https://github.com/torvalds/linux
Revision 0929d8580071c6a1cec1a7916a8f674c243ceee1 authored by Dave Chinner on 19 November 2018, 21:31:10 UTC, committed by Darrick J. Wong on 21 November 2018, 18:10:53 UTC
When we write into an unwritten extent via direct IO, we dirty
metadata on IO completion to convert the unwritten extent to
written. However, when we do the FUA optimisation checks, the inode
may be clean and so we issue a FUA write into the unwritten extent.
This means we then bypass the generic_write_sync() call after
unwritten extent conversion has ben done and we don't force the
modified metadata to stable storage.

This violates O_DSYNC semantics. The window of exposure is a single
IO, as the next DIO write will see the inode has dirty metadata and
hence will not use the FUA optimisation. Calling
generic_write_sync() after completion of the second IO will also
sync the first write and it's metadata.

Fix this by avoiding the FUA optimisation when writing to unwritten
extents.

Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
1 parent 9230a0b
Raw File
Tip revision: 0929d8580071c6a1cec1a7916a8f674c243ceee1 authored by Dave Chinner on 19 November 2018, 21:31:10 UTC
iomap: FUA is wrong for DIO O_DSYNC writes into unwritten extents
Tip revision: 0929d85
ecdh.c
/* ECDH key-agreement protocol
 *
 * Copyright (c) 2016, Intel Corporation
 * Authors: Salvator Benedetto <salvatore.benedetto@intel.com>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/module.h>
#include <crypto/internal/kpp.h>
#include <crypto/kpp.h>
#include <crypto/ecdh.h>
#include <linux/scatterlist.h>
#include "ecc.h"

struct ecdh_ctx {
	unsigned int curve_id;
	unsigned int ndigits;
	u64 private_key[ECC_MAX_DIGITS];
};

static inline struct ecdh_ctx *ecdh_get_ctx(struct crypto_kpp *tfm)
{
	return kpp_tfm_ctx(tfm);
}

static unsigned int ecdh_supported_curve(unsigned int curve_id)
{
	switch (curve_id) {
	case ECC_CURVE_NIST_P192: return ECC_CURVE_NIST_P192_DIGITS;
	case ECC_CURVE_NIST_P256: return ECC_CURVE_NIST_P256_DIGITS;
	default: return 0;
	}
}

static int ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
			   unsigned int len)
{
	struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);
	struct ecdh params;
	unsigned int ndigits;

	if (crypto_ecdh_decode_key(buf, len, &params) < 0)
		return -EINVAL;

	ndigits = ecdh_supported_curve(params.curve_id);
	if (!ndigits)
		return -EINVAL;

	ctx->curve_id = params.curve_id;
	ctx->ndigits = ndigits;

	if (!params.key || !params.key_size)
		return ecc_gen_privkey(ctx->curve_id, ctx->ndigits,
				       ctx->private_key);

	if (ecc_is_key_valid(ctx->curve_id, ctx->ndigits,
			     (const u64 *)params.key, params.key_size) < 0)
		return -EINVAL;

	memcpy(ctx->private_key, params.key, params.key_size);

	return 0;
}

static int ecdh_compute_value(struct kpp_request *req)
{
	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
	struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);
	u64 *public_key;
	u64 *shared_secret = NULL;
	void *buf;
	size_t copied, nbytes, public_key_sz;
	int ret = -ENOMEM;

	nbytes = ctx->ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
	/* Public part is a point thus it has both coordinates */
	public_key_sz = 2 * nbytes;

	public_key = kmalloc(public_key_sz, GFP_KERNEL);
	if (!public_key)
		return -ENOMEM;

	if (req->src) {
		shared_secret = kmalloc(nbytes, GFP_KERNEL);
		if (!shared_secret)
			goto free_pubkey;

		/* from here on it's invalid parameters */
		ret = -EINVAL;

		/* must have exactly two points to be on the curve */
		if (public_key_sz != req->src_len)
			goto free_all;

		copied = sg_copy_to_buffer(req->src,
					   sg_nents_for_len(req->src,
							    public_key_sz),
					   public_key, public_key_sz);
		if (copied != public_key_sz)
			goto free_all;

		ret = crypto_ecdh_shared_secret(ctx->curve_id, ctx->ndigits,
						ctx->private_key, public_key,
						shared_secret);

		buf = shared_secret;
	} else {
		ret = ecc_make_pub_key(ctx->curve_id, ctx->ndigits,
				       ctx->private_key, public_key);
		buf = public_key;
		nbytes = public_key_sz;
	}

	if (ret < 0)
		goto free_all;

	/* might want less than we've got */
	nbytes = min_t(size_t, nbytes, req->dst_len);
	copied = sg_copy_from_buffer(req->dst, sg_nents_for_len(req->dst,
								nbytes),
				     buf, nbytes);
	if (copied != nbytes)
		ret = -EINVAL;

	/* fall through */
free_all:
	kzfree(shared_secret);
free_pubkey:
	kfree(public_key);
	return ret;
}

static unsigned int ecdh_max_size(struct crypto_kpp *tfm)
{
	struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);

	/* Public key is made of two coordinates, add one to the left shift */
	return ctx->ndigits << (ECC_DIGITS_TO_BYTES_SHIFT + 1);
}

static struct kpp_alg ecdh = {
	.set_secret = ecdh_set_secret,
	.generate_public_key = ecdh_compute_value,
	.compute_shared_secret = ecdh_compute_value,
	.max_size = ecdh_max_size,
	.base = {
		.cra_name = "ecdh",
		.cra_driver_name = "ecdh-generic",
		.cra_priority = 100,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct ecdh_ctx),
	},
};

static int ecdh_init(void)
{
	return crypto_register_kpp(&ecdh);
}

static void ecdh_exit(void)
{
	crypto_unregister_kpp(&ecdh);
}

module_init(ecdh_init);
module_exit(ecdh_exit);
MODULE_ALIAS_CRYPTO("ecdh");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("ECDH generic algorithm");
back to top