https://github.com/delalamo/af2_conformations
Revision 17a1b97b3c81ed0172184043dac1d7d63d7ae191 authored by Diego del Alamo on 22 November 2021, 16:11:39 UTC, committed by GitHub on 22 November 2021, 16:11:39 UTC
1 parent 0fd5e0e
Raw File
Tip revision: 17a1b97b3c81ed0172184043dac1d7d63d7ae191 authored by Diego del Alamo on 22 November 2021, 16:11:39 UTC
Fixing typos in README
Tip revision: 17a1b97
mmseqs2.py
import hashlib
import numpy as np
import os
import re
import requests
import tarfile
import time
import unittest

from absl import logging
from typing import List, NoReturn, Tuple

class MMSeqs2Runner:

  r"""Runner object

  Fetches sequence alignment and templates from MMSeqs2 server
  Based on the function run_mmseqs2 from ColabFold (sokrypton/ColabFold)
  Version 62d7558c91a9809712b022faf9d91d8b183c328c

  Relevant publications
  ----------
  * "Clustering huge protein sequence sets in linear time"
    https://doi.org/10.1038/s41467-018-04964-5
  * "MMseqs2 enables sensitive protein sequence searching for the analysis
    of massive data sets"
    https://doi.org/10.1038/nbt.3988

  Private variables
  ----------
  self.job: Job ID (five-char string)
  self.seq: Sequence to search
  self.host_url: URL address to ping for data
  self.t_url: URL address to ping for templates from PDB
  self.n_templates = Number of templates to fetch (default=20)
  self.path: Path to use
  self.tarfile: Compressed file archive to download
  """

  def __init__(
      self,
      job: str,
      seq: str,
      host_url: str = "https://a3m.mmseqs.com",
      t_url: str = "https://a3m-templates.mmseqs.com/template",
      path_suffix: str = "env",
      n_templates: int = 20
    ):

    r"""Initialize runner object

    Parameters
    ----------
    job : Job name
    seq : Amino acid sequence
    host_url : Website to ping for sequence data
    t_url : Website to ping for template info
    path_suffix : Suffix for path info

    """

    # Clean up sequence
    self.seq = self._cleanseq( seq.upper() )

    # Come up with unique job ID for MMSeqs
    self.job = self._define_jobname( job )

    # Save everything else
    self.host_url = host_url
    self.t_url = t_url
    self.n_templates = n_templates

    self.path = "_".join( ( self.job, path_suffix ) )

    if not os.path.isdir( self.path ):
      os.system( f"mkdir { self.path }" )

    self.tarfile = f'{ self.path }/out.tar.gz'

  def _cleanseq(
      self,
      seq
    ) -> str:

    r""" Cleans the sequence to remove whitespace and noncanonical letters

    Parameters
    ----------
    seq : Amino acid sequence (only all 20 here)

    Returns
    ----------
    Cleaned up amin acid sequence

    """

    if any( [ aa in seq for aa in "BJOUXZ" ] ):
      logging.warning( "Sequence contains non-canonical amino acids!" )
      logging.warning( "Removing B, J, O, U, X, and Z from sequence" )
      seq = re.sub( r'[BJOUXZ]', '', seq )

    return re.sub( r'[^A-Z]', '', "".join( seq.split() ) )

  def _define_jobname(
      self,
      job: str
    ) -> str:

    r""" Provides a unique five-digit identifier for the job name

    Parameters
    ----------
    job : Job name

    Returns
    ----------
    Defined job name

    """

    return "_".join( (
        re.sub( r"\W+", "", "".join( job.split() ) ),
        hashlib.sha1( self.seq.encode() ).hexdigest()[ :5 ] )
      )

  def _submit(
      self
    ) -> dict:

    r"""Submit job to MMSeqs2 server

    Parameters
    ----------
    None

    Returns
    ----------
    None

    """

    data = { 'q': f">101\n{ self.seq }", 'mode': "env" }

    res = requests.post( f'{ self.host_url }/ticket/msa', data=data )
    
    try:
      out = res.json()

    except ValueError:
      out = { "status": "UNKNOWN" }

    return out

  def _status(
      self,
      idx: str
    ) -> dict:

    r"""Check status of job 

    Parameters
    ----------
    idx : Index assigned by MMSeqs2 server

    Returns
    ----------
    None

    """

    res = requests.get( f'{ self.host_url }/ticket/{ idx }' )
    
    try:
      out = res.json()
    
    except ValueError:
      out = { "status": "UNKNOWN" }
    
    return out

  def _download(
      self,
      idx: str,
      path: str
    ) -> NoReturn:

    r"""Download job outputs

    Parameters
    ----------
    idx : Index assigned by MMSeqs2 server
    path : Path to download data

    Returns
    ----------
    None
    
    """

    res = requests.get( f'{ self.host_url }/result/download/{ idx }' )
    
    with open( path, "wb" ) as out:
      out.write( res.content )

  def _search_mmseqs2(
      self
    ) -> NoReturn:

    r"""Run the search and download results
    Heavily modified from ColabFold

    Parameters
    ----------
    None

    Returns
    ----------
    None
    
    """

    if os.path.isfile( self.tarfile ):
      return

    out = self._submit()

    time.sleep( 5 + np.random.randint( 0, 5 ) )
    while out[ "status" ] in [ "UNKNOWN", "RATELIMIT" ]:
      # resubmit
      time.sleep( 5 + np.random.randint( 0, 5 ) )
      out = self._submit()

    logging.debug( f"ID: { out[ 'id' ] }" )

    while out[ "status" ] in [ "UNKNOWN", "RUNNING", "PENDING" ]:
      time.sleep( 5 + np.random.randint( 0, 5 ) )
      out = self._status( out[ "id" ] )

    if out[ "status" ] == "COMPLETE":
      self._download( out[ "id" ], self.tarfile )

    elif out[ "status" ] == "ERROR":
      raise RuntimeError( " ".join( ( "MMseqs2 API is giving errors.",
        "Please confirm your input is a valid protein sequence.",
        "If error persists, please try again in an hour." ) ) )

  def process_templates(
      self,
      templates: List[ str ] = []
    ) -> str:
    
    r"""Process templates and fetch from MMSeqs2 server

    Parameters
    ----------
    use_templates : True/False whether to use templates
    max_templates : Maximum number of templates to use

    Returns
    ----------
    Directory containing templates (empty if not using templates)

    """

    path = f"{ self.job }_env/templates_101"
    if os.path.isdir( path ):
      os.system( f"rm { path }" )

    #templates = {}
    logging.info( "\t".join( ( "seq", "pdb", "cid", "evalue" ) ) )

    pdbs = []
    with open( f"{ self.path }/pdb70.m8", "r" ) as infile:

      for line in infile:

        sl = line.rstrip().split()
        pdb = sl[ 1 ]
        if pdb in templates:
          pdbs.append( sl[ 1 ] )
          logging.info( f"{ sl[ 0 ] }\t{ sl[ 1 ] }\t{ sl[ 2 ] }\t{ sl[ 10 ] }" )
      
    if len( pdbs ) == 0:
      logging.warning( "No templates found." )
      return ""
    
    else:

      if not os.path.isdir( path ):
        os.mkdir( path )
      
      pdbs = [ t for t in pdbs if t in templates ]

      if len( templates ) == 0 or len( pdbs ) == 0:
        pdbs = ",".join( templates[ :self.n_templates ] )
      else:
        pdbs = ",".join( pdbs[ :self.n_templates ] )
      
      os.system( f"curl -v { self.t_url }/{ pdbs }" f" | tar xzf - -C { path }/" )
      
      os.system( f"cp { path }/pdb70_a3m.ffindex { path }/pdb70_cs219.ffindex" )
      
      os.system( f"touch { path }/pdb70_cs219.ffdata" )

      return path

  def _process_alignment(
      self,
      a3m_files: list,
      templates: List[ str ] = []
    ) -> Tuple[ str, str ]:
    
    r""" Process sequence alignment
    (modified from ColabFold)

    Parameters
    ----------
    a3m_files : List of files to parse
    token : Token to look for when parsing

    Returns
    ----------
    Tuple with [0] string with alignment, and [1] path to template

    """

    a3m_lines = ""

    for a3m_file in a3m_files:
      for line in open( os.path.join( self.path, a3m_file ), "r" ):
        if len( line ) > 0:
          a3m_lines += line.replace( "\x00", "" )

    return a3m_lines, self.process_templates( templates )

  def run_job(
      self,
      templates: List[ str ] = []
    ) -> Tuple[ str, str ]:
    
    r"""
    Run sequence alignments using MMseqs2

    Parameters
    ----------
    use_templates: Whether to use templates

    Returns
    ----------
    Tuple with [0] string with alignment, and [1] path to template

    """

    self._search_mmseqs2()

    a3m_files = [ "uniref.a3m", "bfd.mgnify30.metaeuk30.smag30.a3m" ]

    # extract a3m files
    if not os.path.isfile( os.path.join( self.path, a3m_files[ 0 ] ) ):
      with tarfile.open( self.tarfile ) as tar_gz:
        tar_gz.extractall( self.path )  

    return self._process_alignment( a3m_files, templates )

###########################
# TESTS

class TestMMseqs2Runner( unittest.TestCase ):

  r""" Test object that verifies that everything works as expected

  """

  def test_seq_checker( self ):

    seq = ( "MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNCNGVIT"
            "KDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRCALINMVFQMGETGVAGFTNSL"
            "RMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL" )

    job = "T4_lysozyme"

    runner = MMSeqs2Runner( job, seq )
    assert runner.seq == seq

    runner_2 = MMSeqs2Runner( job, seq + " BJO\tUXZ" )
    assert runner_2.seq == seq

  def test_jobname( self ):

    seq = ( "MNIFEMLRIDEGLRLKIYKDTEGYYTIGIGHLLTKSPSLNAAKSELDKAIGRNCNGVIT"
            "KDEAEKLFNQDVDAAVRGILRNAKLKPVYDSLDAVRRCALINMVFQMGETGVAGFTNSL"
            "RMLQQKRWDEAAVNLAKSRWYNQTPNRAKRVITTFRTGTWDAYKNL" )

    job = "T4_lysozyme"

    runner = MMSeqs2Runner( job, seq )
    assert runner.job == f"{ job }_bdd05"

  def test_db( self ):

    # Here we fetch the actual data
    # Need to somehow do this without making a new directory
    pass

  def test_msa( self ):

    # Here the ability to convert the MSA file to a sinlg string is tested
    pass

  def test_templates( self ):

    # Here the ability to fetch multiple templates is tested
    # Also test that certain templates are not fetched
    pass

if __name__ == "__main__":
  logging.set_verbosity( logging.INFO )
  unittest.main()


back to top