback_pmap (projection E))).
    refine ((abses_pushout_pullback_reorder _ _ _)^ @ _).
    exact (abses_pushout_inclusion Fs). }
  destruct F' as [F' r].
  refine (tr (ext_abses_splice U F'; _)).
  apply path_sigma_hprop.
  unfold cxfib, Build_pMap, pointed_fun, pr1.
  refine (splice_pullback_commute F' (projection E) U @ _).
  refine (ap (fun X => abses_ext_splice X U) r @ _).
  refine ((splice_pullback_to_pushout _ _ _)^ @ _).
  refine (ap (abses_ext_splice F) q @ _).
  destruct n; reflexivity.
Defined.
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API