sort by:
Revision Author Date Message Commit Date
90deb78 mm: memcg: only check swap cache pages for repeated charging Only anon and shmem pages in the swap cache are attempted to be charged multiple times, from every swap pte fault or from shmem_unuse(). No other pages require checking PageCgroupUsed(). Charging pages in the swap cache is also serialized by the page lock, and since both the try_charge and commit_charge are called under the same page lock section, the PageCgroupUsed() check might as well happen before the counter charging, let alone reclaim. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:49 UTC
0435a2f mm: memcg: split swapin charge function into private and public part When shmem is charged upon swapin, it does not need to check twice whether the memory controller is enabled. Also, shmem pages do not have to be checked for everything that regular anon pages have to be checked for, so let shmem use the internal version directly and allow future patches to move around checks that are only required when swapping in anon pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
24467ca mm: memcg: remove needless !mm fixup to init_mm when charging It does not matter to __mem_cgroup_try_charge() if the passed mm is NULL or init_mm, it will charge the root memcg in either case. Also fix up the comment in __mem_cgroup_try_charge() that claimed the init_mm would be charged when no mm was passed. It's not really incorrect, but confusing. Clarify that the root memcg is charged in this case. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
62ba744 mm: memcg: remove unneeded shmem charge type shmem page charges have not needed a separate charge type to tell them from regular file pages since 08e552c ("memcg: synchronized LRU"). Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
827a03d mm: memcg: move swapin charge functions above callsites Charging cache pages may require swapin in the shmem case. Save the forward declaration and just move the swapin functions above the cache charging functions. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
7d18895 mm: memcg: only check for PageSwapCache when uncharging anon Only anon pages that are uncharged at the time of the last page table mapping vanishing may be in swapcache. When shmem pages, file pages, swap-freed anon pages, or just migrated pages are uncharged, they are known for sure to be not in swapcache. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
0c59b89 mm: memcg: push down PageSwapCache check into uncharge entry functions Not all uncharge paths need to check if the page is swapcache, some of them can know for sure. Push down the check into all callsites of uncharge_common() so that the patch that removes some of them is more obvious. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: David Rientjes <rientjes@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
5d84c77 mm: swapfile: clean up unuse_pte race handling The conditional mem_cgroup_cancel_charge_swapin() is a leftover from when the function would continue to reestablish the page even after mem_cgroup_try_charge_swapin() failed. After 85d9fc8 "memcg: fix refcnt handling at swapoff", the condition is always true when this code is reached. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
0030f53 mm: memcg: fix compaction/migration failing due to memcg limits Compaction (and page migration in general) can currently be hindered through pages being owned by memory cgroups that are at their limits and unreclaimable. The reason is that the replacement page is being charged against the limit while the page being replaced is also still charged. But this seems unnecessary, given that only one of the two pages will still be in use after migration finishes. This patch changes the memcg migration sequence so that the replacement page is not charged. Whatever page is still in use after successful or failed migration gets to keep the charge of the page that was going to be replaced. The replacement page will still show up temporarily in the rss/cache statistics, this can be fixed in a later patch as it's less urgent. Reported-by: David Rientjes <rientjes@google.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Hugh Dickins <hughd@google.com> Cc: David Rientjes <rientjes@google.com> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
7374492 swapfile: avoid dereferencing bd_disk during swap_entry_free for network storage Commit b3a27d ("swap: Add swap slot free callback to block_device_operations") dereferences p->bdev->bd_disk but this is a NULL dereference if using swap-over-NFS. This patch checks SWP_BLKDEV on the swap_info_struct before dereferencing. With reference to this callback, Christoph Hellwig stated "Please just remove the callback entirely. It has no user outside the staging tree and was added clearly against the rules for that staging tree". This would also be my preference but there was not an obvious way of keeping zram in staging/ happy. Signed-off-by: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
192e501 nfs: prevent page allocator recursions with swap over NFS. GFP_NOFS is _more_ permissive than GFP_NOIO in that it will initiate IO, just not of any filesystem data. The problem is that previously NOFS was correct because that avoids recursion into the NFS code. With swap-over-NFS, it is no longer correct as swap IO can lead to this recursion. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
a564b8f nfs: enable swap on NFS Implement the new swapfile a_ops for NFS and hook up ->direct_IO. This will set the NFS socket to SOCK_MEMALLOC and run socket reconnect under PF_MEMALLOC as well as reset SOCK_MEMALLOC before engaging the protocol ->connect() method. PF_MEMALLOC should allow the allocation of struct socket and related objects and the early (re)setting of SOCK_MEMALLOC should allow us to receive the packets required for the TCP connection buildup. [jlayton@redhat.com: Restore PF_MEMALLOC task flags in all cases] [dfeng@redhat.com: Fix handling of multiple swap files] [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:48 UTC
29418aa nfs: disable data cache revalidation for swapfiles The VM does not like PG_private set on PG_swapcache pages. As suggested by Trond in http://lkml.org/lkml/2006/8/25/348, this patch disables NFS data cache revalidation on swap files. as it does not make sense to have other clients change the file while it is being used as swap. This avoids setting PG_private on swap pages, since there ought to be no further races with invalidate_inode_pages2() to deal with. Since we cannot set PG_private we cannot use page->private which is already used by PG_swapcache pages to store the nfs_page. Thus augment the new nfs_page_find_request logic. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
d56b4dd nfs: teach the NFS client how to treat PG_swapcache pages Replace all relevant occurences of page->index and page->mapping in the NFS client with the new page_file_index() and page_file_mapping() functions. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
5a17811 mm: add support for direct_IO to highmem pages The patch "mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages" added support for using direct_IO to write swap pages but it is insufficient for highmem pages. To support highmem pages, this patch kmaps() the page before calling the direct_IO() handler. As direct_IO deals with virtual addresses an additional helper is necessary for get_kernel_pages() to lookup the struct page for a kmap virtual address. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
a509bc1 mm: swap: implement generic handler for swap_activate The version of swap_activate introduced is sufficient for swap-over-NFS but would not provide enough information to implement a generic handler. This patch shuffles things slightly to ensure the same information is available for aops->swap_activate() as is available to the core. No functionality change. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
62c230b mm: add support for a filesystem to activate swap files and use direct_IO for writing swap pages Currently swapfiles are managed entirely by the core VM by using ->bmap to allocate space and write to the blocks directly. This effectively ensures that the underlying blocks are allocated and avoids the need for the swap subsystem to locate what physical blocks store offsets within a file. If the swap subsystem is to use the filesystem information to locate the blocks, it is critical that information such as block groups, block bitmaps and the block descriptor table that map the swap file were resident in memory. This patch adds address_space_operations that the VM can call when activating or deactivating swap backed by a file. int swap_activate(struct file *); int swap_deactivate(struct file *); The ->swap_activate() method is used to communicate to the file that the VM relies on it, and the address_space should take adequate measures such as reserving space in the underlying device, reserving memory for mempools and pinning information such as the block descriptor table in memory. The ->swap_deactivate() method is called on sys_swapoff() if ->swap_activate() returned success. After a successful swapfile ->swap_activate, the swapfile is marked SWP_FILE and swapper_space.a_ops will proxy to sis->swap_file->f_mappings->a_ops using ->direct_io to write swapcache pages and ->readpage to read. It is perfectly possible that direct_IO be used to read the swap pages but it is an unnecessary complication. Similarly, it is possible that ->writepage be used instead of direct_io to write the pages but filesystem developers have stated that calling writepage from the VM is undesirable for a variety of reasons and using direct_IO opens up the possibility of writing back batches of swap pages in the future. [a.p.zijlstra@chello.nl: Original patch] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
18022c5 mm: add get_kernel_page[s] for pinning of kernel addresses for I/O This patch adds two new APIs get_kernel_pages() and get_kernel_page() that may be used to pin a vector of kernel addresses for IO. The initial user is expected to be NFS for allowing pages to be written to swap using aops->direct_IO(). Strictly speaking, swap-over-NFS only needs to pin one page for IO but it makes sense to express the API in terms of a vector and add a helper for pinning single pages. Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Cc: Mark Salter <msalter@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
f981c59 mm: methods for teaching filesystems about PG_swapcache pages In order to teach filesystems to handle swap cache pages, three new page functions are introduced: pgoff_t page_file_index(struct page *); loff_t page_file_offset(struct page *); struct address_space *page_file_mapping(struct page *); page_file_index() - gives the offset of this page in the file in PAGE_CACHE_SIZE blocks. Like page->index is for mapped pages, this function also gives the correct index for PG_swapcache pages. page_file_offset() - uses page_file_index(), so that it will give the expected result, even for PG_swapcache pages. page_file_mapping() - gives the mapping backing the actual page; that is for swap cache pages it will give swap_file->f_mapping. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Paris <eparis@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
6290c2c selinux: tag avc cache alloc as non-critical Failing to allocate a cache entry will only harm performance not correctness. Do not consume valuable reserve pages for something like that. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: Eric Paris <eparis@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: James Morris <jmorris@namei.org> Cc: Christoph Hellwig <hch@infradead.org> Cc: David S. Miller <davem@davemloft.net> Cc: Eric B Munson <emunson@mgebm.net> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Neil Brown <neilb@suse.de> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Xiaotian Feng <dfeng@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
c76562b netvm: prevent a stream-specific deadlock This patch series is based on top of "Swap-over-NBD without deadlocking v15" as it depends on the same reservation of PF_MEMALLOC reserves logic. When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. In diskless systems this is not an option so if swap if required then swapping over the network is considered. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap but this is not always an option. There is no guarantee that the network attached storage (NAS) device is running Linux or supports NBD. However, it is likely that it supports NFS so there are users that want support for swapping over NFS despite any performance concern. Some distributions currently carry patches that support swapping over NFS but it would be preferable to support it in the mainline kernel. Patch 1 avoids a stream-specific deadlock that potentially affects TCP. Patch 2 is a small modification to SELinux to avoid using PFMEMALLOC reserves. Patch 3 adds three helpers for filesystems to handle swap cache pages. For example, page_file_mapping() returns page->mapping for file-backed pages and the address_space of the underlying swap file for swap cache pages. Patch 4 adds two address_space_operations to allow a filesystem to pin all metadata relevant to a swapfile in memory. Upon successful activation, the swapfile is marked SWP_FILE and the address space operation ->direct_IO is used for writing and ->readpage for reading in swap pages. Patch 5 notes that patch 3 is bolting filesystem-specific-swapfile-support onto the side and that the default handlers have different information to what is available to the filesystem. This patch refactors the code so that there are generic handlers for each of the new address_space operations. Patch 6 adds an API to allow a vector of kernel addresses to be translated to struct pages and pinned for IO. Patch 7 adds support for using highmem pages for swap by kmapping the pages before calling the direct_IO handler. Patch 8 updates NFS to use the helpers from patch 3 where necessary. Patch 9 avoids setting PF_private on PG_swapcache pages within NFS. Patch 10 implements the new swapfile-related address_space operations for NFS and teaches the direct IO handler how to manage kernel addresses. Patch 11 prevents page allocator recursions in NFS by using GFP_NOIO where appropriate. Patch 12 fixes a NULL pointer dereference that occurs when using swap-over-NFS. With the patches applied, it is possible to mount a swapfile that is on an NFS filesystem. Swap performance is not great with a swap stress test taking roughly twice as long to complete than if the swap device was backed by NBD. This patch: netvm: prevent a stream-specific deadlock It could happen that all !SOCK_MEMALLOC sockets have buffered so much data that we're over the global rmem limit. This will prevent SOCK_MEMALLOC buffers from receiving data, which will prevent userspace from running, which is needed to reduce the buffered data. Fix this by exempting the SOCK_MEMALLOC sockets from the rmem limit. Once this change it applied, it is important that sockets that set SOCK_MEMALLOC do not clear the flag until the socket is being torn down. If this happens, a warning is generated and the tokens reclaimed to avoid accounting errors until the bug is fixed. [davem@davemloft.net: Warning about clearing SOCK_MEMALLOC] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Acked-by: Rik van Riel <riel@redhat.com> Cc: Trond Myklebust <Trond.Myklebust@netapp.com> Cc: Neil Brown <neilb@suse.de> Cc: Christoph Hellwig <hch@infradead.org> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:47 UTC
68243e7 mm: account for the number of times direct reclaimers get throttled Under significant pressure when writing back to network-backed storage, direct reclaimers may get throttled. This is expected to be a short-lived event and the processes get woken up again but processes do get stalled. This patch counts how many times such stalling occurs. It's up to the administrator whether to reduce these stalls by increasing min_free_kbytes. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
5515061 mm: throttle direct reclaimers if PF_MEMALLOC reserves are low and swap is backed by network storage If swap is backed by network storage such as NBD, there is a risk that a large number of reclaimers can hang the system by consuming all PF_MEMALLOC reserves. To avoid these hangs, the administrator must tune min_free_kbytes in advance which is a bit fragile. This patch throttles direct reclaimers if half the PF_MEMALLOC reserves are in use. If the system is routinely getting throttled the system administrator can increase min_free_kbytes so degradation is smoother but the system will keep running. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
7f338fe nbd: set SOCK_MEMALLOC for access to PFMEMALLOC reserves Set SOCK_MEMALLOC on the NBD socket to allow access to PFMEMALLOC reserves so pages backed by NBD, particularly if swap related, can be cleaned to prevent the machine being deadlocked. It is still possible that the PFMEMALLOC reserves get depleted resulting in deadlock but this can be resolved by the administrator by increasing min_free_kbytes. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
381760e mm: micro-optimise slab to avoid a function call Getting and putting objects in SLAB currently requires a function call but the bulk of the work is related to PFMEMALLOC reserves which are only consumed when network-backed storage is critical. Use an inline function to determine if the function call is required. Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
b4b9e35 netvm: set PF_MEMALLOC as appropriate during SKB processing In order to make sure pfmemalloc packets receive all memory needed to proceed, ensure processing of pfmemalloc SKBs happens under PF_MEMALLOC. This is limited to a subset of protocols that are expected to be used for writing to swap. Taps are not allowed to use PF_MEMALLOC as these are expected to communicate with userspace processes which could be paged out. [a.p.zijlstra@chello.nl: Ideas taken from various patches] [jslaby@suse.cz: Lock imbalance fix] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
0614002 netvm: propagate page->pfmemalloc from skb_alloc_page to skb The skb->pfmemalloc flag gets set to true iff during the slab allocation of data in __alloc_skb that the the PFMEMALLOC reserves were used. If page splitting is used, it is possible that pages will be allocated from the PFMEMALLOC reserve without propagating this information to the skb. This patch propagates page->pfmemalloc from pages allocated for fragments to the skb. It works by reintroducing and expanding the skb_alloc_page() API to take an skb. If the page was allocated from pfmemalloc reserves, it is automatically copied. If the driver allocates the page before the skb, it should call skb_propagate_pfmemalloc() after the skb is allocated to ensure the flag is copied properly. Failure to do so is not critical. The resulting driver may perform slower if it is used for swap-over-NBD or swap-over-NFS but it should not result in failure. [davem@davemloft.net: API rename and consistency] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
c48a11c netvm: propagate page->pfmemalloc to skb The skb->pfmemalloc flag gets set to true iff during the slab allocation of data in __alloc_skb that the the PFMEMALLOC reserves were used. If the packet is fragmented, it is possible that pages will be allocated from the PFMEMALLOC reserve without propagating this information to the skb. This patch propagates page->pfmemalloc from pages allocated for fragments to the skb. Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
c93bdd0 netvm: allow skb allocation to use PFMEMALLOC reserves Change the skb allocation API to indicate RX usage and use this to fall back to the PFMEMALLOC reserve when needed. SKBs allocated from the reserve are tagged in skb->pfmemalloc. If an SKB is allocated from the reserve and the socket is later found to be unrelated to page reclaim, the packet is dropped so that the memory remains available for page reclaim. Network protocols are expected to recover from this packet loss. [a.p.zijlstra@chello.nl: Ideas taken from various patches] [davem@davemloft.net: Use static branches, coding style corrections] [sebastian@breakpoint.cc: Avoid unnecessary cast, fix !CONFIG_NET build] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
7cb0240 netvm: allow the use of __GFP_MEMALLOC by specific sockets Allow specific sockets to be tagged SOCK_MEMALLOC and use __GFP_MEMALLOC for their allocations. These sockets will be able to go below watermarks and allocate from the emergency reserve. Such sockets are to be used to service the VM (iow. to swap over). They must be handled kernel side, exposing such a socket to user-space is a bug. There is a risk that the reserves be depleted so for now, the administrator is responsible for increasing min_free_kbytes as necessary to prevent deadlock for their workloads. [a.p.zijlstra@chello.nl: Original patches] Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
99a1dec net: introduce sk_gfp_atomic() to allow addition of GFP flags depending on the individual socket Introduce sk_gfp_atomic(), this function allows to inject sock specific flags to each sock related allocation. It is only used on allocation paths that may be required for writing pages back to network storage. [davem@davemloft.net: Use sk_gfp_atomic only when necessary] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Acked-by: David S. Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:46 UTC
183f637 mm: ignore mempolicies when using ALLOC_NO_WATERMARK The reserve is proportionally distributed over all !highmem zones in the system. So we need to allow an emergency allocation access to all zones. In order to do that we need to break out of any mempolicy boundaries we might have. In my opinion that does not break mempolicies as those are user oriented and not system oriented. That is, system allocations are not guaranteed to be within mempolicy boundaries. For instance IRQs do not even have a mempolicy. So breaking out of mempolicy boundaries for 'rare' emergency allocations, which are always system allocations (as opposed to user) is ok. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
cfd19c5 mm: only set page->pfmemalloc when ALLOC_NO_WATERMARKS was used __alloc_pages_slowpath() is called when the number of free pages is below the low watermark. If the caller is entitled to use ALLOC_NO_WATERMARKS then the page will be marked page->pfmemalloc. This protects more pages than are strictly necessary as we only need to protect pages allocated below the min watermark (the pfmemalloc reserves). This patch only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required to allocate the page. [rientjes@google.com: David noticed the problem during review] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
907aed4 mm: allow PF_MEMALLOC from softirq context This is needed to allow network softirq packet processing to make use of PF_MEMALLOC. Currently softirq context cannot use PF_MEMALLOC due to it not being associated with a task, and therefore not having task flags to fiddle with - thus the gfp to alloc flag mapping ignores the task flags when in interrupts (hard or soft) context. Allowing softirqs to make use of PF_MEMALLOC therefore requires some trickery. This patch borrows the task flags from whatever process happens to be preempted by the softirq. It then modifies the gfp to alloc flags mapping to not exclude task flags in softirq context, and modify the softirq code to save, clear and restore the PF_MEMALLOC flag. The save and clear, ensures the preempted task's PF_MEMALLOC flag doesn't leak into the softirq. The restore ensures a softirq's PF_MEMALLOC flag cannot leak back into the preempted process. This should be safe due to the following reasons Softirqs can run on multiple CPUs sure but the same task should not be executing the same softirq code. Neither should the softirq handler be preempted by any other softirq handler so the flags should not leak to an unrelated softirq. Softirqs re-enable hardware interrupts in __do_softirq() so can be preempted by hardware interrupts so PF_MEMALLOC is inherited by the hard IRQ. However, this is similar to a process in reclaim being preempted by a hardirq. While PF_MEMALLOC is set, gfp_to_alloc_flags() distinguishes between hard and soft irqs and avoids giving a hardirq the ALLOC_NO_WATERMARKS flag. If the softirq is deferred to ksoftirq then its flags may be used instead of a normal tasks but as the softirq cannot be preempted, the PF_MEMALLOC flag does not leak to other code by accident. [davem@davemloft.net: Document why PF_MEMALLOC is safe] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
b37f1dd mm: introduce __GFP_MEMALLOC to allow access to emergency reserves __GFP_MEMALLOC will allow the allocation to disregard the watermarks, much like PF_MEMALLOC. It allows one to pass along the memalloc state in object related allocation flags as opposed to task related flags, such as sk->sk_allocation. This removes the need for ALLOC_PFMEMALLOC as callers using __GFP_MEMALLOC can get the ALLOC_NO_WATERMARK flag which is now enough to identify allocations related to page reclaim. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
5091b74 mm: slub: optimise the SLUB fast path to avoid pfmemalloc checks This patch removes the check for pfmemalloc from the alloc hotpath and puts the logic after the election of a new per cpu slab. For a pfmemalloc page we do not use the fast path but force the use of the slow path which is also used for the debug case. This has the side-effect of weakening pfmemalloc processing in the following way; 1. A process that is allocating for network swap calls __slab_alloc. pfmemalloc_match is true so the freelist is loaded and c->freelist is now pointing to a pfmemalloc page. 2. A process that is attempting normal allocations calls slab_alloc, finds the pfmemalloc page on the freelist and uses it because it did not check pfmemalloc_match() The patch allows non-pfmemalloc allocations to use pfmemalloc pages with the kmalloc slabs being the most vunerable caches on the grounds they are most likely to have a mix of pfmemalloc and !pfmemalloc requests. A later patch will still protect the system as processes will get throttled if the pfmemalloc reserves get depleted but performance will not degrade as smoothly. [mgorman@suse.de: Expanded changelog] Signed-off-by: Christoph Lameter <cl@linux.com> Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
072bb0a mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages When a user or administrator requires swap for their application, they create a swap partition and file, format it with mkswap and activate it with swapon. Swap over the network is considered as an option in diskless systems. The two likely scenarios are when blade servers are used as part of a cluster where the form factor or maintenance costs do not allow the use of disks and thin clients. The Linux Terminal Server Project recommends the use of the Network Block Device (NBD) for swap according to the manual at https://sourceforge.net/projects/ltsp/files/Docs-Admin-Guide/LTSPManual.pdf/download There is also documentation and tutorials on how to setup swap over NBD at places like https://help.ubuntu.com/community/UbuntuLTSP/EnableNBDSWAP The nbd-client also documents the use of NBD as swap. Despite this, the fact is that a machine using NBD for swap can deadlock within minutes if swap is used intensively. This patch series addresses the problem. The core issue is that network block devices do not use mempools like normal block devices do. As the host cannot control where they receive packets from, they cannot reliably work out in advance how much memory they might need. Some years ago, Peter Zijlstra developed a series of patches that supported swap over an NFS that at least one distribution is carrying within their kernels. This patch series borrows very heavily from Peter's work to support swapping over NBD as a pre-requisite to supporting swap-over-NFS. The bulk of the complexity is concerned with preserving memory that is allocated from the PFMEMALLOC reserves for use by the network layer which is needed for both NBD and NFS. Patch 1 adds knowledge of the PFMEMALLOC reserves to SLAB and SLUB to preserve access to pages allocated under low memory situations to callers that are freeing memory. Patch 2 optimises the SLUB fast path to avoid pfmemalloc checks Patch 3 introduces __GFP_MEMALLOC to allow access to the PFMEMALLOC reserves without setting PFMEMALLOC. Patch 4 opens the possibility for softirqs to use PFMEMALLOC reserves for later use by network packet processing. Patch 5 only sets page->pfmemalloc when ALLOC_NO_WATERMARKS was required Patch 6 ignores memory policies when ALLOC_NO_WATERMARKS is set. Patches 7-12 allows network processing to use PFMEMALLOC reserves when the socket has been marked as being used by the VM to clean pages. If packets are received and stored in pages that were allocated under low-memory situations and are unrelated to the VM, the packets are dropped. Patch 11 reintroduces __skb_alloc_page which the networking folk may object to but is needed in some cases to propogate pfmemalloc from a newly allocated page to an skb. If there is a strong objection, this patch can be dropped with the impact being that swap-over-network will be slower in some cases but it should not fail. Patch 13 is a micro-optimisation to avoid a function call in the common case. Patch 14 tags NBD sockets as being SOCK_MEMALLOC so they can use PFMEMALLOC if necessary. Patch 15 notes that it is still possible for the PFMEMALLOC reserve to be depleted. To prevent this, direct reclaimers get throttled on a waitqueue if 50% of the PFMEMALLOC reserves are depleted. It is expected that kswapd and the direct reclaimers already running will clean enough pages for the low watermark to be reached and the throttled processes are woken up. Patch 16 adds a statistic to track how often processes get throttled Some basic performance testing was run using kernel builds, netperf on loopback for UDP and TCP, hackbench (pipes and sockets), iozone and sysbench. Each of them were expected to use the sl*b allocators reasonably heavily but there did not appear to be significant performance variances. For testing swap-over-NBD, a machine was booted with 2G of RAM with a swapfile backed by NBD. 8*NUM_CPU processes were started that create anonymous memory mappings and read them linearly in a loop. The total size of the mappings were 4*PHYSICAL_MEMORY to use swap heavily under memory pressure. Without the patches and using SLUB, the machine locks up within minutes and runs to completion with them applied. With SLAB, the story is different as an unpatched kernel run to completion. However, the patched kernel completed the test 45% faster. MICRO 3.5.0-rc2 3.5.0-rc2 vanilla swapnbd Unrecognised test vmscan-anon-mmap-write MMTests Statistics: duration Sys Time Running Test (seconds) 197.80 173.07 User+Sys Time Running Test (seconds) 206.96 182.03 Total Elapsed Time (seconds) 3240.70 1762.09 This patch: mm: sl[au]b: add knowledge of PFMEMALLOC reserve pages Allocations of pages below the min watermark run a risk of the machine hanging due to a lack of memory. To prevent this, only callers who have PF_MEMALLOC or TIF_MEMDIE set and are not processing an interrupt are allowed to allocate with ALLOC_NO_WATERMARKS. Once they are allocated to a slab though, nothing prevents other callers consuming free objects within those slabs. This patch limits access to slab pages that were alloced from the PFMEMALLOC reserves. When this patch is applied, pages allocated from below the low watermark are returned with page->pfmemalloc set and it is up to the caller to determine how the page should be protected. SLAB restricts access to any page with page->pfmemalloc set to callers which are known to able to access the PFMEMALLOC reserve. If one is not available, an attempt is made to allocate a new page rather than use a reserve. SLUB is a bit more relaxed in that it only records if the current per-CPU page was allocated from PFMEMALLOC reserve and uses another partial slab if the caller does not have the necessary GFP or process flags. This was found to be sufficient in tests to avoid hangs due to SLUB generally maintaining smaller lists than SLAB. In low-memory conditions it does mean that !PFMEMALLOC allocators can fail a slab allocation even though free objects are available because they are being preserved for callers that are freeing pages. [a.p.zijlstra@chello.nl: Original implementation] [sebastian@breakpoint.cc: Correct order of page flag clearing] Signed-off-by: Mel Gorman <mgorman@suse.de> Cc: David Miller <davem@davemloft.net> Cc: Neil Brown <neilb@suse.de> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Christie <michaelc@cs.wisc.edu> Cc: Eric B Munson <emunson@mgebm.net> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Cc: Mel Gorman <mgorman@suse.de> Cc: Christoph Lameter <cl@linux.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
702d1a6 memory-hotplug: fix kswapd looping forever problem When hotplug offlining happens on zone A, it starts to mark freed page as MIGRATE_ISOLATE type in buddy for preventing further allocation. (MIGRATE_ISOLATE is very irony type because it's apparently on buddy but we can't allocate them). When the memory shortage happens during hotplug offlining, current task starts to reclaim, then wake up kswapd. Kswapd checks watermark, then go sleep because current zone_watermark_ok_safe doesn't consider MIGRATE_ISOLATE freed page count. Current task continue to reclaim in direct reclaim path without kswapd's helping. The problem is that zone->all_unreclaimable is set by only kswapd so that current task would be looping forever like below. __alloc_pages_slowpath restart: wake_all_kswapd rebalance: __alloc_pages_direct_reclaim do_try_to_free_pages if global_reclaim && !all_unreclaimable return 1; /* It means we did did_some_progress */ skip __alloc_pages_may_oom should_alloc_retry goto rebalance; If we apply KOSAKI's patch[1] which doesn't depends on kswapd about setting zone->all_unreclaimable, we can solve this problem by killing some task in direct reclaim path. But it doesn't wake up kswapd, still. It could be a problem still if other subsystem needs GFP_ATOMIC request. So kswapd should consider MIGRATE_ISOLATE when it calculate free pages BEFORE going sleep. This patch counts the number of MIGRATE_ISOLATE page block and zone_watermark_ok_safe will consider it if the system has such blocks (fortunately, it's very rare so no problem in POV overhead and kswapd is never hotpath). Copy/modify from Mel's quote " Ideal solution would be "allocating" the pageblock. It would keep the free space accounting as it is but historically, memory hotplug didn't allocate pages because it would be difficult to detect if a pageblock was isolated or if part of some balloon. Allocating just full pageblocks would work around this, However, it would play very badly with CMA. " [1] http://lkml.org/lkml/2012/6/14/74 [akpm@linux-foundation.org: simplify nr_zone_isolate_freepages(), rework zone_watermark_ok_safe() comment, simplify set_pageblock_isolate() and restore_pageblock_isolate()] [akpm@linux-foundation.org: fix CONFIG_MEMORY_ISOLATION=n build] Signed-off-by: Minchan Kim <minchan@kernel.org> Suggested-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Tested-by: Aaditya Kumar <aaditya.kumar.30@gmail.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
2cfed07 mm: fix free page check in zone_watermark_ok() __zone_watermark_ok currently compares free_pages which is a signed type with z->lowmem_reserve[classzone_idx] which is unsigned which might lead to sign overflow if free_pages doesn't satisfy the given order (or it came as negative already) and then we rely on the following order loop to fix it (which doesn't work for order-0). Let's fix the type conversion and do not rely on the given value of free_pages or follow up fixups. This patch fixes it because "memory-hotplug: fix kswapd looping forever problem" depends on this. As benefit of this patch, it doesn't rely on the loop to exit __zone_watermark_ok in case of high order check and make the first test effective.(ie, if (free_pages <= min + lowmem_reserve)) Aaditya reported this problem when he test my hotplug patch. Reported-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com> Tested-by: Aaditya Kumar <aaditya.kumar@ap.sony.com> Signed-off-by: Aaditya Kumar <aaditya.kumar@ap.sony.com> Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
ee6f509 mm: factor out memory isolate functions mm/page_alloc.c has some memory isolation functions but they are used only when we enable CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. So let's make it configurable by new CONFIG_MEMORY_ISOLATION so that it can reduce binary size and we can check it simple by CONFIG_MEMORY_ISOLATION, not if defined CONFIG_{CMA|MEMORY_HOTPLUG|MEMORY_FAILURE}. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Andi Kleen <andi@firstfloor.org> Cc: Marek Szyprowski <m.szyprowski@samsung.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
876aafb mm, memcg: move all oom handling to memcontrol.c By globally defining check_panic_on_oom(), the memcg oom handler can be moved entirely to mm/memcontrol.c. This removes the ugly #ifdef in the oom killer and cleans up the code. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:45 UTC
6b0c81b mm, oom: reduce dependency on tasklist_lock Since exiting tasks require write_lock_irq(&tasklist_lock) several times, try to reduce the amount of time the readside is held for oom kills. This makes the interface with the memcg oom handler more consistent since it now never needs to take tasklist_lock unnecessarily. The only time the oom killer now takes tasklist_lock is when iterating the children of the selected task, everything else is protected by rcu_read_lock(). This requires that a reference to the selected process, p, is grabbed before calling oom_kill_process(). It may release it and grab a reference on another one of p's threads if !p->mm, but it also guarantees that it will release the reference before returning. [hughd@google.com: fix duplicate put_task_struct()] Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
9cbb78b mm, memcg: introduce own oom handler to iterate only over its own threads The global oom killer is serialized by the per-zonelist try_set_zonelist_oom() which is used in the page allocator. Concurrent oom kills are thus a rare event and only occur in systems using mempolicies and with a large number of nodes. Memory controller oom kills, however, can frequently be concurrent since there is no serialization once the oom killer is called for oom conditions in several different memcgs in parallel. This creates a massive contention on tasklist_lock since the oom killer requires the readside for the tasklist iteration. If several memcgs are calling the oom killer, this lock can be held for a substantial amount of time, especially if threads continue to enter it as other threads are exiting. Since the exit path grabs the writeside of the lock with irqs disabled in a few different places, this can cause a soft lockup on cpus as a result of tasklist_lock starvation. The kernel lacks unfair writelocks, and successful calls to the oom killer usually result in at least one thread entering the exit path, so an alternative solution is needed. This patch introduces a seperate oom handler for memcgs so that they do not require tasklist_lock for as much time. Instead, it iterates only over the threads attached to the oom memcg and grabs a reference to the selected thread before calling oom_kill_process() to ensure it doesn't prematurely exit. This still requires tasklist_lock for the tasklist dump, iterating children of the selected process, and killing all other threads on the system sharing the same memory as the selected victim. So while this isn't a complete solution to tasklist_lock starvation, it significantly reduces the amount of time that it is held. Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Sha Zhengju <handai.szj@taobao.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
462607e mm, oom: introduce helper function to process threads during scan This patch introduces a helper function to process each thread during the iteration over the tasklist. A new return type, enum oom_scan_t, is defined to determine the future behavior of the iteration: - OOM_SCAN_OK: continue scanning the thread and find its badness, - OOM_SCAN_CONTINUE: do not consider this thread for oom kill, it's ineligible, - OOM_SCAN_ABORT: abort the iteration and return, or - OOM_SCAN_SELECT: always select this thread with the highest badness possible. There is no functional change with this patch. This new helper function will be used in the next patch in the memory controller. Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Sha Zhengju <handai.szj@taobao.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
62ce1c7 mm, oom: move declaration for mem_cgroup_out_of_memory to oom.h mem_cgroup_out_of_memory() is defined in mm/oom_kill.c, so declare it in linux/oom.h rather than linux/memcontrol.h. Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
4ed7e02 mm/hotplug: mark memory hotplug code in page_alloc.c as __meminit Mark functions used by both boot and memory hotplug as __meminit to reduce memory footprint when memory hotplug is disabled. Alos guard zone_pcp_update() with CONFIG_MEMORY_HOTPLUG because it's only used by memory hotplug code. Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Wei Wang <Bessel.Wang@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
340175b mm/hotplug: free zone->pageset when a zone becomes empty When a zone becomes empty after memory offlining, free zone->pageset. Otherwise it will cause memory leak when adding memory to the empty zone again because build_all_zonelists() will allocate zone->pageset for an empty zone. Signed-off-by: Jiang Liu <liuj97@gmail.com> Signed-off-by: Wei Wang <Bessel.Wang@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
08dff7b mm/hotplug: correctly add new zone to all other nodes' zone lists When online_pages() is called to add new memory to an empty zone, it rebuilds all zone lists by calling build_all_zonelists(). But there's a bug which prevents the new zone to be added to other nodes' zone lists. online_pages() { build_all_zonelists() ..... node_set_state(zone_to_nid(zone), N_HIGH_MEMORY) } Here the node of the zone is put into N_HIGH_MEMORY state after calling build_all_zonelists(), but build_all_zonelists() only adds zones from nodes in N_HIGH_MEMORY state to the fallback zone lists. build_all_zonelists() ->__build_all_zonelists() ->build_zonelists() ->find_next_best_node() ->for_each_node_state(n, N_HIGH_MEMORY) So memory in the new zone will never be used by other nodes, and it may cause strange behavor when system is under memory pressure. So put node into N_HIGH_MEMORY state before calling build_all_zonelists(). Signed-off-by: Jianguo Wu <wujianguo@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
9adb62a mm/hotplug: correctly setup fallback zonelists when creating new pgdat When hotadd_new_pgdat() is called to create new pgdat for a new node, a fallback zonelist should be created for the new node. There's code to try to achieve that in hotadd_new_pgdat() as below: /* * The node we allocated has no zone fallback lists. For avoiding * to access not-initialized zonelist, build here. */ mutex_lock(&zonelists_mutex); build_all_zonelists(pgdat, NULL); mutex_unlock(&zonelists_mutex); But it doesn't work as expected. When hotadd_new_pgdat() is called, the new node is still in offline state because node_set_online(nid) hasn't been called yet. And build_all_zonelists() only builds zonelists for online nodes as: for_each_online_node(nid) { pg_data_t *pgdat = NODE_DATA(nid); build_zonelists(pgdat); build_zonelist_cache(pgdat); } Though we hope to create zonelist for the new pgdat, but it doesn't. So add a new parameter "pgdat" the build_all_zonelists() to build pgdat for the new pgdat too. Signed-off-by: Jiang Liu <liuj97@gmail.com> Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Cc: Minchan Kim <minchan@kernel.org> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Tony Luck <tony.luck@intel.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
da92c47 mm/memcg: replace inexistence move_lock_page_cgroup() by move_lock_mem_cgroup() in comment Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
aaad153 mm/memcg: mem_cgroup_relize_xxx_limit can guarantee memcg->res.limit <= memcg->memsw.limit Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:44 UTC
05a73ed mm/memcg: complete documentation for tcp memcg files Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
ca57df7 mm: setup pageblock_order before it's used by sparsemem On architectures with CONFIG_HUGETLB_PAGE_SIZE_VARIABLE set, such as Itanium, pageblock_order is a variable with default value of 0. It's set to the right value by set_pageblock_order() in function free_area_init_core(). But pageblock_order may be used by sparse_init() before free_area_init_core() is called along path: sparse_init() ->sparse_early_usemaps_alloc_node() ->usemap_size() ->SECTION_BLOCKFLAGS_BITS ->((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) The uninitialized pageblock_size will cause memory wasting because usemap_size() returns a much bigger value then it's really needed. For example, on an Itanium platform, sparse_init() pageblock_order=0 usemap_size=24576 free_area_init_core() before pageblock_order=0, usemap_size=24576 free_area_init_core() after pageblock_order=12, usemap_size=8 That means 24K memory has been wasted for each section, so fix it by calling set_pageblock_order() from sparse_init(). Signed-off-by: Xishi Qiu <qiuxishi@huawei.com> Signed-off-by: Jiang Liu <liuj97@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Yinghai Lu <yinghai@kernel.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Keping Chen <chenkeping@huawei.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
51a07e5 mm/memory.c:print_vma_addr(): call up_read(&mm->mmap_sem) directly Call up_read(&mm->mmap_sem) directly since we have already got mm via current->mm at the beginning of print_vma_addr(). Signed-off-by: Jie Liu <jeff.liu@oracle.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
8e125cd vmscan: remove obsolete shrink_control comment 09f363c7 ("vmscan: fix shrinker callback bug in fs/super.c") fixed a shrinker callback which was returning -1 when nr_to_scan is zero, which caused excessive slab scanning. But 635697c6 ("vmscan: fix initial shrinker size handling") fixed the problem, again so we can freely return -1 although nr_to_scan is zero. So let's revert 09f363c7 because the comment added in 09f363c7 made an unnecessary rule. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Mikulas Patocka <mpatocka@redhat.com> Cc: Konstantin Khlebnikov <khlebnikov@openvz.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
fe03025 mm: CONFIG_HAVE_MEMBLOCK_NODE -> CONFIG_HAVE_MEMBLOCK_NODE_MAP 0ee332c14518699 ("memblock: Kill early_node_map[]") wanted to replace CONFIG_ARCH_POPULATES_NODE_MAP with CONFIG_HAVE_MEMBLOCK_NODE_MAP but ended up replacing one occurence with a reference to the non-existent symbol CONFIG_HAVE_MEMBLOCK_NODE. The resulting omission of code would probably have been causing problems to 32-bit machines with memory hotplug. Signed-off-by: Rabin Vincent <rabin@rab.in> Cc: Tejun Heo <tj@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
7db8889 mm: have order > 0 compaction start off where it left Order > 0 compaction stops when enough free pages of the correct page order have been coalesced. When doing subsequent higher order allocations, it is possible for compaction to be invoked many times. However, the compaction code always starts out looking for things to compact at the start of the zone, and for free pages to compact things to at the end of the zone. This can cause quadratic behaviour, with isolate_freepages starting at the end of the zone each time, even though previous invocations of the compaction code already filled up all free memory on that end of the zone. This can cause isolate_freepages to take enormous amounts of CPU with certain workloads on larger memory systems. The obvious solution is to have isolate_freepages remember where it left off last time, and continue at that point the next time it gets invoked for an order > 0 compaction. This could cause compaction to fail if cc->free_pfn and cc->migrate_pfn are close together initially, in that case we restart from the end of the zone and try once more. Forced full (order == -1) compactions are left alone. [akpm@linux-foundation.org: checkpatch fixes] [akpm@linux-foundation.org: s/laste/last/, use 80 cols] Signed-off-by: Rik van Riel <riel@redhat.com> Reported-by: Jim Schutt <jaschut@sandia.gov> Tested-by: Jim Schutt <jaschut@sandia.gov> Cc: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
ab21588 memcg: rename mem_control_xxx to memcg_xxx Replace memory_cgroup_xxx() with memcg_xxx() Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
567fb43 memcg: fix bad behavior in use_hierarchy file I have an application that does the following: * copy the state of all controllers attached to a hierarchy * replicate it as a child of the current level. I would expect writes to the files to mostly succeed, since they are inheriting sane values from parents. But that is not the case for use_hierarchy. If it is set to 0, we succeed ok. If we're set to 1, the value of the file is automatically set to 1 in the children, but if userspace tries to write the very same 1, it will fail. That same situation happens if we set use_hierarchy, create a child, and then try to write 1 again. Now, there is no reason whatsoever for failing to write a value that is already there. It doesn't even match the comments, that states: /* If parent's use_hierarchy is set, we can't make any modifications * in the child subtrees... since we are not changing anything. So test the new value against the one we're storing, and automatically return 0 if we're not proposing a change. Signed-off-by: Glauber Costa <glommer@parallels.com> Cc: Dhaval Giani <dhaval.giani@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Ying Han <yinghan@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
ca28ddc mm: remove unused LRU_ALL_EVICTABLE Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
c255a45 memcg: rename config variables Sanity: CONFIG_CGROUP_MEM_RES_CTLR -> CONFIG_MEMCG CONFIG_CGROUP_MEM_RES_CTLR_SWAP -> CONFIG_MEMCG_SWAP CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED -> CONFIG_MEMCG_SWAP_ENABLED CONFIG_CGROUP_MEM_RES_CTLR_KMEM -> CONFIG_MEMCG_KMEM [mhocko@suse.cz: fix missed bits] Cc: Glauber Costa <glommer@parallels.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Tejun Heo <tj@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:43 UTC
8093451 mm: clean up __count_immobile_pages() The __count_immobile_pages() naming is rather awkward. Choose a more clear name and add a comment. Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
97d255c mm: do not use page_count() without a page pin d179e84ba ("mm: vmscan: do not use page_count without a page pin") fixed this problem in vmscan.c but same problem is in __count_immobile_pages(). I copy and paste d179e84ba's contents for description. "It is unsafe to run page_count during the physical pfn scan because compound_head could trip on a dangling pointer when reading page->first_page if the compound page is being freed by another CPU." Signed-off-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Michal Hocko <mhocko@suse.cz> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Wanpeng Li <liwp.linux@gmail.com> Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
de34d96 mm, oom: replace some information in tasklist dump The number of ptes and swap entries are used in the oom killer's badness heuristic, so they should be shown in the tasklist dump. This patch adds those fields and replaces cpu and oom_adj values that are currently emitted. Cpu isn't interesting and oom_adj is deprecated and will be removed later this year, the same information is already displayed as oom_score_adj which is used internally. At the same time, make the documentation a little more clear to state this information is helpful to determine why the oom killer chose the task it did to kill. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
121d1ba mm, oom: fix potential killing of thread that is disabled from oom killing /proc/sys/vm/oom_kill_allocating_task will immediately kill current when the oom killer is called to avoid a potentially expensive tasklist scan for large systems. Currently, however, it is not checking current's oom_score_adj value which may be OOM_SCORE_ADJ_MIN, meaning that it has been disabled from oom killing. This patch avoids killing current in such a condition and simply falls back to the tasklist scan since memory still needs to be freed. Signed-off-by: David Rientjes <rientjes@google.com> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
2a13515 mm: clear pages_scanned only if draining a pcp adds pages to the buddy allocator again commit 2ff754fa8f ("mm: clear pages_scanned only if draining a pcp adds pages to the buddy allocator again") fixed one free_pcppages_bulk() misuse. But two another miuse still exist. This patch fixes it. Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Mel Gorman <mel@csn.ul.ie> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Wu Fengguang <fengguang.wu@intel.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
3d3727c mm, fadvise: don't return -EINVAL when filesystem cannot implement fadvise() Eric Wong reported his test suite failex when /tmp is tmpfs. https://lkml.org/lkml/2012/2/24/479 Currentlt the input check of POSIX_FADV_WILLNEED has two problems. - requires a_ops->readpage. But in fact, force_page_cache_readahead() requires that the target filesystem has either ->readpage or ->readpages. - returns -EINVAL when the filesystem doesn't have ->readpage. But posix says that fadvise is merely a hint. Thus fadvise() should return 0 if filesystem has no means of implementing fadvise(). The userland application should not know nor care whcih type of filesystem backs the TMPDIR directory, as Eric pointed out. There is nothing which userspace can do to solve this error. So change the return value to 0 when filesytem doesn't support readahead. [akpm@linux-foundation.org: checkpatch fixes] Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Hillf Danton <dhillf@gmail.com> Signed-off-by: Eric Wong <normalperson@yhbt.net> Tested-by: Eric Wong <normalperson@yhbt.net> Reviewed-by: Wanlong Gao <gaowanlong@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
c59e261 mm/compaction: cleanup on compaction_deferred When CONFIG_COMPACTION is enabled, compaction_deferred() tries to recalculate the deferred limit again, which isn't necessary. When CONFIG_COMPACTION is disabled, compaction_deferred() should return "true" or "false" since it has "bool" for its return value. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
3c935d1 memcg: make mem_cgroup_force_empty_list() return bool mem_cgroup_force_empty_list() just returns 0 or -EBUSY and -EBUSY indicates 'you need to retry'. Make mem_cgroup_force_empty_list() return a bool to simplify the logic. [akpm@linux-foundation.org: rework mem_cgroup_force_empty_list()'s comment] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
6068bf0 memcg: mem_cgroup_move_parent() doesn't need gfp_mask Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
d845aa2 memcg: clean up force_empty_list() return value check After bf544fdc241da8 "memcg: move charges to root cgroup if use_hierarchy=0 in mem_cgroup_move_hugetlb_parent()" mem_cgroup_move_parent() returns only -EBUSY or -EINVAL. So we can remove the -ENOMEM and -EINTR checks. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
59b8e85 memcg: remove check for signal_pending() during rmdir() After bf544fdc241da8 "memcg: move charges to root cgroup if use_hierarchy=0 in mem_cgroup_move_hugetlb_parent()", no memory reclaim will occur when removing a memory cgroup. If -EINTR is returned here, cgroup will show a warning. We don't need to handle any user interruption signal. Remove this. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:42 UTC
fd07383 mm/memblock.c:memblock_double_array(): cosmetic cleanups This function is an 80-column eyesore, quite unnecessarily. Clean that up, and use standard comment layout style. Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Greg Pearson <greg.pearson@hp.com> Cc: Tejun Heo <tj@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
4f774b9 mm, oom: do not schedule if current has been killed The oom killer currently schedules away from current in an uninterruptible sleep if it does not have access to memory reserves. It's possible that current was killed because it shares memory with the oom killed thread or because it was killed by the user in the interim, however. This patch only schedules away from current if it does not have a pending kill, i.e. if it does not share memory with the oom killed thread. It's possible that it will immediately retry its memory allocation and fail, but it will immediately be given access to memory reserves if it calls the oom killer again. This prevents the delay of memory freeing when threads that share memory with the oom killed thread get unnecessarily scheduled. Signed-off-by: David Rientjes <rientjes@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
7575468 hugetlb/cgroup: remove exclude and wakeup rmdir calls from migrate We already hold the hugetlb_lock. That should prevent a parallel cgroup rmdir from touching page's hugetlb cgroup. So remove the exclude and wakeup calls. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
94ae8ba hugetlb/cgroup: assign the page hugetlb cgroup when we move the page to active list. A page's hugetlb cgroup assignment and movement to the active list should occur with hugetlb_lock held. Otherwise when we remove the hugetlb cgroup we will iterate the active list and find pages with NULL hugetlb cgroup values. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
79dbb23 hugetlb: move all the in use pages to active list When we fail to allocate pages from the reserve pool, hugetlb tries to allocate huge pages using alloc_buddy_huge_page. Add these to the active list. We also need to add the huge page we allocate when we soft offline the oldpage to active list. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
585e27e hugetlb/cgroup: add HugeTLB controller documentation Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
8e6ac7f hugetlb/cgroup: migrate hugetlb cgroup info from oldpage to new page during migration With HugeTLB pages, hugetlb cgroup is uncharged in compound page destructor. Since we are holding a hugepage reference, we can be sure that old page won't get uncharged till the last put_page(). Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
abb8206 hugetlb/cgroup: add hugetlb cgroup control files Add the control files for hugetlb controller [akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g] [akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/] Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
da1def5 hugetlb/cgroup: add support for cgroup removal Add support for cgroup removal. If we don't have parent cgroup, the charges are moved to root cgroup. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
6d76dcf hugetlb/cgroup: add charge/uncharge routines for hugetlb cgroup Add the charge and uncharge routines for hugetlb cgroup. We do cgroup charging in page alloc and uncharge in compound page destructor. Assigning page's hugetlb cgroup is protected by hugetlb_lock. [liwp@linux.vnet.ibm.com: add huge_page_order check to avoid incorrect uncharge] Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Wanpeng Li <liwp.linux@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
9dd540e hugetlb/cgroup: add the cgroup pointer to page lru Add the hugetlb cgroup pointer to 3rd page lru.next. This limit the usage to hugetlb cgroup to only hugepages with 3 or more normal pages. I guess that is an acceptable limitation. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:41 UTC
2bc64a2 mm/hugetlb: add new HugeTLB cgroup Implement a new controller that allows us to control HugeTLB allocations. The extension allows to limit the HugeTLB usage per control group and enforces the controller limit during page fault. Since HugeTLB doesn't support page reclaim, enforcing the limit at page fault time implies that, the application will get SIGBUS signal if it tries to access HugeTLB pages beyond its limit. This requires the application to know beforehand how much HugeTLB pages it would require for its use. The charge/uncharge calls will be added to HugeTLB code in later patch. Support for cgroup removal will be added in later patches. [akpm@linux-foundation.org: s/CONFIG_CGROUP_HUGETLB_RES_CTLR/CONFIG_MEMCG_HUGETLB/g] [akpm@linux-foundation.org: s/CONFIG_MEMCG_HUGETLB/CONFIG_CGROUP_HUGETLB/g] Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
c3f38a3 hugetlb: make some static variables global We will use them later in hugetlb_cgroup.c Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: David Rientjes <rientjes@google.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
0edaecf hugetlb: add a list for tracking in-use HugeTLB pages hugepage_activelist will be used to track currently used HugeTLB pages. We need to find the in-use HugeTLB pages to support HugeTLB cgroup removal. On cgroup removal we update the page's HugeTLB cgroup to point to parent cgroup. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
189ebff hugetlb: simplify migrate_huge_page() Since we migrate only one hugepage, don't use linked list for passing the page around. Directly pass the page that need to be migrated as argument. This also removes the usage of page->lru in the migrate path. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
24669e5 hugetlb: use mmu_gather instead of a temporary linked list for accumulating pages Use a mmu_gather instead of a temporary linked list for accumulating pages when we unmap a hugepage range Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
972dc4d hugetlb: add an inline helper for finding hstate index Add an inline helper and use it in the code. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hillf Danton <dhillf@gmail.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
76dcee7 hugetlb: don't use ERR_PTR with VM_FAULT* values The current use of VM_FAULT_* codes with ERR_PTR requires us to ensure VM_FAULT_* values will not exceed MAX_ERRNO value. Decouple the VM_FAULT_* values from MAX_ERRNO. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: Hillf Danton <dhillf@gmail.com> Acked-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: David Rientjes <rientjes@google.com> Cc: Michal Hocko <mhocko@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
47d3834 hugetlb: rename max_hstate to hugetlb_max_hstate This patchset implements a cgroup resource controller for HugeTLB pages. The controller allows to limit the HugeTLB usage per control group and enforces the controller limit during page fault. Since HugeTLB doesn't support page reclaim, enforcing the limit at page fault time implies that, the application will get SIGBUS signal if it tries to access HugeTLB pages beyond its limit. This requires the application to know beforehand how much HugeTLB pages it would require for its use. The goal is to control how many HugeTLB pages a group of task can allocate. It can be looked at as an extension of the existing quota interface which limits the number of HugeTLB pages per hugetlbfs superblock. HPC job scheduler requires jobs to specify their resource requirements in the job file. Once their requirements can be met, job schedulers like (SLURM) will schedule the job. We need to make sure that the jobs won't consume more resources than requested. If they do we should either error out or kill the application. This patch: Rename max_hstate to hugetlb_max_hstate. We will be using this from other subsystems like hugetlb controller in later patches. Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hillf Danton <dhillf@gmail.com> Acked-by: Michal Hocko <mhocko@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
3965c9a mm: prepare for removal of obsolete /proc/sys/vm/nr_pdflush_threads Since per-BDI flusher threads were introduced in 2.6, the pdflush mechanism is not used any more. But the old interface exported through /proc/sys/vm/nr_pdflush_threads still exists and is obviously useless. For back-compatibility, printk warning information and return 2 to notify the users that the interface is removed. Signed-off-by: Wanpeng Li <liwp@linux.vnet.ibm.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
deaf386 mm/buddy: cleanup on should_fail_alloc_page Currently, function should_fail() has "bool" for its return value, so it's reasonable to change the return value of function should_fail_alloc_page() into "bool" as well. The patch does cleanup on function should_fail_alloc_page() to have "bool" for its return value. Signed-off-by: Gavin Shan <shangw@linux.vnet.ibm.com> Acked-by: David Rientjes <rientjes@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:40 UTC
44de9d0 mm: account the total_vm in the vm_stat_account() vm_stat_account() accounts the shared_vm, stack_vm and reserved_vm now. But we can also account for total_vm in the vm_stat_account() which makes the code tidy. Even for mprotect_fixup(), we can get the right result in the end. Signed-off-by: Huang Shijie <shijie8@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
df858fa documentation: update how page-cluster affects swap I/O Fix of the documentation of /proc/sys/vm/page-cluster to match the behavior of the code and add some comments about what the tunable will change in that behavior. Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Acked-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
3fb5c29 swap: allow swap readahead to be merged Swap readahead works fine, but the I/O to disk is almost always done in page size requests, despite the fact that readahead submits 1<<page-cluster pages at a time. On older kernels the old per device plugging behavior might have captured this and merged the requests, but currently all comes down to much more I/Os than required. On a single device this might not be an issue, but as soon as a server runs on shared san resources savin I/Os not only improves swapin throughput but also provides a lower resource utilization. With a load running KVM in a lot of memory overcommitment (the hot memory is 1.5 times the host memory) swapping throughput improves significantly and the lead feels more responsive as well as achieves more throughput. In a test setup with 16 swap disks running blocktrace on one of those disks shows the improved merging: Prior: Reads Queued: 560,888, 2,243MiB Writes Queued: 226,242, 904,968KiB Read Dispatches: 544,701, 2,243MiB Write Dispatches: 159,318, 904,968KiB Reads Requeued: 0 Writes Requeued: 0 Reads Completed: 544,716, 2,243MiB Writes Completed: 159,321, 904,980KiB Read Merges: 16,187, 64,748KiB Write Merges: 61,744, 246,976KiB IO unplugs: 149,614 Timer unplugs: 2,940 With the patch: Reads Queued: 734,315, 2,937MiB Writes Queued: 300,188, 1,200MiB Read Dispatches: 214,972, 2,937MiB Write Dispatches: 215,176, 1,200MiB Reads Requeued: 0 Writes Requeued: 0 Reads Completed: 214,971, 2,937MiB Writes Completed: 215,177, 1,200MiB Read Merges: 519,343, 2,077MiB Write Merges: 73,325, 293,300KiB IO unplugs: 337,130 Timer unplugs: 11,184 I got ~10% to ~40% more throughput in my cases and at the same time much lower cpu consumption when broken down per transferred kilobyte (the majority of that due to saved interrupts and better cache handling). In a shared SAN others might get an additional benefit as well, because this now causes less protocol overhead. Signed-off-by: Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com> Acked-by: Rik van Riel <riel@redhat.com> Acked-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
a7d6f52 memcg: remove MEM_CGROUP_CHARGE_TYPE_FORCE There are no users since commit b24028572fb69 ("memcg: remove PCG_CACHE"). Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
41326c1 memcg: rename MEM_CGROUP_CHARGE_TYPE_MAPPED as MEM_CGROUP_CHARGE_TYPE_ANON Now, in memcg, 2 "MAPPED" enum/macro are found MEM_CGROUP_CHARGE_TYPE_MAPPED MEM_CGROUP_STAT_FILE_MAPPED Thier names looks similar to each other but the former is used for accounting anonymous memory. rename it as TYPE_ANON. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
bff6bb8 memcg: rename MEM_CGROUP_STAT_SWAPOUT as MEM_CGROUP_STAT_SWAP MEM_CGROUP_STAT_SWAPOUT represents the usage of swap rather than the number of swap-out events. Rename it to be MEM_CGROUP_STAT_SWAP. Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Hugh Dickins <hughd@google.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
aa91c4d mm: make vb_alloc() more foolproof If someone calls vb_alloc() (or vm_map_ram() for that matter) to allocate 0 bytes (0 pages), get_order() returns BITS_PER_LONG - PAGE_CACHE_SHIFT and interesting stuff happens. So make debugging such problems easier and warn about 0-size allocation. [akpm@linux-foundation.org: use WARN_ON-return-value feature] Signed-off-by: Jan Kara <jack@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> 01 August 2012, 01:42:39 UTC
back to top