Revision 024c9750ac3f39428818576cba043d57e6a7f2c1 authored by Mohamed Barakat on 09 July 2015, 13:37:30 UTC, committed by Mohamed Barakat on 09 July 2015, 16:29:51 UTC
1 parent cea8169
Raw File
Complexes.gi
#############################################################################
##
##  Complexes.gi                homalg package               Mohamed Barakat
##
##  Copyright 2007-2008 Lehrstuhl B für Mathematik, RWTH Aachen
##
##  Implementations of homalg procedures for complexes.
##
#############################################################################

####################################
#
# methods for operations:
#
####################################

##
InstallMethod( DefectOfExactness,
        "for a homalg complexes",
        [ IsComplexOfFinitelyPresentedObjectsRep, IsInt ],
        
  function( C, i )
    local degrees, mor, def;
    
    degrees := ObjectDegreesOfComplex( C );
    
    ## never use the following:
    #elif HasIsGradedObject( C ) and IsGradedObject( C ) then
    #    return CertainObject( C, i );
    
    if PositionSet( degrees, i ) = fail then
        Error( "the second argument ", i, " is outside the degree range of the complex\n" );
    elif i = degrees[1] then
        mor := CertainMorphism( C, i + 1 );
        def := Cokernel( mor );
    elif i = degrees[Length( degrees )] then
        mor := CertainMorphism( C, i );
        def := Kernel( mor );
    else
        mor := CertainTwoMorphismsAsSubcomplex( C, i );
        mor := AsATwoSequence( mor );
        def := DefectOfExactness( mor );
    fi;
    
    return def;
    
end );

##
InstallMethod( DefectOfExactness,
        "for a homalg complexes",
        [ IsCocomplexOfFinitelyPresentedObjectsRep, IsInt ],
        
  function( C, i )
    local degrees, mor, def;
    
    degrees := ObjectDegreesOfComplex( C );
    
    ## never use the following:
    #elif HasIsGradedObject( C ) and IsGradedObject( C ) then
    #    return CertainObject( C, i );
    
    if PositionSet( degrees, i ) = fail then
        Error( "the second argument ", i, " is outside the degree range of the complex\n" );
    elif i = degrees[1] then
        mor := CertainMorphism( C, i );
        def := Kernel( mor );
    elif i = degrees[Length( degrees )] then
        mor := CertainMorphism( C, i - 1 );
        def := Cokernel( mor );
    else
        mor := CertainTwoMorphismsAsSubcomplex( C, i );
        mor := AsATwoSequence( mor );
        def := DefectOfExactness( mor );
    fi;
    
    return def;
    
end );

##
InstallMethod( Homology,
        "for a homalg complexes",
        [ IsHomalgComplex, IsInt ],
        
  function( C, i )
    
    if IsCocomplexOfFinitelyPresentedObjectsRep( C ) then
        Error( "this is a cocomplex: use \033[1mCohomology\033[0m instead\n" );
    fi;
    
    return DefectOfExactness( C, i );
    
end );

##
InstallMethod( Cohomology,
        "for a homalg complexes",
        [ IsHomalgComplex, IsInt ],
        
  function( C, i )
    
    if IsComplexOfFinitelyPresentedObjectsRep( C ) then
        Error( "this is a complex: use \033[1mHomology\033[0m instead\n" );
    fi;
    
    return DefectOfExactness( C, i );
    
end );

##
InstallMethod( DefectOfExactness,
        "for a homalg complexes",
        [ IsComplexOfFinitelyPresentedObjectsRep ],
        
  function( C )
    local display, display_string, SimplifyObject, left, degrees, l,
          morphisms, T, H, i, S;
    
    if HasIsATwoSequence( C ) and IsATwoSequence( C ) then
        TryNextMethod( );
    fi;
    
    if IsBound( C!.DisplayHomology ) and C!.DisplayHomology = true then
        display := true;
    else
        display := false;
    fi;
    
    if IsBound( C!.StringBeforeDisplay ) and IsStringRep( C!.StringBeforeDisplay ) then
        display_string := C!.StringBeforeDisplay;
    else
        display_string := "";
    fi;
    
    if IsBound( C!.HomologyOnLessGenerators ) then
        if C!.HomologyOnLessGenerators = true then
            SimplifyObject := ValueGlobal( "OnLessGenerators" );
        elif IsFunction( C!.HomologyOnLessGenerators ) then
            SimplifyObject := C!.HomologyOnLessGenerators;
        else
            SimplifyObject := a -> a;
        fi;
    else
        SimplifyObject := a -> a;
    fi;
        
    ## never use the following:
    #if IsGradedObject( C ) then
    #    H := C;
    
    if IsBound(C!.HomologyGradedObject) then
        H := C!.HomologyGradedObject;
    fi;
    
    if IsBound( H ) then
        SimplifyObject( H );
        
        if display then
            for i in ObjectsOfComplex( H ) do
                Print( display_string );
                Display( i );
            od;
        fi;
        
        return H;
    fi;
    
    if not IsComplex( C ) then
        Error( "the input is not a complex" );
    fi;
    
    left := IsHomalgLeftObjectOrMorphismOfLeftObjects( C );
    
    degrees := MorphismDegreesOfComplex( C );
    
    l := Length(degrees);
    
    morphisms := MorphismsOfComplex( C );
    
    if not IsBound( C!.SkipLowestDegreeHomology ) then
        T := Cokernel( morphisms[1] );
        H := HomalgComplex( T, degrees[1] - 1 );
    else
        if left then
            T := DefectOfExactness( morphisms[2], morphisms[1] );
        else
            T := DefectOfExactness( morphisms[1], morphisms[2] );
        fi;
        H := HomalgComplex( T, degrees[1] );
        morphisms := morphisms{[ 2 .. l ]};
        l := l - 1;
    fi;
    
    SimplifyObject( T );
    
    if display then
        Print( display_string );
        Display( T );
    fi;
    
    for i in [ 1 .. l - 1 ] do
        if left then
            S := DefectOfExactness( morphisms[i + 1], morphisms[i] );
        else
            S := DefectOfExactness( morphisms[i], morphisms[i + 1] );
        fi;
        Add( H, TheZeroMorphism( S, T ) );
        T := S;
        
        SimplifyObject( T );
        
        if display then
            Print( display_string );
            Display( T );
        fi;
    od;
    
    if not ( IsBound( C!.SkipHighestDegreeHomology ) and C!.SkipHighestDegreeHomology = true ) then
        S := Kernel( morphisms[l] );
        Add( H, TheZeroMorphism( S, T ) );
        
        SimplifyObject( S );
        
        if display then
            Print( display_string );
            Display( S );
        fi;
    fi;
    
    SetIsGradedObject( H, true );
    
    C!.HomologyGradedObject := H;
    
    return H;
    
end );

##
InstallMethod( DefectOfExactness,
        "for a homalg complexes",
        [ IsCocomplexOfFinitelyPresentedObjectsRep ],
        
  function( C )
    local display, display_string, SimplifyObject, left, degrees, l,
          morphisms, S, H, i, T;
    
    if IsBound( C!.DisplayCohomology ) and C!.DisplayCohomology = true then
        display := true;
    else
        display := false;
    fi;
    
    if IsBound( C!.CohomologyOnLessGenerators ) then
        if C!.CohomologyOnLessGenerators = true then
            SimplifyObject := ValueGlobal( "OnLessGenerators" );
        elif IsFunction( C!.CohomologyOnLessGenerators ) then
            SimplifyObject := C!.CohomologyOnLessGenerators;
        else
            SimplifyObject := a -> a;
        fi;
    else
        SimplifyObject := a -> a;
    fi;
        
    if IsBound( C!.StringBeforeDisplay ) and IsStringRep( C!.StringBeforeDisplay ) then
        display_string := C!.StringBeforeDisplay;
    else
        display_string := "";
    fi;
    
    ## never use the following:
    #if IsGradedObject( C ) then
    #    H := C;
    
    if IsBound(C!.CohomologyGradedObject) then
        H := C!.CohomologyGradedObject;
    fi;
    
    if IsBound( H ) then
        SimplifyObject( H );
        
        if display then
            for i in ObjectsOfComplex( H ) do
                Print( display_string );
                Display( i );
            od;
        fi;
        
        return H;
    fi;
    
    if not IsComplex( C ) then
        Error( "the input is not a cocomplex" );
    fi;
    
    left := IsHomalgLeftObjectOrMorphismOfLeftObjects( C );
    
    degrees := MorphismDegreesOfComplex( C );
    
    l := Length(degrees);
    
    morphisms := MorphismsOfComplex( C );
    
    if not IsBound( C!.SkipLowestDegreeCohomology ) then
        S := Kernel( morphisms[1] );
        H := HomalgCocomplex( S, degrees[1] );
    else
        if left then
            S := DefectOfExactness( morphisms[1], morphisms[2] );
        else
            S := DefectOfExactness( morphisms[2], morphisms[1] );
        fi;
        H := HomalgCocomplex( S, degrees[1] + 1 );
        morphisms := morphisms{[ 2 .. l ]};
        l := l - 1;
    fi;
    
    SimplifyObject( S );
    
    if display then
        Print( display_string );
        Display( S );
    fi;
    
    for i in [ 1 .. l - 1 ] do
        if left then
            T := DefectOfExactness( morphisms[i], morphisms[i + 1] );
        else
            T := DefectOfExactness( morphisms[i + 1], morphisms[i] );
        fi;
        Add( H, TheZeroMorphism( S, T ) );
        S := T;
        
        SimplifyObject( S );
        
        if display then
            Print( display_string );
            Display( S );
        fi;
    od;
    
    if not ( IsBound( C!.SkipHighestDegreeCohomology ) and C!.SkipHighestDegreeCohomology = true ) then
        T := Cokernel( morphisms[l] );
        Add( H, TheZeroMorphism( S, T ) );
        
        SimplifyObject( T );
        
        if display then
            Print( display_string );
            Display( T );
        fi;
    fi;
    
    SetIsGradedObject( H, true );
    
    C!.CohomologyGradedObject := H;
    
    return H;
    
end );

##
InstallMethod( Homology,			### defines: Homology (HomologyModules)
        "for a homalg complexes",
        [ IsHomalgComplex ],
        
  function( C )
    
    if IsCocomplexOfFinitelyPresentedObjectsRep( C ) then
        Error( "this is a cocomplex: use \033[1mCohomology\033[0m instead\n" );
    fi;
    
    return DefectOfExactness( C );
    
end );

##
InstallMethod( Cohomology,			### defines: Cohomology (CohomologyModules)
        "for a homalg complexes",
        [ IsHomalgComplex ],
        
  function( C )
    
    if IsComplexOfFinitelyPresentedObjectsRep( C ) then
        Error( "this is a complex: use \033[1mHomology\033[0m instead\n" );
    fi;
    
    return DefectOfExactness( C );
    
end );

InstallMethod( HorseShoeResolution,
        "for homalg complexes",
        [ IsList, IsHomalgChainMorphism, IsHomalgChainMorphism, IsHomalgMorphism ],
        
  function( l, d_phi, d_psi, dEj2 )
  local dEj, dN, dE, dM, psi, phi, j, dMj, dNj, mu, SyzygiesObjectEmb_j_M, SyzygiesObjectEmb_j_N, epsilonM, epsilonN, epsilon_j, Pj;
    
    dEj := dEj2;
    
    dN := Source( d_phi );
    dE := Range( d_phi );
    dM := Range( d_psi );
    
    if IsComplexOfFinitelyPresentedObjectsRep( dN ) then
        psi := CertainMorphism( d_psi, l[1] - 1 );
        phi := CertainMorphism( d_phi, l[1] - 1 );
    else
        psi := CertainMorphism( d_psi, l[1] + 1 );
        phi := CertainMorphism( d_phi, l[1] + 1 );
    fi;
    
    if not IsIdenticalObj( dE, Source( d_psi ) ) then
        Error( "expected a two composable chain morphisms" );
    fi;
    
    for j in l do
        
        mu := KernelEmb( dEj );
        
        dMj := CertainMorphism( dM, j );
        dNj := CertainMorphism( dN, j );
        
        SyzygiesObjectEmb_j_M := ImageObjectEmb( dMj );
        SyzygiesObjectEmb_j_N := ImageObjectEmb( dNj );
        
        psi := CompleteImageSquare( mu, psi, SyzygiesObjectEmb_j_M );
        phi := CompleteImageSquare( SyzygiesObjectEmb_j_N, phi, mu );
        
        # The HorseShoeResolution produces short exact sequences in each degree
        Assert( 4, IsMonomorphism( phi ) );
        SetIsMonomorphism( phi, true );
        Assert( 4, IsEpimorphism( psi ) );
        SetIsEpimorphism( psi, true );
        SetKernelEmb( psi, phi );
        SetCokernelEpi( phi, psi );
        
        # if certain objects are known to be zero, the remaining morphism is an isomorphism
        if HasIsZero( Source( phi ) ) then
            Assert( 4, IsMonomorphism( psi ) = IsZero( Source( phi ) ) );
            SetIsMonomorphism( psi, IsZero( Source( phi ) ) );
        fi;
        if HasIsZero( Range( psi ) ) then
            Assert( 4, IsEpimorphism( phi ) = IsZero( Range( psi ) ) );
            SetIsEpimorphism( phi, IsZero( Range( psi ) ) );
        fi;
        
        epsilonM := ImageObjectEpi( dMj );
        epsilonN := ImageObjectEpi( dNj );
        
        epsilonM := epsilonM / psi; ## projective lift or something similar
        epsilonN := PreCompose( epsilonN, phi );
        
        epsilon_j := CoproductMorphism( epsilonN, epsilonM );
        
        Pj := Source( epsilon_j );
        
        dEj := PreCompose( epsilon_j, mu );
        
        psi := EpiOnRightFactor( Pj );
        phi := MonoOfLeftSummand( Pj );
        
        if IsComplexOfFinitelyPresentedObjectsRep( dN ) then
            Add( dE, dEj );
            Add( d_psi, psi );
            Add( d_phi, phi );
        else
            Add( dEj, dE );
            Add( psi, d_psi );
            Add( phi, d_phi );
        fi;
        
    od;
    
    ## check assertions
    Assert( 4, IsMorphism( d_psi ) );
    Assert( 4, IsMorphism( d_phi ) );
    
end );

## 0 <-- M <-(psi)- E <-(phi)- N <-- 0
## or
## 0 --> N -(phi)-> E -(psi)-> M --> 0
InstallMethod( Resolution,	### defines: Resolution (generalizes ResolveShortExactSeq)
        "for homalg complexes",
        [ IsInt, IsHomalgComplex and IsShortExactSequence ],
        
  function( _q, C )
    local q, degrees, psi, phi, M, E, N, dM, dN, j,
          index_pair_psi, index_pair_phi, epsilonN, epsilonM, epsilon,
          dj, SetEpi, Pj, dE, d_psi, d_phi, horse_shoe, mu, epsilon_j;
    
    q := _q;
    
    if q = 0 then q := 1; fi;
    
    degrees := ObjectDegreesOfComplex( C );
    
    if IsComplexOfFinitelyPresentedObjectsRep( C ) then
        psi := CertainMorphism( C, degrees[2] );
        phi := CertainMorphism( C, degrees[3] );
    else
        phi := CertainMorphism( C, degrees[1] );
        psi := CertainMorphism( C, degrees[2] );
    fi;
    
    M := Range( psi );
    E := Source( psi );
    N := Source( phi );
    
    # For a category not having enough projectives, we need to resolve M
    # with a resolution adapted to the morphism psi, such that the PostDivide
    # used below works.
    # For example for the category of coherent sheaves on projective space
    # we compute a locally free resolution of M, where the zeroth object of
    # the resolution is build the way such that "epsilonM/psi" works.
    dM := ResolutionWithRespectToMorphism( q, M, psi );
    dN := Resolution( q, N );
    
    if q < 0 then
        q := Maximum( List( [ M, N ], LengthOfResolution ) );
        dM := ResolutionWithRespectToMorphism( q, M, psi );
        dN := Resolution( q, N );
    fi;
    
    LockObjectOnCertainPresentation( N );
    LockObjectOnCertainPresentation( E );
    LockObjectOnCertainPresentation( M );
    
    index_pair_psi := PairOfPositionsOfTheDefaultPresentations( psi );
    index_pair_phi := PairOfPositionsOfTheDefaultPresentations( phi );
    
    if IsBound( C!.resolutions ) and
       IsBound( C!.resolutions.(String( [ index_pair_psi, index_pair_phi ] )) ) then
        
        horse_shoe := C!.resolutions.(String( [ index_pair_psi, index_pair_phi ] ));
        
        if IsComplexOfFinitelyPresentedObjectsRep( C ) then
            d_psi := CertainMorphism( horse_shoe, degrees[2] );
            d_phi := CertainMorphism( horse_shoe, degrees[3] );
        else
            d_psi := CertainMorphism( horse_shoe, degrees[1] );
            d_phi := CertainMorphism( horse_shoe, degrees[2] );
        fi;
        
        j := HighestDegree( d_psi );
        
        if j <> HighestDegree( d_phi ) then
            Error( "the highest degrees of the two chain morphisms in the horse shoe do not coincide\n" );
        fi;
        
        psi := CertainMorphism( d_psi, j );
        phi := CertainMorphism( d_phi, j );
        
        dE := Source( d_psi );
        
        dj := CertainMorphism( dE, j );
        
        SetEpi := false;
        
    else
        
        j := 0;
        
        epsilonM := CokernelEpi( LowestDegreeMorphism( dM ) );
        epsilonN := CokernelEpi( LowestDegreeMorphism( dN ) );
        
        epsilonM := epsilonM / psi; ## projective lift or something similar
        epsilonN := PreCompose( epsilonN, phi );
        
        dj := CoproductMorphism( epsilonN, epsilonM );
        
        Assert( 4, IsEpimorphism( dj ) );
        SetIsEpimorphism( dj, true );
        
        Pj := Source( dj );
        
        dE := HomalgComplex( Pj );
        
        psi := EpiOnRightFactor( Pj );
        phi := MonoOfLeftSummand( Pj );
        
        d_psi := HomalgChainMorphism( psi, dE, dM );
        d_phi := HomalgChainMorphism( phi, dN, dE );
        
        if IsComplexOfFinitelyPresentedObjectsRep( C ) then
            horse_shoe := HomalgComplex( d_psi, degrees[2] );
            Add( horse_shoe, d_phi );
        else
            horse_shoe := HomalgCocomplex( d_phi, degrees[1] );
            Add( horse_shoe, d_psi );
        fi;
        
        C!.resolutions := rec( );
        C!.resolutions.(String( [ index_pair_psi, index_pair_phi ] )) := horse_shoe;
        
        SetEpi := true;
        
    fi;
    
    # up to now, only the horse shoe has been created
    # now we fill the interior
    # (if there is anything to fill)
    if j + 1 <= q then
        HorseShoeResolution( [ j + 1 .. q ] , d_phi, d_psi, dj );
    fi;

    if SetEpi and MorphismDegreesOfComplex( dE ) <> [] then
        SetCokernelEpi( LowestDegreeMorphism( dE ), dj );
    fi;
    
    SetIsEpimorphism( d_psi, true );
    SetIsMonomorphism( d_phi, true );
    SetIsRightAcyclic( dE, true );
    SetIsShortExactSequence( horse_shoe, true );
    
    UnlockObject( N );
    UnlockObject( E );
    UnlockObject( M );
    
    return horse_shoe;
    
end );

##
InstallMethod( Resolution,
        "for homalg complexes",
        [ IsHomalgComplex ],
        
  function( C )
    
    return Resolution( -1, C );
    
end );

##
InstallMethod( CompleteComplexByResolution,
        "for homalg complexes",
        [ IsInt, IsComplexOfFinitelyPresentedObjectsRep ],
        
  function( q, C )
    local zero, cpx, seq, mor, emb, ker, P, epi, i;
    
    if q = infinity then
        ## FIXME: should become obsolete
        q := -1;
    elif q = 0 then
        return C;
    fi;
    
    if HasIsZero( C ) then
        zero := IsZero( C );
    fi;
    
    if HasIsComplex( C ) then
        cpx := IsComplex( C );
    fi;
    
    if HasIsSequence( C ) then
        seq := IsSequence( C );
    fi;
    
    mor := HighestDegreeMorphism( C );
    
    emb := KernelEmb( mor );
    
    ker := Source( emb );
    
    epi := CoveringEpi( ker );
    
    Add( C, PreCompose( epi, emb ) );
    
    if q > 1 then
        
        P := Resolution( q - 1, ker );
        
        for i in [ 1 .. HighestDegree( P ) ] do
            Add( C, CertainMorphism( P, i ) );
        od;
        
    fi;
        
    if IsBound( zero ) then
        SetIsZero( C, zero );
    fi;
    
    if IsBound( cpx ) then
        SetIsComplex( C, cpx );
    fi;
    
    if IsBound( seq ) then
        SetIsSequence( C, seq );
    fi;
    
    return C;
    
end );

##
InstallMethod( CompleteComplexByResolution,
        "for homalg complexes",
        [ IsInt, IsCocomplexOfFinitelyPresentedObjectsRep ],
        
  function( q, C )
    local zero, cpx, seq, mor, emb, ker, P, epi, i;
    
    if q = infinity then
        ## FIXME: should become obsolete
        q := -1;
    elif q = 0 then
        return C;
    fi;
    
    if HasIsZero( C ) then
        zero := IsZero( C );
    fi;
    
    if HasIsComplex( C ) then
        cpx := IsComplex( C );
    fi;
    
    if HasIsSequence( C ) then
        seq := IsSequence( C );
    fi;
    
    mor := LowestDegreeMorphism( C );
    
    emb := KernelEmb( mor );
    
    ker := Source( emb );
    
    epi := CoveringEpi( ker );
    
    Add( PreCompose( epi, emb ), C );
    
    if q > 1 then
        
        P := Resolution( q - 1, ker );
        
        for i in [ 1 .. HighestDegree( P ) ] do
            Add( CertainMorphism( P, i ), C );
        od;
        
    fi;
    
    if IsBound( zero ) then
        SetIsZero( C, zero );
    fi;
    
    if IsBound( cpx ) then
        SetIsComplex( C, cpx );
    fi;
    
    if IsBound( seq ) then
        SetIsSequence( C, seq );
    fi;
    
    return C;
    
end );

##
InstallMethod( CompleteComplexByResolution,
        "for homalg complexes",
        [ IsHomalgComplex ],
        
  function( C )
    
    return CompleteComplexByResolution( infinity, C );
    
end );

#=======================================================================
# Connecting homomorphism
#
#                         0
#                         |
#                         |
#                         |
#                         v
#  0 <--- Hs[n-1] <--- Zs[n-1] <--(bs[n])-- Cs[n]/Bs[n] <--- Hs[n] <--- 0
#            |            |                      |             |
#            |         (i[n-1])                (i[n])          |
#            |            |                      |             |
#            v            v                      v             v
#  0 <--- H[n-1]  <--- Z[n-1]  <--(b[n])---  C[n]/B[n]  <--- H[n]  <--- 0
#            |            |                      |             |
#            |         (j[n-1])                (j[n])          |
#            |            |                      |             |
#            v            v                      v             v
#  0 <--- Hq[n-1] <--- Zq[n-1] <--(bq[n])-- Cq[n]/Bq[n] <--- Hq[n] <--- 0
#                                                |
#                                                |
#                                                |
#                                                v
#                                                0
#
#_______________________________________________________________________
InstallMethod( ConnectingHomomorphism,
        "for homalg complexes",
        [ IsStaticFinitelyPresentedObjectRep,
          IsStaticMorphismOfFinitelyGeneratedObjectsRep,
          IsStaticMorphismOfFinitelyGeneratedObjectsRep,
          IsStaticMorphismOfFinitelyGeneratedObjectsRep,
          IsStaticFinitelyPresentedObjectRep ],
        
  function( Hqn, jn, bn, in_1, Hsn_1 )
    local iota_Hqn, iota_Hsn_1, snake;
    
    iota_Hqn := NaturalGeneralizedEmbedding( Hqn );
    iota_Hsn_1 := NaturalGeneralizedEmbedding( Hsn_1 );
    
    snake := iota_Hqn;
    snake := snake / jn;
    snake := PreCompose( snake, bn );	## the connecting homomorphism is what b[n] induces between certain subfactors of C[n] and C[n-1]
    snake := snake / in_1;		## lift
    snake := snake / iota_Hsn_1;	## lift
    
    ## check assertion
    Assert( 3, IsMorphism( snake ) );
    
    SetIsMorphism( snake, true );
    
    return snake;
    
end );

##
InstallMethod( ConnectingHomomorphism,
        "for short exact sequences of complexes",
        [ IsComplexOfFinitelyPresentedObjectsRep and IsShortExactSequence, IsInt ],
        
  function( E, n )
    local j, i, Cq, C, Cs, Hqn, jn, bn, in_1, Hsn_1;
    
    j := LowestDegreeMorphism( E );
    i := HighestDegreeMorphism( E );
    
    Cq := Range( j );
    C := Source( j );
    Cs := Source( i );
    
    Hqn := DefectOfExactness( Cq, n );
    jn := CertainMorphism( j, n );
    bn := CertainMorphism( C, n );
    in_1 := CertainMorphism( i, n - 1 );
    Hsn_1 := DefectOfExactness( Cs, n - 1 );
    
    return ConnectingHomomorphism( Hqn, jn, bn, in_1, Hsn_1 );
    
end );

##
InstallMethod( ConnectingHomomorphism,
        "for short exact sequences of complexes",
        [ IsCocomplexOfFinitelyPresentedObjectsRep and IsShortExactSequence, IsInt ],
        
  function( E, n )
    local i, j, Cs, C, Cq, Hqn, jn, bn, inp1, Hsnp1;
    
    i := LowestDegreeMorphism( E );
    j := HighestDegreeMorphism( E );
    
    Cs := Source( i );
    C := Range( i );
    Cq := Range( j );
    
    Hqn := DefectOfExactness( Cq, n );
    jn := CertainMorphism( j, n );
    bn := CertainMorphism( C, n );
    inp1 := CertainMorphism( i, n + 1 );
    Hsnp1 := DefectOfExactness( Cs, n + 1 );
    
    return ConnectingHomomorphism( Hqn, jn, bn, inp1, Hsnp1 );
    
end );

##
InstallMethod( ConnectingHomomorphism,
        "for short exact sequences of complexes",
        [ IsComplexOfFinitelyPresentedObjectsRep and IsShortExactSequence ],
        
  function( E )
    local degrees, l, S, T, con, n;
    
    degrees := DegreesOfChainMorphism( LowestDegreeMorphism( E ) );
    
    l := Length( degrees );
    
    if l < 2 then
        Error( "complex too small\n" );
    fi;
    
    S := DefectOfExactness( LowestDegreeObject( E ) );
    T := DefectOfExactness( HighestDegreeObject( E ) );
    
    n := degrees[2];
    
    con := HomalgChainMorphism( ConnectingHomomorphism( E, n ), S, T, [ n, -1 ] );
    
    for n in degrees{[ 3 .. l ]} do
        Add( con, ConnectingHomomorphism( E, n ) );
    od;
    
    SetIsGradedMorphism( con, true );
    
    return con;
    
end );

##
InstallMethod( ConnectingHomomorphism,
        "for short exact sequences of complexes",
        [ IsCocomplexOfFinitelyPresentedObjectsRep and IsShortExactSequence ],
        
  function( E )
    local degrees, l, S, T, con, n;
    
    degrees := DegreesOfChainMorphism( HighestDegreeMorphism( E ) );
    
    l := Length( degrees );
    
    if l < 2 then
        Error( "cocomplex too small\n" );
    fi;
    
    S := DefectOfExactness( HighestDegreeObject( E ) );
    T := DefectOfExactness( LowestDegreeObject( E ) );
    
    n := degrees[1];
    
    con := HomalgChainMorphism( ConnectingHomomorphism( E, n ), S, T, [ n, 1 ] );
    
    for n in degrees{[ 2 .. l - 1 ]} do
        Add( con, ConnectingHomomorphism( E, n ) );
    od;
    
    SetIsGradedMorphism( con, true );
    
    return con;
    
end );

##
InstallMethod( ExactTriangle,
        "for short exact sequences of complexes",
        [ IsComplexOfFinitelyPresentedObjectsRep and IsShortExactSequence ],
        
  function( E )
    local deg, j, i, con, triangle;
    
    deg := LowestDegree( E ) + 1;
    
    j := DefectOfExactness( LowestDegreeMorphism( E ) );
    i := DefectOfExactness( HighestDegreeMorphism( E ) );
    con := ConnectingHomomorphism( E );
    
    triangle := HomalgComplex( j, deg );
    Add( triangle, i );
    Add( triangle, con );
    
    SetIsExactTriangle( triangle, true );
    
    return triangle;
    
end );

##
InstallMethod( ExactTriangle,
        "for short exact sequences of complexes",
        [ IsCocomplexOfFinitelyPresentedObjectsRep and IsShortExactSequence ],
        
  function( E )
    local deg, j, i, con, triangle;
    
    deg := LowestDegree( E );
    
    i := DefectOfExactness( LowestDegreeMorphism( E ) );
    j := DefectOfExactness( HighestDegreeMorphism( E ) );
    con := ConnectingHomomorphism( E );
    
    triangle := HomalgCocomplex( i, deg );
    Add( triangle, j );
    Add( triangle, con );
    
    SetIsExactTriangle( triangle, true );
    
    return triangle;
    
end );

## [HS. Proof of Lemma. VIII.9.4]
InstallMethod( DefectOfExactnessSequence,
        "for homalg two-morphisms complexes",
        [ IsHomalgComplex and IsATwoSequence ],
        
  function( cpx_post_pre )
    local pre, post, F_Z, F_B, Z_B, H, F_H, H_Z, C;
    
    pre := HighestDegreeMorphism( cpx_post_pre );
    post := LowestDegreeMorphism( cpx_post_pre );
    
    ## read: F <- Z
    F_Z := KernelEmb( post );
    
    ## read: F <- B
    F_B := ImageObjectEmb( pre );
    
    ## read: Z <- B
    Z_B := F_B / F_Z;	## lift
    
    H := DefectOfExactness( cpx_post_pre );
    
    ## read: F <- H
    F_H := NaturalGeneralizedEmbedding( H );
    
    ## read: H <- Z
    H_Z := F_Z / F_H;	## generalized lift
    
    C := HomalgComplex( H_Z );
    
    Add( C, Z_B );
    
    SetIsShortExactSequence( C, true );
    
    ## read: H <- Z <- B, (H := Z/B)
    return C;
    
end );

## for convenience
InstallMethod( DefectOfExactnessSequence,
        "for composable homalg morphisms",
        [ IsStaticMorphismOfFinitelyGeneratedObjectsRep,
          IsStaticMorphismOfFinitelyGeneratedObjectsRep ],
        
  function( phi, psi )
    
    return DefectOfExactnessSequence( AsATwoSequence( phi, psi ) );
    
end );

## [HS. Proof of Lemma. VIII.9.4]
InstallMethod( DefectOfExactnessCosequence,
        "for homalg two-morphisms complexes",
        [ IsHomalgComplex and IsATwoSequence ],
        
  function( cpx_post_pre )
    local pre, post, Z_F, B_F, B_Z, H, H_F, Z_H, C;
    
    pre := HighestDegreeMorphism( cpx_post_pre );
    post := LowestDegreeMorphism( cpx_post_pre );
    
    ## read: Z -> F
    Z_F := KernelEmb( post );
    
    ## read: B -> F
    B_F := ImageObjectEmb( pre );
    
    ## read: B -> Z
    B_Z := B_F / Z_F;	## lift
    
    H := DefectOfExactness( cpx_post_pre );
    
    ## read: H -> F
    H_F := NaturalGeneralizedEmbedding( H );
    
    ## read: Z -> H
    Z_H := Z_F / H_F;	## generalized lift
    
    C := HomalgCocomplex( B_Z );
    
    Add( C, Z_H );
    
    SetIsShortExactSequence( C, true );
    
    ## read: B -> Z -> H, (H := Z/B)
    return C;
    
end );

## for convenience
InstallMethod( DefectOfExactnessCosequence,
        "for homalg composable maps",
        [ IsStaticMorphismOfFinitelyGeneratedObjectsRep,
          IsStaticMorphismOfFinitelyGeneratedObjectsRep ],
        
  function( phi, psi )
    
    return DefectOfExactnessCosequence( AsATwoSequence( phi, psi ) );
    
end );

## the Cartan-Eilenberg resolution [HS. Lemma VIII.9.4]
InstallMethod( Resolution,	### defines: Resolution
        "for homalg complexes",
        [ IsInt, IsComplexOfFinitelyPresentedObjectsRep ],
        
  function( _q, C )
    local q, degrees, l, def, d, mor, index_pairs, QFB, FB, CE, natural_epis,
          HZB, Z, ZB, PZ, relZ, BFZ, BF, i, FZ;
    
    if not IsComplex( C ) then
        Error( "the second argument is not a complex\n" );
    fi;
    
    # Do the HorseShoeResolution in that case
    if HasIsShortExactSequence( C ) and IsShortExactSequence( C ) then
        TryNextMethod( );
    fi;
    
    q := _q;
    
    degrees := ObjectDegreesOfComplex( C );
    
    l := Length( degrees ) - 1;
    
    def := ObjectsOfComplex( DefectOfExactness( C ) );
    
    if l = 0 then
        return HomalgComplex( Resolution( q, def[1] ), degrees[1] );
    fi;
    
    d := List( def, M -> Resolution( q, M ) );
    
    if q < 0 then
        q := Maximum( List( def, LengthOfResolution ) );
        d := List( def, M -> Resolution( q, M ) );
    fi;
    
    mor := MorphismsOfComplex( C );
    
    index_pairs := List( mor, PairOfPositionsOfTheDefaultPresentations );
    
    ## F/B = Q <- F <- B (horse shoe)
    QFB := Resolution( q, CokernelSequence( mor[1] ) );
    
    ## F <- B
    FB := HighestDegreeMorphism( QFB );
    
    ## F
    CE := HomalgComplex( Range( FB ), degrees[1] );
    
    ## enrich CE with the natrual epis
    natural_epis := rec( );
    
    CE!.NaturalEpis := natural_epis;
    
    natural_epis.(String( [ 0, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Range( FB ) ) );
    
    if l > 1 then
        if IsHomalgLeftObjectOrMorphismOfLeftObjects( C ) then
            ## Z/B =: H <- Z <- B
            HZB := DefectOfExactnessSequence( mor[2], mor[1] );
            
            ## Z <- B
            ZB := HighestDegreeMorphism( HZB );
            
            Z := Range( ZB );
            
            ## horse shoe
            HZB := Resolution( q, HZB );
            
            ## Z <- B
            ZB := HighestDegreeMorphism( HZB );
            
            ## the horse shoe resolution of Z
            PZ := Range( ZB );
            
            ## make this horse shoe resolution of Z the standard one
            SetCurrentResolution( Z, PZ );
            
            ## B <- F <- Z (horse shoe)
            BFZ := Resolution( q, KernelSequence( mor[1] ) );
            
            ## B <- F
            BF := LowestDegreeMorphism( BFZ );
            
            ## enrich CE with the natrual epi
            natural_epis.(String( [ 1, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Source( BF ) ) );
            
            ## F[i] <- F[i+1]
            Add( CE, BF * FB );
            
            ## F <- Z
            FZ := HighestDegreeMorphism( BFZ );
        else
            ## Z/B =: H <- Z <- B
            HZB := DefectOfExactnessSequence( mor[1], mor[2] );
            
            ## Z <- B
            ZB := HighestDegreeMorphism( HZB );
            
            Z := Range( ZB );
            
            ## horse shoe
            HZB := Resolution( q, HZB );
            
            ## Z <- B
            ZB := HighestDegreeMorphism( HZB );
            
            ## the horse shoe resolution of Z
            PZ := Range( ZB );
            
            ## make this horse shoe resolution of Z the standard one
            SetCurrentResolution( Z, PZ );
            
            ## B <- F <- Z (horse shoe)
            BFZ := Resolution( q, KernelSequence( mor[1] ) );
            
            ## B <- F
            BF := LowestDegreeMorphism( BFZ );
            
            ## enrich CE with the natrual epi
            natural_epis.(String( [ 1, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Source( BF ) ) );
            
            ## F[i] <- F[i+1]
            Add( CE, FB * BF );
            
            ## F <- Z
            FZ := HighestDegreeMorphism( BFZ );
        fi;
    fi;
    
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( C ) then
        for i in [ 3 .. l ] do
            ## Z/B =: H <- Z <- B
            HZB := DefectOfExactnessSequence( mor[i], mor[i-1] );
            
            Z := Range( HighestDegreeMorphism( HZB ) );
            
            ## horse shoe
            HZB := Resolution( q, HZB );
            
            ## the horse shoe resolution of Z
            PZ := Range( HighestDegreeMorphism( HZB ) );
            
            ## make this horse shoe resolution of Z the standard one
            SetCurrentResolution( Z, PZ );
            
            ## B <- F <- Z (horse shoe)
            BFZ := Resolution( q, KernelSequence( mor[i-1] ) );
            
            ## B <- F
            BF := LowestDegreeMorphism( BFZ );
            
            ## enrich CE with the natrual epi
            natural_epis.(String( [ i - 1, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Source( BF ) ) );
            
            ## F[i] <- F[i+1]
            Add( CE, BF * ZB * FZ );
            
            ## Z <- B
            ZB := HighestDegreeMorphism( HZB );
            
            ## F <- Z
            FZ := HighestDegreeMorphism( BFZ );
        od;
    else
        for i in [ 3 .. l ] do
            ## Z/B =: H <- Z <- B
            HZB := DefectOfExactnessSequence( mor[i-1], mor[i] );
            
            Z := Range( HighestDegreeMorphism( HZB ) );
            
            ## horse shoe
            HZB := Resolution( q, HZB );
            
            ## the horse shoe resolution of Z
            PZ := Range( HighestDegreeMorphism( HZB ) );
            
            ## make this horse shoe resolution of Z the standard one
            SetCurrentResolution( Z, PZ );
            
            ## B <- F <- Z (horse shoe)
            BFZ := Resolution( q, KernelSequence( mor[i-1] ) );
            
            ## B <- F
            BF := LowestDegreeMorphism( BFZ );
            
            ## enrich CE with the natrual epi
            natural_epis.(String( [ i - 1, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Source( BF ) ) );
            
            ## F[i] <- F[i+1]
            Add( CE, FZ * ZB * BF );
            
            ## Z <- B
            ZB := HighestDegreeMorphism( HZB );
            
            ## F <- Z
            FZ := HighestDegreeMorphism( BFZ );
        od;
    fi;
    
    ## B <- F <- Z
    BFZ := Resolution( q, KernelSequence( mor[l] ) );
    
    BF := LowestDegreeMorphism( BFZ );
    
    ## enrich CE with the natrual epi
    natural_epis.(String( [ l, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Source( BF ) ) );
    
    if l > 1 then
        if IsHomalgLeftObjectOrMorphismOfLeftObjects( C ) then
            Add( CE, BF * ZB * FZ );
        else
            Add( CE, FZ * ZB * BF );
        fi;
    else
        if IsHomalgLeftObjectOrMorphismOfLeftObjects( C ) then
            Add( CE, BF * FB );
        else
            Add( CE, FB * BF );
        fi;
    fi;
    
    if HasIsExactSequence( C ) and IsExactSequence( C ) then
        SetIsExactSequence( CE, true );
    elif HasIsRightAcyclic( C ) and IsRightAcyclic( C ) then
        SetIsRightAcyclic( CE, true );
    elif HasIsLeftAcyclic( C ) and IsLeftAcyclic( C ) then
        SetIsLeftAcyclic( CE, true );
    elif HasIsAcyclic( C ) and IsAcyclic( C ) then
        SetIsAcyclic( CE, true );
    else
        SetIsComplex( CE, true );
    fi;
    
    ## the Cartan-Eilenberg resolution:
    return CE;
    
end );

## the Cartan-Eilenberg resolution [HS. Lemma VIII.9.4]
InstallMethod( Resolution,	### defines: Resolution
        "for homalg complexes",
        [ IsInt, IsCocomplexOfFinitelyPresentedObjectsRep ],
        
  function( _q, C )
    local q, degrees, l, def, d, mor, index_pairs, ZFB, FB, CE, natural_epis,
          i, BZH, Z, PZ, relZ, BZ, ZF, BFQ, BF;
    
    if not IsComplex( C ) then
        Error( "the second argument is not a cocomplex\n" );
    fi;
    
    # Do the HorseShoeResolution in that case
    if HasIsShortExactSequence( C ) and IsShortExactSequence( C ) then
        TryNextMethod( );
    fi;
    
    q := _q;
    
    degrees := ObjectDegreesOfComplex( C );
    
    l := Length( degrees ) - 1;
    
    def := ObjectsOfComplex( DefectOfExactness( C ) );
    
    if l = 0 then
        return HomalgCocomplex( Resolution( q, def[1] ), degrees[1] );
    fi;
    
    d := List( def, M -> Resolution( q, M ) );
    
    if q < 0 then
        q := Maximum( List( def, LengthOfResolution ) );
        d := List( def, M -> Resolution( q, M ) );
    fi;
    
    mor := MorphismsOfComplex( C );
    
    index_pairs := List( mor, PairOfPositionsOfTheDefaultPresentations );
    
    ## Z -> F -> B (horse shoe)
    ZFB := Resolution( q, KernelCosequence( mor[1] ) );
    
    ## F -> B
    FB := HighestDegreeMorphism( ZFB );
    
    ## F
    CE := HomalgCocomplex( Source( FB ), degrees[1] );
    
    ## enrich CE with the natrual epis
    natural_epis := rec( );
    
    CE!.NaturalEpis := natural_epis;
    
    natural_epis.(String( [ 0, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Source( FB ) ) );
    
    for i in [ 2 .. l ] do
        
        if IsHomalgLeftObjectOrMorphismOfLeftObjects( C ) then
            ## B -> Z -> H := Z/B
            BZH := DefectOfExactnessCosequence( mor[i-1], mor[i] );
        else
            ## B -> Z -> H := Z/B
            BZH := DefectOfExactnessCosequence( mor[i], mor[i-1] );
        fi;
        
        ## B -> Z
        BZ := LowestDegreeMorphism( BZH );
        
        Z := Range( BZ );
        
        ## horse shoe
        BZH := Resolution( q, BZH );
        
        ## B -> Z
        BZ := LowestDegreeMorphism( BZH );
        
        ## the horse shoe resolution of Z
        PZ := Range( BZ );
        
        ## make this horse shoe resolution of Z the standard one
        SetCurrentResolution( Z, PZ );
        
        ## Z -> F -> B (horse shoe)
        ZFB := Resolution( q, KernelCosequence( mor[i] ) );
        
        ## Z -> F
        ZF := LowestDegreeMorphism( ZFB );
        
        ## enrich CE with the natrual epi
        natural_epis.(String( [ i - 1, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Range( ZF ) ) );
        
        ## F[i-1] -> F[i]
        Add( CE, PreCompose( PreCompose( FB, BZ ), ZF ) );
        
        ## F -> B
        FB := HighestDegreeMorphism( ZFB );
    od;
    
    ## B -> F -> Q = F/B
    BFQ := Resolution( q, CokernelCosequence( mor[l] ) );
    
    BF := LowestDegreeMorphism( BFQ );
    
    ## enrich CE with the natrual epi
    natural_epis.(String( [ l, 0 ] )) := CokernelEpi( LowestDegreeMorphism( Range( BF ) ) );
            
    if IsHomalgLeftObjectOrMorphismOfLeftObjects( C ) then
        Add( CE, FB * BF );
    else
        Add( CE, BF * FB );
    fi;
    
    if HasIsExactSequence( C ) and IsExactSequence( C ) then
        SetIsExactSequence( CE, true );
    elif HasIsRightAcyclic( C ) and IsRightAcyclic( C ) then
        SetIsRightAcyclic( CE, true );
    elif HasIsLeftAcyclic( C ) and IsLeftAcyclic( C ) then
        SetIsLeftAcyclic( CE, true );
    elif HasIsAcyclic( C ) and IsAcyclic( C ) then
        SetIsAcyclic( CE, true );
    else
        SetIsComplex( CE, true );
    fi;
    
    ## the Cartan-Eilenberg resolution:
    return CE;
    
end );

back to top