Revision 14452db6dff408ebfb342a6e813d8f44d7d9373e authored by Jyh-Miin Lin on 05 October 2022, 01:54:28 UTC, committed by Jyh-Miin Lin on 05 October 2022, 01:54:28 UTC
0 parent
test_init.py
from pynufft import NUFFT
import pynufft
import numpy
dtype = numpy.complex64
def test_init(device_indx=0):
# cm = matplotlib.cm.gray
# load example image
import pkg_resources
DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/')
# PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt')
import numpy
# import matplotlib.pyplot
import scipy
import scipy.misc
image = scipy.misc.ascent()[::2,::2]
image=image.astype(numpy.float)/numpy.max(image[...])
Nd = (256, 256) # image space size
Kd = (512, 512) # k-space size
Jd = (6,6) # interpolation size
# load k-space points
om = numpy.load(DATA_PATH+'om2D.npz')['arr_0']
nfft = NUFFT() # CPU
# print(nfft.processor)
nfft.plan(om, Nd, Kd, Jd)
y = nfft.forward(image)
x2 = nfft.adjoint(y)
x3 = nfft.selfadjoint(image)
# print('error=', numpy.linalg.norm(x3 - x2)/numpy.linalg.norm(x2))
device_list = pynufft.helper.device_list()
NufftObj = NUFFT(device_list[device_indx], legacy=True)
# NufftObj._set_wavefront_device(32)
print('device name = ', NufftObj.device)
NufftObj.plan(om, Nd, Kd, Jd)
gx = NufftObj.to_device(image)
import time
t0 = time.time()
# k = nfft.xx2k(nfft.x2xx(image))
for pp in range(0,50):
# y = nfft.k2y(nfft.xx2k(nfft.x2xx(image)))
y = nfft.forward(image)
# y = nfft.k2y(k)
# k = nfft.y2k(y)
x2 = nfft.adjoint(y)
# y = nfft.forward(image)
# y2 = NufftObj.y.get( NufftObj.queue, async=False)
t_cpu = (time.time() - t0)/50.0
print(t_cpu)
# del nfft
gy = NufftObj._forward_legacy(gx)
# gy2=NufftObj.forward(gx)
# gk = NufftObj.xx2k(NufftObj.x2xx(gx))
t0= time.time()
for pp in range(0,50):
# pass
gy = NufftObj._forward_legacy(gx)
# gy2 = NufftObj.k2y(gk)
gx2 = NufftObj._adjoint_legacy(gy)
# gk2 = NufftObj.y2k(gy2)
# del gy2
# c = gx2.get()
# gy=NufftObj.forward(gx)
NufftObj.thr.synchronize()
t_cl = (time.time() - t0)/50
print(t_cl)
# print('gy close? = ', numpy.allclose(y, gy.get(), atol=numpy.linalg.norm(y)*1e-8))
# print('gx2 close? = ', numpy.allclose(x2, gx2.get(), atol=numpy.linalg.norm(y)*1e-8))
print('error gx2=', numpy.linalg.norm(x3 - gx2.get())/numpy.linalg.norm(x3))
print('error gy=', numpy.linalg.norm(y - gy.get())/numpy.linalg.norm(y))
print("acceleration=", t_cpu/t_cl)
maxiter =100
import time
t0= time.time()
xcpu = nfft.solve(y, 'cg',maxiter=maxiter)
x2 = nfft.solve(y, 'L1TVOLS',maxiter=maxiter, rho = 2)
t1 = time.time()-t0
# gy=NufftObj.thr.copy_array(NufftObj.thr.to_device(y2))
t0= time.time()
xgpu = NufftObj.solve(y,'cg', maxiter=maxiter)
x = NufftObj.solve(y,'L1TVOLS', maxiter=maxiter, rho=2)
t2 = time.time() - t0
print(t1, t2)
print('acceleration in solver=', t1/t2 )
# k = x.get()
# x = nfft.k2xx(k)/nfft.st['sn']
# return
try:
import matplotlib.pyplot
matplotlib.pyplot.subplot(2, 2, 1)
matplotlib.pyplot.imshow( x.real, cmap= matplotlib.cm.gray, vmin = 0, vmax = 1)
matplotlib.pyplot.title("HSA reconstruction (L1 TV OLS)")
matplotlib.pyplot.subplot(2, 2,2)
matplotlib.pyplot.imshow(x2.real, cmap= matplotlib.cm.gray)
matplotlib.pyplot.title("CPU reconstruction (L1 TV OLS)")
matplotlib.pyplot.subplot(2, 2, 3)
matplotlib.pyplot.imshow( xgpu.real, cmap= matplotlib.cm.gray, vmin = 0, vmax = 1)
matplotlib.pyplot.title("HSA reconstruction (CG)")
matplotlib.pyplot.subplot(2, 2,4)
matplotlib.pyplot.imshow(xcpu.real, cmap= matplotlib.cm.gray)
matplotlib.pyplot.title("CPU reconstruction (CG)")
matplotlib.pyplot.show()
# matplotlib.pyplot.show(block = False)
# matplotlib.pyplot.pause(3)
# matplotlib.pyplot.close()
# del NufftObj.thr
# del NufftObj
except:
print("no graphics")
if __name__ == '__main__':
test_init(0)
Computing file changes ...