Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 06a84f27dcdea4b2af9702349faf415ea13e8103 authored by tom-n-walker on 08 September 2021, 06:48:30 UTC, committed by GitHub on 08 September 2021, 06:48:30 UTC
Update README.md
1 parent 0222df8
  • Files
  • Changes
  • 6f23340
  • /
  • analysis_code
  • /
  • glasshouse_soil_pools.R
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:06a84f27dcdea4b2af9702349faf415ea13e8103
directory badge Iframe embedding
swh:1:dir:05d94a61b18166edb87d5d48ac8d2c21e44bb59a
content badge Iframe embedding
swh:1:cnt:af4a06476adfe39e30d62ee5bbabad00471534db

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
glasshouse_soil_pools.R
################################################################################
#### Project: Lowland plant migrations alpine soil C loss
#### Title:   Glasshouse soil 
#### Author:  Tom Walker (thomas.walker@usys.ethz.ch)
#### Date:    26 May 2021
#### ---------------------------------------------------------------------------


#### PROLOGUE ------------------------------------------------------------------

## Options ----
# remove objects from global environment
rm(list = ls())
# R session options (no factors, bias against scientific #s)
options(
  stringsAsFactors = F,
  scipen = 6
)

## Libraries ----
# standard library set
library(nlme)
library(emmeans)
library(tidyverse)


#### DATA ----------------------------------------------------------------------

## Load from Drake plan ----
soil <- drake::readd(gh_soil)
# select data for analysis
soilPools <- soil$pot_soil
respTime <- soil$mic_resp %>%
  # build categorical hours variable
  mutate(fac_hours = paste0("h", Hours))


#### BARE TREATMENT BOUNDS -----------------------------------------------------

## Calculate ribbon for bare treatment on plots ----
soilPools %>%
  filter(treatment == "B") %>%
  dplyr::select(Cmic.ugC.g:b) %>%
  # calculate upper and lower bounds for all variables
  summarise(
    across(
      everything(), 
      function(x){
        # summary statistics
        mu <- mean(x, na.rm = T)
        n <- sum(!is.na(x))
        sdev <- sd(x, na.rm = T)
        se <- sdev/sqrt(n)
        # calculate upper and lower confidence intervals
        high <- mu + se
        low <- mu - se
        out <- c(high, low)
        return(out)
      }
    )
  )

## Remove bare treatment (only relevant as reference) ----
soilPools <- soilPools %>%
  filter(treatment != "B")


#### ANALYSE RESPIRATION -------------------------------------------------------

# build model
m0 <- lme(
  R.ugC.g.h ~ Treatment * fac_hours, 
  random = ~ 1 | Block,
  data = respTime,
  method = "ML",
  na.action = "na.exclude", 
  weights = NULL
)
# diagnose model
r0 <- residuals(m0, type = "normalized")
par(mfrow = c(1, 4))
plot(r0 ~ fitted(m0))
boxplot(r0 ~ respTime$Treatment)
boxplot(r0 ~ respTime$fac_hours)
hist(r0)
# test main effects
anova(m0, update(m0, ~.- Treatment:fac_hours))
# post-hoc
m0reml <- update(m0, method = "REML")
emmeans(m0, pairwise ~ Treatment | fac_hours)


#### ANALYSE POOLS -------------------------------------------------------------

## DOM a350 ----
# build model
m1 <- lme(
  DOM.a350 ~ treatment, 
  random = ~ 1 | block, 
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r1 <- residuals(m1, type = "normalized")
par(mfrow = c(1, 3))
plot(r1 ~ fitted(m1))
boxplot(r1 ~ soilPools$treatment)
hist(r1)
# test main effects
m1a <- update(m1, ~.- treatment)
anova(m1, m1a)

## DOM total fluorescence ----
# build model
m2 <- lme(
  DOM.Ftot ~ treatment, 
  random = ~ 1 | block, 
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r2 <- residuals(m2, type = "normalized")
par(mfrow = c(1, 3))
plot(r2 ~ fitted(m2))
boxplot(r2 ~ soilPools$treatment)
hist(r2)
# test main effects
m2a <- update(m2, ~.- treatment)
anova(m2, m2a)

## DOM fluorescence index ----
# build model
m3 <- lme(
  DOM.FI ~ treatment, 
  random = ~ 1 | block, 
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r3 <- residuals(m3, type = "normalized")
par(mfrow = c(1, 3))
plot(r3 ~ fitted(m3))
boxplot(r3 ~ soilPools$treatment)
hist(r3)
# test main effects
m3a <- update(m3, ~.- treatment)
anova(m3, m3a)

## Microbial biomass carbon ----
# build model
m4 <- lme(
  log10(Cmic.ugC.g) ~ treatment,  
  random = ~ 1 | block, 
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r4 <- residuals(m4, type = "normalized")
par(mfrow = c(1, 3))
plot(r4 ~ fitted(m4))
boxplot(r4 ~ soilPools$treatment)
hist(r4)
# test main effects
m4a <- update(m4, ~.- treatment)
anova(m4, m4a)

## Fast-decaying pool size ----
# build model
m5 <- lme(
  log10(p) ~ treatment, 
  random = ~ 1 | block, 
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r5 <- residuals(m5, type = "normalized")
par(mfrow = c(1, 3))
plot(r5 ~ fitted(m5))
boxplot(r5 ~ soilPools$treatment)
hist(r5)
# test main effects
m5a <- update(m5, ~.- treatment)
anova(m5, m5a)

## Fast-decaying pool rate ----
# build model
m6 <- lme(
  log10(k) ~ treatment, 
  random = ~ 1 | block, 
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r6 <- residuals(m6, type = "normalized")
par(mfrow = c(1, 3))
plot(r6 ~ fitted(m6))
boxplot(r6 ~ soilPools$treatment)
hist(r6)
# test main effects
m6a <- update(m6, ~.- treatment)
anova(m6, m6a)

## DOM component 1 (named component #3 in MS) ----
# build model
m7 <- lme(
  DOM.C1 ~ treatment, 
  random = ~ 1 | block, 
  weights = varIdent(form = ~ 1 | treatment),
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r7 <- residuals(m7, type = "normalized")
par(mfrow = c(1, 3))
plot(r7 ~ fitted(m7))
boxplot(r7 ~ soilPools$treatment)
hist(r7)
# test main effects
m7a <- update(m7, ~.- treatment)
anova(m7, m7a)

## DOM component 2 (named component #4 in MS) ----
# build model
m8 <- lme(
  DOM.C2 ~ treatment, 
  random = ~ 1 | block, 
  weights = varIdent(form = ~ 1 | treatment),
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r8 <- residuals(m8, type = "normalized")
par(mfrow = c(1, 3))
plot(r8 ~ fitted(m8))
boxplot(r8 ~ soilPools$treatment)
hist(r8)
# test main effects
m8a <- update(m8, ~.- treatment)
anova(m8, m8a)

## DOM component 3 (named component #6 in MS) ----
# build model
m9 <- lme(
  DOM.C3 ~ treatment, 
  random = ~ 1 | block, 
  weights = varIdent(form = ~ 1 | treatment),
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r9 <- residuals(m9, type = "normalized")
par(mfrow = c(1, 3))
plot(r9 ~ fitted(m9))
boxplot(r9 ~ soilPools$treatment)
hist(r9)
# test main effects
m9a <- update(m9, ~.- treatment)
anova(m9, m9a)

## DOM component 4 (named component #1 in MS) ----
# build model
m10 <- lme(
  DOM.C4 ~ treatment, 
  random = ~ 1 | block, 
  weights = varIdent(form = ~ 1 | treatment),
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r10 <- residuals(m10, type = "normalized")
par(mfrow = c(1, 3))
plot(r10 ~ fitted(m10))
boxplot(r10 ~ soilPools$treatment)
hist(r10)
# test main effects
m10a <- update(m10, ~.- treatment)
anova(m10, m10a)

## DOM component 5 (named component #5 in MS) ----
# build model
m11 <- lme(
  DOM.C5 ~ treatment, 
  random = ~ 1 | block, 
  weights = varIdent(form = ~ 1 | treatment),
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r11 <- residuals(m11, type = "normalized")
par(mfrow = c(1, 3))
plot(r11 ~ fitted(m11))
boxplot(r11 ~ soilPools$treatment)
hist(r11)
# test main effects
m11a <- update(m11, ~.- treatment)
anova(m11, m11a)

## DOM component 6 (named component #2 in MS) ----
# build model
m12 <- lme(
  DOM.C6 ~ treatment, 
  random = ~ 1 | block, 
  weights = varIdent(form = ~ 1 | treatment),
  data = soilPools,
  na.action = "na.exclude",
  method = "ML"
)
# diagnose model
r12 <- residuals(m12, type = "normalized")
par(mfrow = c(1, 3))
plot(r12 ~ fitted(m12))
boxplot(r12 ~ soilPools$treatment)
hist(r12)
# test main effects
m12a <- update(m12, ~.- treatment)
anova(m12, m12a)
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API