Revision 1aef882f023eb7c24d6d77f001bd0ba956fdd861 authored by Linus Torvalds on 24 April 2015, 14:08:41 UTC, committed by Linus Torvalds on 24 April 2015, 14:08:41 UTC
Pull xfs update from Dave Chinner:
 "This update contains:

   - RENAME_WHITEOUT support

   - conversion of per-cpu superblock accounting to use generic counters

   - new inode mmap lock so that we can lock page faults out of
     truncate, hole punch and other direct extent manipulation functions
     to avoid racing mmap writes from causing data corruption

   - rework of direct IO submission and completion to solve data
     corruption issue when running concurrent extending DIO writes.
     Also solves problem of running IO completion transactions in
     interrupt context during size extending AIO writes.

   - FALLOC_FL_INSERT_RANGE support for inserting holes into a file via
     direct extent manipulation to avoid needing to copy data within the
     file

   - attribute block header field overflow fix for 64k block size
     filesystems

   - Lots of changes to log messaging to be more informative and concise
     when errors occur.  Also prevent a lot of unnecessary log spamming
     due to cascading failures in error conditions.

   - lots of cleanups and bug fixes

  One thing of note is the direct IO fixes that we merged last week
  after the window opened.  Even though a little late, they fix a user
  reported data corruption and have been pretty well tested.  I figured
  there was not much point waiting another 2 weeks for -rc1 to be
  released just so I could send them to you..."

* tag 'xfs-for-linus-4.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (49 commits)
  xfs: using generic_file_direct_write() is unnecessary
  xfs: direct IO EOF zeroing needs to drain AIO
  xfs: DIO write completion size updates race
  xfs: DIO writes within EOF don't need an ioend
  xfs: handle DIO overwrite EOF update completion correctly
  xfs: DIO needs an ioend for writes
  xfs: move DIO mapping size calculation
  xfs: factor DIO write mapping from get_blocks
  xfs: unlock i_mutex in xfs_break_layouts
  xfs: kill unnecessary firstused overflow check on attr3 leaf removal
  xfs: use larger in-core attr firstused field and detect overflow
  xfs: pass attr geometry to attr leaf header conversion functions
  xfs: disallow ro->rw remount on norecovery mount
  xfs: xfs_shift_file_space can be static
  xfs: Add support FALLOC_FL_INSERT_RANGE for fallocate
  fs: Add support FALLOC_FL_INSERT_RANGE for fallocate
  xfs: Fix incorrect positive ENOMEM return
  xfs: xfs_mru_cache_insert() should use GFP_NOFS
  xfs: %pF is only for function pointers
  xfs: fix shadow warning in xfs_da3_root_split()
  ...
2 parent s d869844 + 542c311
Raw File
process_vm_access.c
/*
 * linux/mm/process_vm_access.c
 *
 * Copyright (C) 2010-2011 Christopher Yeoh <cyeoh@au1.ibm.com>, IBM Corp.
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#include <linux/mm.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/syscalls.h>

#ifdef CONFIG_COMPAT
#include <linux/compat.h>
#endif

/**
 * process_vm_rw_pages - read/write pages from task specified
 * @pages: array of pointers to pages we want to copy
 * @start_offset: offset in page to start copying from/to
 * @len: number of bytes to copy
 * @iter: where to copy to/from locally
 * @vm_write: 0 means copy from, 1 means copy to
 * Returns 0 on success, error code otherwise
 */
static int process_vm_rw_pages(struct page **pages,
			       unsigned offset,
			       size_t len,
			       struct iov_iter *iter,
			       int vm_write)
{
	/* Do the copy for each page */
	while (len && iov_iter_count(iter)) {
		struct page *page = *pages++;
		size_t copy = PAGE_SIZE - offset;
		size_t copied;

		if (copy > len)
			copy = len;

		if (vm_write) {
			copied = copy_page_from_iter(page, offset, copy, iter);
			set_page_dirty_lock(page);
		} else {
			copied = copy_page_to_iter(page, offset, copy, iter);
		}
		len -= copied;
		if (copied < copy && iov_iter_count(iter))
			return -EFAULT;
		offset = 0;
	}
	return 0;
}

/* Maximum number of pages kmalloc'd to hold struct page's during copy */
#define PVM_MAX_KMALLOC_PAGES (PAGE_SIZE * 2)

/**
 * process_vm_rw_single_vec - read/write pages from task specified
 * @addr: start memory address of target process
 * @len: size of area to copy to/from
 * @iter: where to copy to/from locally
 * @process_pages: struct pages area that can store at least
 *  nr_pages_to_copy struct page pointers
 * @mm: mm for task
 * @task: task to read/write from
 * @vm_write: 0 means copy from, 1 means copy to
 * Returns 0 on success or on failure error code
 */
static int process_vm_rw_single_vec(unsigned long addr,
				    unsigned long len,
				    struct iov_iter *iter,
				    struct page **process_pages,
				    struct mm_struct *mm,
				    struct task_struct *task,
				    int vm_write)
{
	unsigned long pa = addr & PAGE_MASK;
	unsigned long start_offset = addr - pa;
	unsigned long nr_pages;
	ssize_t rc = 0;
	unsigned long max_pages_per_loop = PVM_MAX_KMALLOC_PAGES
		/ sizeof(struct pages *);

	/* Work out address and page range required */
	if (len == 0)
		return 0;
	nr_pages = (addr + len - 1) / PAGE_SIZE - addr / PAGE_SIZE + 1;

	while (!rc && nr_pages && iov_iter_count(iter)) {
		int pages = min(nr_pages, max_pages_per_loop);
		size_t bytes;

		/* Get the pages we're interested in */
		pages = get_user_pages_unlocked(task, mm, pa, pages,
						vm_write, 0, process_pages);
		if (pages <= 0)
			return -EFAULT;

		bytes = pages * PAGE_SIZE - start_offset;
		if (bytes > len)
			bytes = len;

		rc = process_vm_rw_pages(process_pages,
					 start_offset, bytes, iter,
					 vm_write);
		len -= bytes;
		start_offset = 0;
		nr_pages -= pages;
		pa += pages * PAGE_SIZE;
		while (pages)
			put_page(process_pages[--pages]);
	}

	return rc;
}

/* Maximum number of entries for process pages array
   which lives on stack */
#define PVM_MAX_PP_ARRAY_COUNT 16

/**
 * process_vm_rw_core - core of reading/writing pages from task specified
 * @pid: PID of process to read/write from/to
 * @iter: where to copy to/from locally
 * @rvec: iovec array specifying where to copy to/from in the other process
 * @riovcnt: size of rvec array
 * @flags: currently unused
 * @vm_write: 0 if reading from other process, 1 if writing to other process
 * Returns the number of bytes read/written or error code. May
 *  return less bytes than expected if an error occurs during the copying
 *  process.
 */
static ssize_t process_vm_rw_core(pid_t pid, struct iov_iter *iter,
				  const struct iovec *rvec,
				  unsigned long riovcnt,
				  unsigned long flags, int vm_write)
{
	struct task_struct *task;
	struct page *pp_stack[PVM_MAX_PP_ARRAY_COUNT];
	struct page **process_pages = pp_stack;
	struct mm_struct *mm;
	unsigned long i;
	ssize_t rc = 0;
	unsigned long nr_pages = 0;
	unsigned long nr_pages_iov;
	ssize_t iov_len;
	size_t total_len = iov_iter_count(iter);

	/*
	 * Work out how many pages of struct pages we're going to need
	 * when eventually calling get_user_pages
	 */
	for (i = 0; i < riovcnt; i++) {
		iov_len = rvec[i].iov_len;
		if (iov_len > 0) {
			nr_pages_iov = ((unsigned long)rvec[i].iov_base
					+ iov_len)
				/ PAGE_SIZE - (unsigned long)rvec[i].iov_base
				/ PAGE_SIZE + 1;
			nr_pages = max(nr_pages, nr_pages_iov);
		}
	}

	if (nr_pages == 0)
		return 0;

	if (nr_pages > PVM_MAX_PP_ARRAY_COUNT) {
		/* For reliability don't try to kmalloc more than
		   2 pages worth */
		process_pages = kmalloc(min_t(size_t, PVM_MAX_KMALLOC_PAGES,
					      sizeof(struct pages *)*nr_pages),
					GFP_KERNEL);

		if (!process_pages)
			return -ENOMEM;
	}

	/* Get process information */
	rcu_read_lock();
	task = find_task_by_vpid(pid);
	if (task)
		get_task_struct(task);
	rcu_read_unlock();
	if (!task) {
		rc = -ESRCH;
		goto free_proc_pages;
	}

	mm = mm_access(task, PTRACE_MODE_ATTACH);
	if (!mm || IS_ERR(mm)) {
		rc = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
		/*
		 * Explicitly map EACCES to EPERM as EPERM is a more a
		 * appropriate error code for process_vw_readv/writev
		 */
		if (rc == -EACCES)
			rc = -EPERM;
		goto put_task_struct;
	}

	for (i = 0; i < riovcnt && iov_iter_count(iter) && !rc; i++)
		rc = process_vm_rw_single_vec(
			(unsigned long)rvec[i].iov_base, rvec[i].iov_len,
			iter, process_pages, mm, task, vm_write);

	/* copied = space before - space after */
	total_len -= iov_iter_count(iter);

	/* If we have managed to copy any data at all then
	   we return the number of bytes copied. Otherwise
	   we return the error code */
	if (total_len)
		rc = total_len;

	mmput(mm);

put_task_struct:
	put_task_struct(task);

free_proc_pages:
	if (process_pages != pp_stack)
		kfree(process_pages);
	return rc;
}

/**
 * process_vm_rw - check iovecs before calling core routine
 * @pid: PID of process to read/write from/to
 * @lvec: iovec array specifying where to copy to/from locally
 * @liovcnt: size of lvec array
 * @rvec: iovec array specifying where to copy to/from in the other process
 * @riovcnt: size of rvec array
 * @flags: currently unused
 * @vm_write: 0 if reading from other process, 1 if writing to other process
 * Returns the number of bytes read/written or error code. May
 *  return less bytes than expected if an error occurs during the copying
 *  process.
 */
static ssize_t process_vm_rw(pid_t pid,
			     const struct iovec __user *lvec,
			     unsigned long liovcnt,
			     const struct iovec __user *rvec,
			     unsigned long riovcnt,
			     unsigned long flags, int vm_write)
{
	struct iovec iovstack_l[UIO_FASTIOV];
	struct iovec iovstack_r[UIO_FASTIOV];
	struct iovec *iov_l = iovstack_l;
	struct iovec *iov_r = iovstack_r;
	struct iov_iter iter;
	ssize_t rc;
	int dir = vm_write ? WRITE : READ;

	if (flags != 0)
		return -EINVAL;

	/* Check iovecs */
	rc = import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
	if (rc < 0)
		return rc;
	if (!iov_iter_count(&iter))
		goto free_iovecs;

	rc = rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt, UIO_FASTIOV,
				   iovstack_r, &iov_r);
	if (rc <= 0)
		goto free_iovecs;

	rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write);

free_iovecs:
	if (iov_r != iovstack_r)
		kfree(iov_r);
	kfree(iov_l);

	return rc;
}

SYSCALL_DEFINE6(process_vm_readv, pid_t, pid, const struct iovec __user *, lvec,
		unsigned long, liovcnt, const struct iovec __user *, rvec,
		unsigned long, riovcnt,	unsigned long, flags)
{
	return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 0);
}

SYSCALL_DEFINE6(process_vm_writev, pid_t, pid,
		const struct iovec __user *, lvec,
		unsigned long, liovcnt, const struct iovec __user *, rvec,
		unsigned long, riovcnt,	unsigned long, flags)
{
	return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 1);
}

#ifdef CONFIG_COMPAT

static ssize_t
compat_process_vm_rw(compat_pid_t pid,
		     const struct compat_iovec __user *lvec,
		     unsigned long liovcnt,
		     const struct compat_iovec __user *rvec,
		     unsigned long riovcnt,
		     unsigned long flags, int vm_write)
{
	struct iovec iovstack_l[UIO_FASTIOV];
	struct iovec iovstack_r[UIO_FASTIOV];
	struct iovec *iov_l = iovstack_l;
	struct iovec *iov_r = iovstack_r;
	struct iov_iter iter;
	ssize_t rc = -EFAULT;
	int dir = vm_write ? WRITE : READ;

	if (flags != 0)
		return -EINVAL;

	rc = compat_import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
	if (rc < 0)
		return rc;
	if (!iov_iter_count(&iter))
		goto free_iovecs;
	rc = compat_rw_copy_check_uvector(CHECK_IOVEC_ONLY, rvec, riovcnt,
					  UIO_FASTIOV, iovstack_r,
					  &iov_r);
	if (rc <= 0)
		goto free_iovecs;

	rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write);

free_iovecs:
	if (iov_r != iovstack_r)
		kfree(iov_r);
	kfree(iov_l);
	return rc;
}

COMPAT_SYSCALL_DEFINE6(process_vm_readv, compat_pid_t, pid,
		       const struct compat_iovec __user *, lvec,
		       compat_ulong_t, liovcnt,
		       const struct compat_iovec __user *, rvec,
		       compat_ulong_t, riovcnt,
		       compat_ulong_t, flags)
{
	return compat_process_vm_rw(pid, lvec, liovcnt, rvec,
				    riovcnt, flags, 0);
}

COMPAT_SYSCALL_DEFINE6(process_vm_writev, compat_pid_t, pid,
		       const struct compat_iovec __user *, lvec,
		       compat_ulong_t, liovcnt,
		       const struct compat_iovec __user *, rvec,
		       compat_ulong_t, riovcnt,
		       compat_ulong_t, flags)
{
	return compat_process_vm_rw(pid, lvec, liovcnt, rvec,
				    riovcnt, flags, 1);
}

#endif
back to top