Revision 070fae6d0ff49e63bfd5f2bdc66f8eb1df3b6557 authored by Christian Heimes on 02 July 2019, 18:39:42 UTC, committed by Ned Deily on 02 July 2019, 18:42:08 UTC


ssl.match_hostname() no longer accepts IPv4 addresses with additional text
after the address and only quad-dotted notation without trailing
whitespaces. Some inet_aton() implementations ignore whitespace and all data
after whitespace, e.g. '127.0.0.1 whatever'.

Short notations like '127.1' for '127.0.0.1' were already filtered out.

The bug was initially found by Dominik Czarnota and reported by Paul Kehrer.

Signed-off-by: Christian Heimes <christian@python.org>



https://bugs.python.org/issue37463
1 parent dcc0eb3
Raw File
fourstep.c
/*
 * Copyright (c) 2008-2016 Stefan Krah. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */


#include "mpdecimal.h"
#include <assert.h>
#include "numbertheory.h"
#include "sixstep.h"
#include "transpose.h"
#include "umodarith.h"
#include "fourstep.h"


/* Bignum: Cache efficient Matrix Fourier Transform for arrays of the
   form 3 * 2**n (See literature/matrix-transform.txt). */


#ifndef PPRO
static inline void
std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3,
              mpd_uint_t w3table[3], mpd_uint_t umod)
{
    mpd_uint_t r1, r2;
    mpd_uint_t w;
    mpd_uint_t s, tmp;


    /* k = 0 -> w = 1 */
    s = *x1;
    s = addmod(s, *x2, umod);
    s = addmod(s, *x3, umod);

    r1 = s;

    /* k = 1 */
    s = *x1;

    w = w3table[1];
    tmp = MULMOD(*x2, w);
    s = addmod(s, tmp, umod);

    w = w3table[2];
    tmp = MULMOD(*x3, w);
    s = addmod(s, tmp, umod);

    r2 = s;

    /* k = 2 */
    s = *x1;

    w = w3table[2];
    tmp = MULMOD(*x2, w);
    s = addmod(s, tmp, umod);

    w = w3table[1];
    tmp = MULMOD(*x3, w);
    s = addmod(s, tmp, umod);

    *x3 = s;
    *x2 = r2;
    *x1 = r1;
}
#else /* PPRO */
static inline void
ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3],
               mpd_uint_t umod, double *dmod, uint32_t dinvmod[3])
{
    mpd_uint_t r1, r2;
    mpd_uint_t w;
    mpd_uint_t s, tmp;


    /* k = 0 -> w = 1 */
    s = *x1;
    s = addmod(s, *x2, umod);
    s = addmod(s, *x3, umod);

    r1 = s;

    /* k = 1 */
    s = *x1;

    w = w3table[1];
    tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    w = w3table[2];
    tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    r2 = s;

    /* k = 2 */
    s = *x1;

    w = w3table[2];
    tmp = ppro_mulmod(*x2, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    w = w3table[1];
    tmp = ppro_mulmod(*x3, w, dmod, dinvmod);
    s = addmod(s, tmp, umod);

    *x3 = s;
    *x2 = r2;
    *x1 = r1;
}
#endif


/* forward transform, sign = -1; transform length = 3 * 2**n */
int
four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    mpd_size_t R = 3; /* number of rows */
    mpd_size_t C = n / 3; /* number of columns */
    mpd_uint_t w3table[3];
    mpd_uint_t kernel, w0, w1, wstep;
    mpd_uint_t *s, *p0, *p1, *p2;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_size_t i, k;


    assert(n >= 48);
    assert(n <= 3*MPD_MAXTRANSFORM_2N);


    /* Length R transform on the columns. */
    SETMODULUS(modnum);
    _mpd_init_w3table(w3table, -1, modnum);
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

        SIZE3_NTT(p0, p1, p2, w3table);
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    kernel = _mpd_getkernel(n, -1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;                  /* r**(i*0): initial value for k=0 */
        w1 = POWMOD(kernel, i);  /* r**(i*1): initial value for k=1 */
        wstep = MULMOD(w1, w1);  /* r**(2*i) */
        for (k = 0; k < C-1; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);  /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length C transform on the rows. */
    for (s = a; s < a+n; s += C) {
        if (!six_step_fnt(s, C, modnum)) {
            return 0;
        }
    }

#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix. */
    transpose_3xpow2(a, R, C);
#endif

    return 1;
}

/* backward transform, sign = 1; transform length = 3 * 2**n */
int
inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum)
{
    mpd_size_t R = 3; /* number of rows */
    mpd_size_t C = n / 3; /* number of columns */
    mpd_uint_t w3table[3];
    mpd_uint_t kernel, w0, w1, wstep;
    mpd_uint_t *s, *p0, *p1, *p2;
    mpd_uint_t umod;
#ifdef PPRO
    double dmod;
    uint32_t dinvmod[3];
#endif
    mpd_size_t i, k;


    assert(n >= 48);
    assert(n <= 3*MPD_MAXTRANSFORM_2N);


#if 0
    /* An unordered transform is sufficient for convolution. */
    /* Transpose the matrix, producing an R*C matrix. */
    transpose_3xpow2(a, C, R);
#endif

    /* Length C transform on the rows. */
    for (s = a; s < a+n; s += C) {
        if (!inv_six_step_fnt(s, C, modnum)) {
            return 0;
        }
    }

    /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */
    SETMODULUS(modnum);
    kernel = _mpd_getkernel(n, 1, modnum);
    for (i = 1; i < R; i++) {
        w0 = 1;
        w1 = POWMOD(kernel, i);
        wstep = MULMOD(w1, w1);
        for (k = 0; k < C; k += 2) {
            mpd_uint_t x0 = a[i*C+k];
            mpd_uint_t x1 = a[i*C+k+1];
            MULMOD2(&x0, w0, &x1, w1);
            MULMOD2C(&w0, &w1, wstep);
            a[i*C+k] = x0;
            a[i*C+k+1] = x1;
        }
    }

    /* Length R transform on the columns. */
    _mpd_init_w3table(w3table, 1, modnum);
    for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) {

        SIZE3_NTT(p0, p1, p2, w3table);
    }

    return 1;
}


back to top