Revision 0432a0a066b05361b6d4d26522233c3c76c9e5da authored by Linus Torvalds on 03 August 2019, 17:51:29 UTC, committed by Linus Torvalds on 03 August 2019, 17:51:29 UTC
Pull vdso timer fixes from Thomas Gleixner:
 "A series of commits to deal with the regression caused by the generic
  VDSO implementation.

  The usage of clock_gettime64() for 32bit compat fallback syscalls
  caused seccomp filters to kill innocent processes because they only
  allow clock_gettime().

  Handle the compat syscalls with clock_gettime() as before, which is
  not a functional problem for the VDSO as the legacy compat application
  interface is not y2038 safe anyway. It's just extra fallback code
  which needs to be implemented on every architecture.

  It's opt in for now so that it does not break the compile of already
  converted architectures in linux-next. Once these are fixed, the
  #ifdeffery goes away.

  So much for trying to be smart and reuse code..."

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  arm64: compat: vdso: Use legacy syscalls as fallback
  x86/vdso/32: Use 32bit syscall fallback
  lib/vdso/32: Provide legacy syscall fallbacks
  lib/vdso: Move fallback invocation to the callers
  lib/vdso/32: Remove inconsistent NULL pointer checks
2 parent s af42e74 + 33a5898
Raw File
sg_split.c
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2015 Robert Jarzmik <robert.jarzmik@free.fr>
 *
 * Scatterlist splitting helpers.
 */

#include <linux/scatterlist.h>
#include <linux/slab.h>

struct sg_splitter {
	struct scatterlist *in_sg0;
	int nents;
	off_t skip_sg0;
	unsigned int length_last_sg;

	struct scatterlist *out_sg;
};

static int sg_calculate_split(struct scatterlist *in, int nents, int nb_splits,
			      off_t skip, const size_t *sizes,
			      struct sg_splitter *splitters, bool mapped)
{
	int i;
	unsigned int sglen;
	size_t size = sizes[0], len;
	struct sg_splitter *curr = splitters;
	struct scatterlist *sg;

	for (i = 0; i < nb_splits; i++) {
		splitters[i].in_sg0 = NULL;
		splitters[i].nents = 0;
	}

	for_each_sg(in, sg, nents, i) {
		sglen = mapped ? sg_dma_len(sg) : sg->length;
		if (skip > sglen) {
			skip -= sglen;
			continue;
		}

		len = min_t(size_t, size, sglen - skip);
		if (!curr->in_sg0) {
			curr->in_sg0 = sg;
			curr->skip_sg0 = skip;
		}
		size -= len;
		curr->nents++;
		curr->length_last_sg = len;

		while (!size && (skip + len < sglen) && (--nb_splits > 0)) {
			curr++;
			size = *(++sizes);
			skip += len;
			len = min_t(size_t, size, sglen - skip);

			curr->in_sg0 = sg;
			curr->skip_sg0 = skip;
			curr->nents = 1;
			curr->length_last_sg = len;
			size -= len;
		}
		skip = 0;

		if (!size && --nb_splits > 0) {
			curr++;
			size = *(++sizes);
		}

		if (!nb_splits)
			break;
	}

	return (size || !splitters[0].in_sg0) ? -EINVAL : 0;
}

static void sg_split_phys(struct sg_splitter *splitters, const int nb_splits)
{
	int i, j;
	struct scatterlist *in_sg, *out_sg;
	struct sg_splitter *split;

	for (i = 0, split = splitters; i < nb_splits; i++, split++) {
		in_sg = split->in_sg0;
		out_sg = split->out_sg;
		for (j = 0; j < split->nents; j++, out_sg++) {
			*out_sg = *in_sg;
			if (!j) {
				out_sg->offset += split->skip_sg0;
				out_sg->length -= split->skip_sg0;
			} else {
				out_sg->offset = 0;
			}
			sg_dma_address(out_sg) = 0;
			sg_dma_len(out_sg) = 0;
			in_sg = sg_next(in_sg);
		}
		out_sg[-1].length = split->length_last_sg;
		sg_mark_end(out_sg - 1);
	}
}

static void sg_split_mapped(struct sg_splitter *splitters, const int nb_splits)
{
	int i, j;
	struct scatterlist *in_sg, *out_sg;
	struct sg_splitter *split;

	for (i = 0, split = splitters; i < nb_splits; i++, split++) {
		in_sg = split->in_sg0;
		out_sg = split->out_sg;
		for (j = 0; j < split->nents; j++, out_sg++) {
			sg_dma_address(out_sg) = sg_dma_address(in_sg);
			sg_dma_len(out_sg) = sg_dma_len(in_sg);
			if (!j) {
				sg_dma_address(out_sg) += split->skip_sg0;
				sg_dma_len(out_sg) -= split->skip_sg0;
			}
			in_sg = sg_next(in_sg);
		}
		sg_dma_len(--out_sg) = split->length_last_sg;
	}
}

/**
 * sg_split - split a scatterlist into several scatterlists
 * @in: the input sg list
 * @in_mapped_nents: the result of a dma_map_sg(in, ...), or 0 if not mapped.
 * @skip: the number of bytes to skip in the input sg list
 * @nb_splits: the number of desired sg outputs
 * @split_sizes: the respective size of each output sg list in bytes
 * @out: an array where to store the allocated output sg lists
 * @out_mapped_nents: the resulting sg lists mapped number of sg entries. Might
 *                    be NULL if sglist not already mapped (in_mapped_nents = 0)
 * @gfp_mask: the allocation flag
 *
 * This function splits the input sg list into nb_splits sg lists, which are
 * allocated and stored into out.
 * The @in is split into :
 *  - @out[0], which covers bytes [@skip .. @skip + @split_sizes[0] - 1] of @in
 *  - @out[1], which covers bytes [@skip + split_sizes[0] ..
 *                                 @skip + @split_sizes[0] + @split_sizes[1] -1]
 * etc ...
 * It will be the caller's duty to kfree() out array members.
 *
 * Returns 0 upon success, or error code
 */
int sg_split(struct scatterlist *in, const int in_mapped_nents,
	     const off_t skip, const int nb_splits,
	     const size_t *split_sizes,
	     struct scatterlist **out, int *out_mapped_nents,
	     gfp_t gfp_mask)
{
	int i, ret;
	struct sg_splitter *splitters;

	splitters = kcalloc(nb_splits, sizeof(*splitters), gfp_mask);
	if (!splitters)
		return -ENOMEM;

	ret = sg_calculate_split(in, sg_nents(in), nb_splits, skip, split_sizes,
			   splitters, false);
	if (ret < 0)
		goto err;

	ret = -ENOMEM;
	for (i = 0; i < nb_splits; i++) {
		splitters[i].out_sg = kmalloc_array(splitters[i].nents,
						    sizeof(struct scatterlist),
						    gfp_mask);
		if (!splitters[i].out_sg)
			goto err;
	}

	/*
	 * The order of these 3 calls is important and should be kept.
	 */
	sg_split_phys(splitters, nb_splits);
	ret = sg_calculate_split(in, in_mapped_nents, nb_splits, skip,
				 split_sizes, splitters, true);
	if (ret < 0)
		goto err;
	sg_split_mapped(splitters, nb_splits);

	for (i = 0; i < nb_splits; i++) {
		out[i] = splitters[i].out_sg;
		if (out_mapped_nents)
			out_mapped_nents[i] = splitters[i].nents;
	}

	kfree(splitters);
	return 0;

err:
	for (i = 0; i < nb_splits; i++)
		kfree(splitters[i].out_sg);
	kfree(splitters);
	return ret;
}
EXPORT_SYMBOL(sg_split);
back to top