Revision 14452db6dff408ebfb342a6e813d8f44d7d9373e authored by Jyh-Miin Lin on 05 October 2022, 01:54:28 UTC, committed by Jyh-Miin Lin on 05 October 2022, 01:54:28 UTC
0 parent
test_tf_eager.py
# import torch
import scipy.sparse
import numpy as np
def test_tf_eager():
import pynufft
import pkg_resources
DATA_PATH = pkg_resources.resource_filename('pynufft', 'src/data/')
# PHANTOM_FILE = pkg_resources.resource_filename('pynufft', 'data/phantom_256_256.txt')
import numpy
# import matplotlib.pyplot
import scipy
import scipy.misc
image = scipy.misc.ascent()[::2,::2]
image=image.astype(float)/numpy.max(image[...])
Nd = (256, 256) # image space size
Kd = (512, 512) # k-space size
Jd = (6,6) # interpolation size
# load k-space points
om = numpy.load(DATA_PATH+'om2D.npz')['arr_0']
A = pynufft.NUFFT_tf_eager()
A.plan(om, Nd, Kd, Jd)
y_tf = A.forward(image)
x_tf = A.adjoint(y_tf)
# print(y_tf.shape)
# print(x_tf.shape)
nfft = pynufft.NUFFT() # CPU
# print(nfft.processor)
nfft.plan(om, Nd, Kd, Jd)
y = nfft.forward(image)
x2 = nfft.adjoint(y)
print('Forward error between tf and numpy',np.linalg.norm(y_tf - y)/np.linalg.norm(y))
print('Adjoint Error between tf and numpy', np.linalg.norm(x2 - x_tf)/np.linalg.norm(x2))
# test_torch()
# test_tensorflow()
# test_torch_class()
if __name__ == '__main__':
test_tf_eager()
# test_random_sp()
Computing file changes ...