Revision 1c995ef374a8438306839bffe3c09b7c524aebdd authored by Derek Young on 28 April 2009, 07:56:28 UTC, committed by cran-robot on 28 April 2009, 07:56:28 UTC
1 parent cda9e55
Raw File
compCDF.Rd
\name{compCDF}
\title{Plot the Component CDF}
\alias{compCDF}
\usage{
compCDF(data, weights, 
        x=seq(min(data, na.rm=TRUE), max(data, na.rm=TRUE), len=250), 
        comp=1:NCOL(weights), makeplot=TRUE, ...) 
}
\description{
Plot the components' CDF via the posterior probabilities.
}
\arguments{
  \item{data}{A matrix containing the raw data. Rows are subjects and columns
   are repeated measurements.}
  \item{weights}{The weights to compute the empirical CDF; however, most of
   time they are the posterior probabilities.}
  \item{x}{The points at which the CDFs are to be evaluated.}
  \item{comp}{The mixture components for which CDFs are desired.}
  \item{makeplot}{Logical:  Should a plot be produced as a side effect?}
  \item{...}{Additional arguments (other than \code{lty} and \code{type}, 
    which are already used)
    to be passed directly to \code{plot} and \code{lines} functions.}
}
\value{
  A matrix with \code{length(comp)} rows and \code{length(x)} columns 
  in which each row gives the CDF evaluated at each point of \code{x}.
}
\details{
  When \code{makeplot} is \code{TRUE}, a line plot is produced of the
  CDFs evaluated at \code{x}.  The plot is not a step function plot; 
  the points \eqn{(x, CDF(x))} are simply joined by line segments.
}
\references{
  McLachlan, G. J. and Peel, D. (2000) \emph{Finite Mixture Models}, John Wiley \& Sons, Inc.
  
  Elmore, R. T., Hettmansperger, T. P. and Xuan, F. (2004) The Sign Statistic, One-Way Layouts
  and Mixture Models, \emph{Statistical Science} \bold{19(4)}, 579--587.
}
\seealso{
\code{\link{makemultdata}}, \code{\link{multmixmodel.sel}}, \code{\link{multmixEM}}.
}
\examples{
## The sulfur content of the coal seams in Texas

A<-c(1.51, 1.92, 1.08, 2.04, 2.14, 1.76, 1.17)
B<-c(1.69, 0.64, .9, 1.41, 1.01, .84, 1.28, 1.59) 
C<-c(1.56, 1.22, 1.32, 1.39, 1.33, 1.54, 1.04, 2.25, 1.49) 
D<-c(1.3, .75, 1.26, .69, .62, .9, 1.2, .32) 
E<-c(.73, .8, .9, 1.24, .82, .72, .57, 1.18, .54, 1.3)

dis.coal<-makemultdata(A, B, C, D, E, 
                       cuts = median(c(A, B, C, D, E)))
temp<-multmixEM(dis.coal)

## Now plot the components' CDF via the posterior probabilities

compCDF(dis.coal$x, temp$posterior, xlab="Sulfur", ylab="", main="empirical CDFs")
}

\keyword{file}

back to top