Revision

**10ef4410c16710d7caf8c0882b7efbac894d49ed**authored by M. Helena GonÃ§alves on**22 September 2012, 00:00:00 UTC**, committed by Gabor Csardi on**22 September 2012, 00:00:00 UTC****1 parent**3f407ee

bildIntegrate.Rd

```
\name{bildIntegrate}
\alias{bildIntegrate}
\title{ Auxiliary for Controlling "bild" Fitting}
\description{Auxiliary function as user interface for \code{bild} fitting }
\usage{bildIntegrate(li=-4,ls=4, epsabs=.Machine$double.eps^.25,
epsrel=.Machine$double.eps^.25,limit=100,key=6,lig=-4,lsg=4) }
\arguments{
\item{li}{lower limit of integration for the log-likelihood.}
\item{ls}{upper limit of integration for the log-likelihood.}
\item{epsabs}{absolute accuracy requested.}
\item{epsrel}{relative accuracy requested.}
\item{key}{integer from 1 to 6 for choice of local integration rule for number of Gauss-Kronrod quadrature points.
A gauss-kronrod pair is used with: \cr
7 - 15 points if key = 1, \cr
10 - 21 points if key = 2,\cr
15 - 31 points if key = 3,\cr
20 - 41 points if key = 4,\cr
25 - 51 points if key = 5 and \cr
30 - 61 points if key = 6.}
\item{limit}{integer that gives an upperbound on the number of subintervals in the partition
of (\code{li},\code{ls}), limit.ge.1.}
\item{lig}{lower limit of integration for the gradient.}
\item{lsg}{upper limit of integration for the gradient.}
}
\details{
\code{bildIntegrate} returns a list of constants that are used to compute integrals based on a Fortran-77 subroutine \code{dqage} from a
Fortran-77 subroutine package \code{QUADPACK} for the numerical computation of definite one-dimensional integrals.
The subroutine \code{dqage} is a simple globally adaptive integrator in which it is possible to choose between 6 pairs
of Gauss-Kronrod quadrature formulae for the rule evaluation component. The source code \code{dqage} was modified and re-named
\code{dqager}, the change was the introduction of an extra variable that allow, in our Fortran-77 subroutines when
have a call to \code{dqager}, to control for which parameter the integral is computed.
For given values of \code{li} and \code{ls}, the above-described
numerical integration is performed over the interval
(\code{li}*\eqn{\sigma}, \code{ls}*\eqn{\sigma}), where \eqn{\sigma=\exp(\omega)/2}
is associated to the current parameter value \eqn{\omega} examined by
the \code{optim} function. In some cases, this integration may
generate an error, and the user must suitably adjust the values of \code{li}
and \code{ls}. In case different choices of these quantities all
lead to a successful run, it is recommended to retain the one with
largest value of the log-likelihood. Integration of the gradient is
regulated similarly by \code{lig} and \code{lsg}.
For datasets where the individual profiles have a high number of
observed time points (say, more than 30),
use \code{bildIntegrate} function to set the integration limits for the
likelihood and for the gradient to small values
than the default ones, see the example of \code{\link{locust}} data.
If fitting procedure is complete but when computing the information matrix
some NaNs are produced, the change of the default values for the gradient integration
limits (\code{lig} and \code{lsg}) in \code{bildIntegrate} function might solve this problem.
}
\value{A list with the arguments as components.}
\seealso{\code{\link{bild-class}}}
\examples{ \donttest{
#### data=locust, dependence="MC2R"
str(locust)
Integ <- bildIntegrate(li=-2.5,ls=2.5, lig=-2.5, lsg=2.5)
locust2r_feed1 <- bild(move~(time+I(time^2))*sex, data=locust, start=NULL,
trace=TRUE, subSET=feed=="1", aggregate=sex, dependence="MC2R",
integrate=Integ)
summary(locust2r_feed1)
getAIC(locust2r_feed1)
getLogLik(locust2r_feed1)
plot(locust2r_feed1)
}}
\keyword{function}
```

Computing file changes ...