Revision 07718be265680dcf496347d475ce1a5442f55ad7 authored by Maxim Mikityanskiy on 10 June 2021, 16:40:30 UTC, committed by David S. Miller on 10 June 2021, 21:26:18 UTC
The TCP option parser in mptcp (mptcp_get_options) could read one byte
out of bounds. When the length is 1, the execution flow gets into the
loop, reads one byte of the opcode, and if the opcode is neither
TCPOPT_EOL nor TCPOPT_NOP, it reads one more byte, which exceeds the
length of 1.

This fix is inspired by commit 9609dad263f8 ("ipv4: tcp_input: fix stack
out of bounds when parsing TCP options.").

Cc: Young Xiao <92siuyang@gmail.com>
Fixes: cec37a6e41aa ("mptcp: Handle MP_CAPABLE options for outgoing connections")
Signed-off-by: Maxim Mikityanskiy <maximmi@nvidia.com>
Reviewed-by: Mat Martineau <mathew.j.martineau@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
1 parent 5fc177a
Raw File
blk-map.c
// SPDX-License-Identifier: GPL-2.0
/*
 * Functions related to mapping data to requests
 */
#include <linux/kernel.h>
#include <linux/sched/task_stack.h>
#include <linux/module.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/uio.h>

#include "blk.h"

struct bio_map_data {
	bool is_our_pages : 1;
	bool is_null_mapped : 1;
	struct iov_iter iter;
	struct iovec iov[];
};

static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
					       gfp_t gfp_mask)
{
	struct bio_map_data *bmd;

	if (data->nr_segs > UIO_MAXIOV)
		return NULL;

	bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
	if (!bmd)
		return NULL;
	memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
	bmd->iter = *data;
	bmd->iter.iov = bmd->iov;
	return bmd;
}

/**
 * bio_copy_from_iter - copy all pages from iov_iter to bio
 * @bio: The &struct bio which describes the I/O as destination
 * @iter: iov_iter as source
 *
 * Copy all pages from iov_iter to bio.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
{
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		ssize_t ret;

		ret = copy_page_from_iter(bvec->bv_page,
					  bvec->bv_offset,
					  bvec->bv_len,
					  iter);

		if (!iov_iter_count(iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
	}

	return 0;
}

/**
 * bio_copy_to_iter - copy all pages from bio to iov_iter
 * @bio: The &struct bio which describes the I/O as source
 * @iter: iov_iter as destination
 *
 * Copy all pages from bio to iov_iter.
 * Returns 0 on success, or error on failure.
 */
static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
{
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		ssize_t ret;

		ret = copy_page_to_iter(bvec->bv_page,
					bvec->bv_offset,
					bvec->bv_len,
					&iter);

		if (!iov_iter_count(&iter))
			break;

		if (ret < bvec->bv_len)
			return -EFAULT;
	}

	return 0;
}

/**
 *	bio_uncopy_user	-	finish previously mapped bio
 *	@bio: bio being terminated
 *
 *	Free pages allocated from bio_copy_user_iov() and write back data
 *	to user space in case of a read.
 */
static int bio_uncopy_user(struct bio *bio)
{
	struct bio_map_data *bmd = bio->bi_private;
	int ret = 0;

	if (!bmd->is_null_mapped) {
		/*
		 * if we're in a workqueue, the request is orphaned, so
		 * don't copy into a random user address space, just free
		 * and return -EINTR so user space doesn't expect any data.
		 */
		if (!current->mm)
			ret = -EINTR;
		else if (bio_data_dir(bio) == READ)
			ret = bio_copy_to_iter(bio, bmd->iter);
		if (bmd->is_our_pages)
			bio_free_pages(bio);
	}
	kfree(bmd);
	return ret;
}

static int bio_copy_user_iov(struct request *rq, struct rq_map_data *map_data,
		struct iov_iter *iter, gfp_t gfp_mask)
{
	struct bio_map_data *bmd;
	struct page *page;
	struct bio *bio;
	int i = 0, ret;
	int nr_pages;
	unsigned int len = iter->count;
	unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;

	bmd = bio_alloc_map_data(iter, gfp_mask);
	if (!bmd)
		return -ENOMEM;

	/*
	 * We need to do a deep copy of the iov_iter including the iovecs.
	 * The caller provided iov might point to an on-stack or otherwise
	 * shortlived one.
	 */
	bmd->is_our_pages = !map_data;
	bmd->is_null_mapped = (map_data && map_data->null_mapped);

	nr_pages = bio_max_segs(DIV_ROUND_UP(offset + len, PAGE_SIZE));

	ret = -ENOMEM;
	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		goto out_bmd;
	bio->bi_opf |= req_op(rq);

	if (map_data) {
		nr_pages = 1 << map_data->page_order;
		i = map_data->offset / PAGE_SIZE;
	}
	while (len) {
		unsigned int bytes = PAGE_SIZE;

		bytes -= offset;

		if (bytes > len)
			bytes = len;

		if (map_data) {
			if (i == map_data->nr_entries * nr_pages) {
				ret = -ENOMEM;
				goto cleanup;
			}

			page = map_data->pages[i / nr_pages];
			page += (i % nr_pages);

			i++;
		} else {
			page = alloc_page(GFP_NOIO | gfp_mask);
			if (!page) {
				ret = -ENOMEM;
				goto cleanup;
			}
		}

		if (bio_add_pc_page(rq->q, bio, page, bytes, offset) < bytes) {
			if (!map_data)
				__free_page(page);
			break;
		}

		len -= bytes;
		offset = 0;
	}

	if (map_data)
		map_data->offset += bio->bi_iter.bi_size;

	/*
	 * success
	 */
	if ((iov_iter_rw(iter) == WRITE &&
	     (!map_data || !map_data->null_mapped)) ||
	    (map_data && map_data->from_user)) {
		ret = bio_copy_from_iter(bio, iter);
		if (ret)
			goto cleanup;
	} else {
		if (bmd->is_our_pages)
			zero_fill_bio(bio);
		iov_iter_advance(iter, bio->bi_iter.bi_size);
	}

	bio->bi_private = bmd;

	ret = blk_rq_append_bio(rq, bio);
	if (ret)
		goto cleanup;
	return 0;
cleanup:
	if (!map_data)
		bio_free_pages(bio);
	bio_put(bio);
out_bmd:
	kfree(bmd);
	return ret;
}

static int bio_map_user_iov(struct request *rq, struct iov_iter *iter,
		gfp_t gfp_mask)
{
	unsigned int max_sectors = queue_max_hw_sectors(rq->q);
	struct bio *bio;
	int ret;
	int j;

	if (!iov_iter_count(iter))
		return -EINVAL;

	bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_VECS));
	if (!bio)
		return -ENOMEM;
	bio->bi_opf |= req_op(rq);

	while (iov_iter_count(iter)) {
		struct page **pages;
		ssize_t bytes;
		size_t offs, added = 0;
		int npages;

		bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
		if (unlikely(bytes <= 0)) {
			ret = bytes ? bytes : -EFAULT;
			goto out_unmap;
		}

		npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);

		if (unlikely(offs & queue_dma_alignment(rq->q))) {
			ret = -EINVAL;
			j = 0;
		} else {
			for (j = 0; j < npages; j++) {
				struct page *page = pages[j];
				unsigned int n = PAGE_SIZE - offs;
				bool same_page = false;

				if (n > bytes)
					n = bytes;

				if (!bio_add_hw_page(rq->q, bio, page, n, offs,
						     max_sectors, &same_page)) {
					if (same_page)
						put_page(page);
					break;
				}

				added += n;
				bytes -= n;
				offs = 0;
			}
			iov_iter_advance(iter, added);
		}
		/*
		 * release the pages we didn't map into the bio, if any
		 */
		while (j < npages)
			put_page(pages[j++]);
		kvfree(pages);
		/* couldn't stuff something into bio? */
		if (bytes)
			break;
	}

	ret = blk_rq_append_bio(rq, bio);
	if (ret)
		goto out_unmap;
	return 0;

 out_unmap:
	bio_release_pages(bio, false);
	bio_put(bio);
	return ret;
}

static void bio_invalidate_vmalloc_pages(struct bio *bio)
{
#ifdef ARCH_HAS_FLUSH_KERNEL_DCACHE_PAGE
	if (bio->bi_private && !op_is_write(bio_op(bio))) {
		unsigned long i, len = 0;

		for (i = 0; i < bio->bi_vcnt; i++)
			len += bio->bi_io_vec[i].bv_len;
		invalidate_kernel_vmap_range(bio->bi_private, len);
	}
#endif
}

static void bio_map_kern_endio(struct bio *bio)
{
	bio_invalidate_vmalloc_pages(bio);
	bio_put(bio);
}

/**
 *	bio_map_kern	-	map kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to map
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio allocation
 *
 *	Map the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
static struct bio *bio_map_kern(struct request_queue *q, void *data,
		unsigned int len, gfp_t gfp_mask)
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	const int nr_pages = end - start;
	bool is_vmalloc = is_vmalloc_addr(data);
	struct page *page;
	int offset, i;
	struct bio *bio;

	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);

	if (is_vmalloc) {
		flush_kernel_vmap_range(data, len);
		bio->bi_private = data;
	}

	offset = offset_in_page(kaddr);
	for (i = 0; i < nr_pages; i++) {
		unsigned int bytes = PAGE_SIZE - offset;

		if (len <= 0)
			break;

		if (bytes > len)
			bytes = len;

		if (!is_vmalloc)
			page = virt_to_page(data);
		else
			page = vmalloc_to_page(data);
		if (bio_add_pc_page(q, bio, page, bytes,
				    offset) < bytes) {
			/* we don't support partial mappings */
			bio_put(bio);
			return ERR_PTR(-EINVAL);
		}

		data += bytes;
		len -= bytes;
		offset = 0;
	}

	bio->bi_end_io = bio_map_kern_endio;
	return bio;
}

static void bio_copy_kern_endio(struct bio *bio)
{
	bio_free_pages(bio);
	bio_put(bio);
}

static void bio_copy_kern_endio_read(struct bio *bio)
{
	char *p = bio->bi_private;
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
		p += bvec->bv_len;
	}

	bio_copy_kern_endio(bio);
}

/**
 *	bio_copy_kern	-	copy kernel address into bio
 *	@q: the struct request_queue for the bio
 *	@data: pointer to buffer to copy
 *	@len: length in bytes
 *	@gfp_mask: allocation flags for bio and page allocation
 *	@reading: data direction is READ
 *
 *	copy the kernel address into a bio suitable for io to a block
 *	device. Returns an error pointer in case of error.
 */
static struct bio *bio_copy_kern(struct request_queue *q, void *data,
		unsigned int len, gfp_t gfp_mask, int reading)
{
	unsigned long kaddr = (unsigned long)data;
	unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
	unsigned long start = kaddr >> PAGE_SHIFT;
	struct bio *bio;
	void *p = data;
	int nr_pages = 0;

	/*
	 * Overflow, abort
	 */
	if (end < start)
		return ERR_PTR(-EINVAL);

	nr_pages = end - start;
	bio = bio_kmalloc(gfp_mask, nr_pages);
	if (!bio)
		return ERR_PTR(-ENOMEM);

	while (len) {
		struct page *page;
		unsigned int bytes = PAGE_SIZE;

		if (bytes > len)
			bytes = len;

		page = alloc_page(GFP_NOIO | gfp_mask);
		if (!page)
			goto cleanup;

		if (!reading)
			memcpy(page_address(page), p, bytes);

		if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
			break;

		len -= bytes;
		p += bytes;
	}

	if (reading) {
		bio->bi_end_io = bio_copy_kern_endio_read;
		bio->bi_private = data;
	} else {
		bio->bi_end_io = bio_copy_kern_endio;
	}

	return bio;

cleanup:
	bio_free_pages(bio);
	bio_put(bio);
	return ERR_PTR(-ENOMEM);
}

/*
 * Append a bio to a passthrough request.  Only works if the bio can be merged
 * into the request based on the driver constraints.
 */
int blk_rq_append_bio(struct request *rq, struct bio *bio)
{
	struct bvec_iter iter;
	struct bio_vec bv;
	unsigned int nr_segs = 0;

	bio_for_each_bvec(bv, bio, iter)
		nr_segs++;

	if (!rq->bio) {
		blk_rq_bio_prep(rq, bio, nr_segs);
	} else {
		if (!ll_back_merge_fn(rq, bio, nr_segs))
			return -EINVAL;
		rq->biotail->bi_next = bio;
		rq->biotail = bio;
		rq->__data_len += (bio)->bi_iter.bi_size;
		bio_crypt_free_ctx(bio);
	}

	return 0;
}
EXPORT_SYMBOL(blk_rq_append_bio);

/**
 * blk_rq_map_user_iov - map user data to a request, for passthrough requests
 * @q:		request queue where request should be inserted
 * @rq:		request to map data to
 * @map_data:   pointer to the rq_map_data holding pages (if necessary)
 * @iter:	iovec iterator
 * @gfp_mask:	memory allocation flags
 *
 * Description:
 *    Data will be mapped directly for zero copy I/O, if possible. Otherwise
 *    a kernel bounce buffer is used.
 *
 *    A matching blk_rq_unmap_user() must be issued at the end of I/O, while
 *    still in process context.
 */
int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
			struct rq_map_data *map_data,
			const struct iov_iter *iter, gfp_t gfp_mask)
{
	bool copy = false;
	unsigned long align = q->dma_pad_mask | queue_dma_alignment(q);
	struct bio *bio = NULL;
	struct iov_iter i;
	int ret = -EINVAL;

	if (!iter_is_iovec(iter))
		goto fail;

	if (map_data)
		copy = true;
	else if (blk_queue_may_bounce(q))
		copy = true;
	else if (iov_iter_alignment(iter) & align)
		copy = true;
	else if (queue_virt_boundary(q))
		copy = queue_virt_boundary(q) & iov_iter_gap_alignment(iter);

	i = *iter;
	do {
		if (copy)
			ret = bio_copy_user_iov(rq, map_data, &i, gfp_mask);
		else
			ret = bio_map_user_iov(rq, &i, gfp_mask);
		if (ret)
			goto unmap_rq;
		if (!bio)
			bio = rq->bio;
	} while (iov_iter_count(&i));

	return 0;

unmap_rq:
	blk_rq_unmap_user(bio);
fail:
	rq->bio = NULL;
	return ret;
}
EXPORT_SYMBOL(blk_rq_map_user_iov);

int blk_rq_map_user(struct request_queue *q, struct request *rq,
		    struct rq_map_data *map_data, void __user *ubuf,
		    unsigned long len, gfp_t gfp_mask)
{
	struct iovec iov;
	struct iov_iter i;
	int ret = import_single_range(rq_data_dir(rq), ubuf, len, &iov, &i);

	if (unlikely(ret < 0))
		return ret;

	return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
}
EXPORT_SYMBOL(blk_rq_map_user);

/**
 * blk_rq_unmap_user - unmap a request with user data
 * @bio:	       start of bio list
 *
 * Description:
 *    Unmap a rq previously mapped by blk_rq_map_user(). The caller must
 *    supply the original rq->bio from the blk_rq_map_user() return, since
 *    the I/O completion may have changed rq->bio.
 */
int blk_rq_unmap_user(struct bio *bio)
{
	struct bio *next_bio;
	int ret = 0, ret2;

	while (bio) {
		if (bio->bi_private) {
			ret2 = bio_uncopy_user(bio);
			if (ret2 && !ret)
				ret = ret2;
		} else {
			bio_release_pages(bio, bio_data_dir(bio) == READ);
		}

		next_bio = bio;
		bio = bio->bi_next;
		bio_put(next_bio);
	}

	return ret;
}
EXPORT_SYMBOL(blk_rq_unmap_user);

/**
 * blk_rq_map_kern - map kernel data to a request, for passthrough requests
 * @q:		request queue where request should be inserted
 * @rq:		request to fill
 * @kbuf:	the kernel buffer
 * @len:	length of user data
 * @gfp_mask:	memory allocation flags
 *
 * Description:
 *    Data will be mapped directly if possible. Otherwise a bounce
 *    buffer is used. Can be called multiple times to append multiple
 *    buffers.
 */
int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
		    unsigned int len, gfp_t gfp_mask)
{
	int reading = rq_data_dir(rq) == READ;
	unsigned long addr = (unsigned long) kbuf;
	struct bio *bio;
	int ret;

	if (len > (queue_max_hw_sectors(q) << 9))
		return -EINVAL;
	if (!len || !kbuf)
		return -EINVAL;

	if (!blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf) ||
	    blk_queue_may_bounce(q))
		bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
	else
		bio = bio_map_kern(q, kbuf, len, gfp_mask);

	if (IS_ERR(bio))
		return PTR_ERR(bio);

	bio->bi_opf &= ~REQ_OP_MASK;
	bio->bi_opf |= req_op(rq);

	ret = blk_rq_append_bio(rq, bio);
	if (unlikely(ret))
		bio_put(bio);
	return ret;
}
EXPORT_SYMBOL(blk_rq_map_kern);
back to top