Revision 048f49809c526348775425420fb5b8e84fd9a133 authored by Sean Christopherson on 25 March 2021, 20:01:18 UTC, committed by Paolo Bonzini on 30 March 2021, 17:19:55 UTC
Honor the "flush needed" return from kvm_tdp_mmu_zap_gfn_range(), which
does the flush itself if and only if it yields (which it will never do in
this particular scenario), and otherwise expects the caller to do the
flush.  If pages are zapped from the TDP MMU but not the legacy MMU, then
no flush will occur.

Fixes: 29cf0f5007a2 ("kvm: x86/mmu: NX largepage recovery for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210325200119.1359384-3-seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
1 parent a835429
Raw File
report_generic.c
// SPDX-License-Identifier: GPL-2.0
/*
 * This file contains generic KASAN specific error reporting code.
 *
 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
 *
 * Some code borrowed from https://github.com/xairy/kasan-prototype by
 *        Andrey Konovalov <andreyknvl@gmail.com>
 */

#include <linux/bitops.h>
#include <linux/ftrace.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/slab.h>
#include <linux/stackdepot.h>
#include <linux/stacktrace.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/kasan.h>
#include <linux/module.h>

#include <asm/sections.h>

#include "kasan.h"
#include "../slab.h"

void *kasan_find_first_bad_addr(void *addr, size_t size)
{
	void *p = addr;

	while (p < addr + size && !(*(u8 *)kasan_mem_to_shadow(p)))
		p += KASAN_GRANULE_SIZE;
	return p;
}

static const char *get_shadow_bug_type(struct kasan_access_info *info)
{
	const char *bug_type = "unknown-crash";
	u8 *shadow_addr;

	shadow_addr = (u8 *)kasan_mem_to_shadow(info->first_bad_addr);

	/*
	 * If shadow byte value is in [0, KASAN_GRANULE_SIZE) we can look
	 * at the next shadow byte to determine the type of the bad access.
	 */
	if (*shadow_addr > 0 && *shadow_addr <= KASAN_GRANULE_SIZE - 1)
		shadow_addr++;

	switch (*shadow_addr) {
	case 0 ... KASAN_GRANULE_SIZE - 1:
		/*
		 * In theory it's still possible to see these shadow values
		 * due to a data race in the kernel code.
		 */
		bug_type = "out-of-bounds";
		break;
	case KASAN_PAGE_REDZONE:
	case KASAN_KMALLOC_REDZONE:
		bug_type = "slab-out-of-bounds";
		break;
	case KASAN_GLOBAL_REDZONE:
		bug_type = "global-out-of-bounds";
		break;
	case KASAN_STACK_LEFT:
	case KASAN_STACK_MID:
	case KASAN_STACK_RIGHT:
	case KASAN_STACK_PARTIAL:
		bug_type = "stack-out-of-bounds";
		break;
	case KASAN_FREE_PAGE:
	case KASAN_KMALLOC_FREE:
	case KASAN_KMALLOC_FREETRACK:
		bug_type = "use-after-free";
		break;
	case KASAN_ALLOCA_LEFT:
	case KASAN_ALLOCA_RIGHT:
		bug_type = "alloca-out-of-bounds";
		break;
	case KASAN_VMALLOC_INVALID:
		bug_type = "vmalloc-out-of-bounds";
		break;
	}

	return bug_type;
}

static const char *get_wild_bug_type(struct kasan_access_info *info)
{
	const char *bug_type = "unknown-crash";

	if ((unsigned long)info->access_addr < PAGE_SIZE)
		bug_type = "null-ptr-deref";
	else if ((unsigned long)info->access_addr < TASK_SIZE)
		bug_type = "user-memory-access";
	else
		bug_type = "wild-memory-access";

	return bug_type;
}

const char *kasan_get_bug_type(struct kasan_access_info *info)
{
	/*
	 * If access_size is a negative number, then it has reason to be
	 * defined as out-of-bounds bug type.
	 *
	 * Casting negative numbers to size_t would indeed turn up as
	 * a large size_t and its value will be larger than ULONG_MAX/2,
	 * so that this can qualify as out-of-bounds.
	 */
	if (info->access_addr + info->access_size < info->access_addr)
		return "out-of-bounds";

	if (addr_has_metadata(info->access_addr))
		return get_shadow_bug_type(info);
	return get_wild_bug_type(info);
}

void kasan_metadata_fetch_row(char *buffer, void *row)
{
	memcpy(buffer, kasan_mem_to_shadow(row), META_BYTES_PER_ROW);
}

#if CONFIG_KASAN_STACK
static bool __must_check tokenize_frame_descr(const char **frame_descr,
					      char *token, size_t max_tok_len,
					      unsigned long *value)
{
	const char *sep = strchr(*frame_descr, ' ');

	if (sep == NULL)
		sep = *frame_descr + strlen(*frame_descr);

	if (token != NULL) {
		const size_t tok_len = sep - *frame_descr;

		if (tok_len + 1 > max_tok_len) {
			pr_err("KASAN internal error: frame description too long: %s\n",
			       *frame_descr);
			return false;
		}

		/* Copy token (+ 1 byte for '\0'). */
		strlcpy(token, *frame_descr, tok_len + 1);
	}

	/* Advance frame_descr past separator. */
	*frame_descr = sep + 1;

	if (value != NULL && kstrtoul(token, 10, value)) {
		pr_err("KASAN internal error: not a valid number: %s\n", token);
		return false;
	}

	return true;
}

static void print_decoded_frame_descr(const char *frame_descr)
{
	/*
	 * We need to parse the following string:
	 *    "n alloc_1 alloc_2 ... alloc_n"
	 * where alloc_i looks like
	 *    "offset size len name"
	 * or "offset size len name:line".
	 */

	char token[64];
	unsigned long num_objects;

	if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
				  &num_objects))
		return;

	pr_err("\n");
	pr_err("this frame has %lu %s:\n", num_objects,
	       num_objects == 1 ? "object" : "objects");

	while (num_objects--) {
		unsigned long offset;
		unsigned long size;

		/* access offset */
		if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
					  &offset))
			return;
		/* access size */
		if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
					  &size))
			return;
		/* name length (unused) */
		if (!tokenize_frame_descr(&frame_descr, NULL, 0, NULL))
			return;
		/* object name */
		if (!tokenize_frame_descr(&frame_descr, token, sizeof(token),
					  NULL))
			return;

		/* Strip line number; without filename it's not very helpful. */
		strreplace(token, ':', '\0');

		/* Finally, print object information. */
		pr_err(" [%lu, %lu) '%s'", offset, offset + size, token);
	}
}

static bool __must_check get_address_stack_frame_info(const void *addr,
						      unsigned long *offset,
						      const char **frame_descr,
						      const void **frame_pc)
{
	unsigned long aligned_addr;
	unsigned long mem_ptr;
	const u8 *shadow_bottom;
	const u8 *shadow_ptr;
	const unsigned long *frame;

	BUILD_BUG_ON(IS_ENABLED(CONFIG_STACK_GROWSUP));

	/*
	 * NOTE: We currently only support printing frame information for
	 * accesses to the task's own stack.
	 */
	if (!object_is_on_stack(addr))
		return false;

	aligned_addr = round_down((unsigned long)addr, sizeof(long));
	mem_ptr = round_down(aligned_addr, KASAN_GRANULE_SIZE);
	shadow_ptr = kasan_mem_to_shadow((void *)aligned_addr);
	shadow_bottom = kasan_mem_to_shadow(end_of_stack(current));

	while (shadow_ptr >= shadow_bottom && *shadow_ptr != KASAN_STACK_LEFT) {
		shadow_ptr--;
		mem_ptr -= KASAN_GRANULE_SIZE;
	}

	while (shadow_ptr >= shadow_bottom && *shadow_ptr == KASAN_STACK_LEFT) {
		shadow_ptr--;
		mem_ptr -= KASAN_GRANULE_SIZE;
	}

	if (shadow_ptr < shadow_bottom)
		return false;

	frame = (const unsigned long *)(mem_ptr + KASAN_GRANULE_SIZE);
	if (frame[0] != KASAN_CURRENT_STACK_FRAME_MAGIC) {
		pr_err("KASAN internal error: frame info validation failed; invalid marker: %lu\n",
		       frame[0]);
		return false;
	}

	*offset = (unsigned long)addr - (unsigned long)frame;
	*frame_descr = (const char *)frame[1];
	*frame_pc = (void *)frame[2];

	return true;
}

void kasan_print_address_stack_frame(const void *addr)
{
	unsigned long offset;
	const char *frame_descr;
	const void *frame_pc;

	if (!get_address_stack_frame_info(addr, &offset, &frame_descr,
					  &frame_pc))
		return;

	/*
	 * get_address_stack_frame_info only returns true if the given addr is
	 * on the current task's stack.
	 */
	pr_err("\n");
	pr_err("addr %px is located in stack of task %s/%d at offset %lu in frame:\n",
	       addr, current->comm, task_pid_nr(current), offset);
	pr_err(" %pS\n", frame_pc);

	if (!frame_descr)
		return;

	print_decoded_frame_descr(frame_descr);
}
#endif /* CONFIG_KASAN_STACK */

#define DEFINE_ASAN_REPORT_LOAD(size)                     \
void __asan_report_load##size##_noabort(unsigned long addr) \
{                                                         \
	kasan_report(addr, size, false, _RET_IP_);	  \
}                                                         \
EXPORT_SYMBOL(__asan_report_load##size##_noabort)

#define DEFINE_ASAN_REPORT_STORE(size)                     \
void __asan_report_store##size##_noabort(unsigned long addr) \
{                                                          \
	kasan_report(addr, size, true, _RET_IP_);	   \
}                                                          \
EXPORT_SYMBOL(__asan_report_store##size##_noabort)

DEFINE_ASAN_REPORT_LOAD(1);
DEFINE_ASAN_REPORT_LOAD(2);
DEFINE_ASAN_REPORT_LOAD(4);
DEFINE_ASAN_REPORT_LOAD(8);
DEFINE_ASAN_REPORT_LOAD(16);
DEFINE_ASAN_REPORT_STORE(1);
DEFINE_ASAN_REPORT_STORE(2);
DEFINE_ASAN_REPORT_STORE(4);
DEFINE_ASAN_REPORT_STORE(8);
DEFINE_ASAN_REPORT_STORE(16);

void __asan_report_load_n_noabort(unsigned long addr, size_t size)
{
	kasan_report(addr, size, false, _RET_IP_);
}
EXPORT_SYMBOL(__asan_report_load_n_noabort);

void __asan_report_store_n_noabort(unsigned long addr, size_t size)
{
	kasan_report(addr, size, true, _RET_IP_);
}
EXPORT_SYMBOL(__asan_report_store_n_noabort);
back to top