https://github.com/cran/spatstat
Revision 12903c331499662994b1f7b9b4d989b0f0792963 authored by Adrian Baddeley on 26 March 2011, 15:45:24 UTC, committed by cran-robot on 26 March 2011, 15:45:24 UTC
1 parent 5d0edca
Raw File
Tip revision: 12903c331499662994b1f7b9b4d989b0f0792963 authored by Adrian Baddeley on 26 March 2011, 15:45:24 UTC
version 1.21-6
Tip revision: 12903c3
pcfdot.Rd
\name{pcfdot}
\alias{pcfdot}
\title{Multitype pair correlation function (i-to-any)}
\description{
  Calculates an estimate of the multitype pair correlation function
  (from points of type \code{i} to points of any type)
  for a multitype point pattern.
}
\usage{
  pcfdot(X, i, ...)
}
\arguments{
  \item{X}{The observed point pattern, 
    from which an estimate of the dot-type pair correlation function
    \eqn{g_{i\bullet}(r)}{gdot[i](r)} will be computed.
    It must be a multitype point pattern (a marked point pattern
    whose marks are a factor). 
  }
  \item{i}{Number or character string identifying the type (mark value)
    of the points in \code{X} from which distances are measured.
  }
  \item{\dots}{
    Arguments passed to \code{\link{pcf.ppp}}.
  }
}
\details{
  This is a generalisation of the pair correlation function \code{\link{pcf}}
  to multitype point patterns.

  For two locations \eqn{x} and \eqn{y} separated by a nonzero
  distance \eqn{r},
  the probability \eqn{p(r)} of finding a point of type \eqn{i} at location
  \eqn{x} and a point of any type at location \eqn{y} is 
  \deqn{
    p(r) = \lambda_i \lambda g_{i\bullet}(r) \,{\rm d}x \, {\rm d}y
  }{
    p(r) = lambda[i] * lambda * gdot[i](r) dx dy
  }
  where \eqn{\lambda}{lambda} is the intensity of all points,
  and \eqn{\lambda_i}{lambda[i]} is the intensity of the points
  of type \eqn{i}. 
  For a completely random Poisson marked point process,
  \eqn{p(r) = \lambda_i \lambda}{p(r) = lambda[i] * lambda}
  so \eqn{g_{i\bullet}(r) = 1}{gdot[i](r) = 1}.
  
  For a stationary multitype point process, the
  type-\code{i}-to-any-type pair correlation
  function between marks \eqn{i} and \eqn{j} is formally defined as
  \deqn{
    g_{i\bullet}(r) = \frac{K_{i\bullet}^\prime(r)}{2\pi r}
  }{
    g(r) = Kdot[i]'(r)/ ( 2 * pi * r) 
  }
  where \eqn{K_{i\bullet}^\prime}{Kdot[i]'(r)} is the derivative of
  the type-\code{i}-to-any-type \eqn{K} function
  \eqn{K_{i\bullet}(r)}{Kdot[i](r)}.
  of the point process. See \code{\link{Kdot}} for information
  about   \eqn{K_{i\bullet}(r)}{Kdot[i](r)}.

  The command \code{pcfdot} computes a kernel estimate of
  the multitype pair correlation function from points of type \eqn{i}
  to points of any type.
  It uses \code{\link{pcf.ppp}} to compute kernel estimates
  of the pair correlation functions for several unmarked point patterns,
  and uses the bilinear properties of second moments to obtain the
  multitype pair correlation.

  See \code{\link{pcf.ppp}} for a list of arguments that control
  the kernel estimation.

  The companion function \code{\link{pcfcross}} computes the
  corresponding analogue of \code{\link{Kcross}}.
}

\value{
  An object of class \code{"fv"}, see \code{\link{fv.object}},
  which can be plotted directly using \code{\link{plot.fv}}.

  Essentially a data frame containing columns
  \item{r}{the vector of values of the argument \eqn{r} 
    at which the function \eqn{g_{i\bullet}}{gdot[i]} has been  estimated
  }
  \item{theo}{the theoretical value \eqn{g_{i\bullet}(r) = 1}{gdot[i](r) = r}
    for independent marks.
  }
  together with columns named 
  \code{"border"}, \code{"bord.modif"},
  \code{"iso"} and/or \code{"trans"},
  according to the selected edge corrections. These columns contain
  estimates of the function \eqn{g_{i,j}}{g[i,j]}
  obtained by the edge corrections named.
}
\seealso{
  Mark connection function \code{\link{markconnect}}.

  Multitype pair correlation \code{\link{pcfcross}}.
  
  Pair correlation \code{\link{pcf}},\code{\link{pcf.ppp}}.
  
  \code{\link{Kdot}}
}
\examples{
 data(amacrine)
 p <- pcfdot(amacrine, "on")
 p <- pcfdot(amacrine, "on", stoyan=0.1)
 plot(p)
}
\author{Adrian Baddeley
  \email{Adrian.Baddeley@csiro.au}
  \url{http://www.maths.uwa.edu.au/~adrian/}
  and Rolf Turner
  \email{r.turner@auckland.ac.nz}
}
\keyword{spatial}
\keyword{nonparametric}
back to top