Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 1cd38d9f3ccee69bb49615c02f610f1c676597bb authored by Elias Kuthe on 04 July 2017, 12:30:05 UTC, committed by Elias Kuthe on 04 July 2017, 12:30:05 UTC
corrected markdown header syntax (see https://daringfireball.net/projects/markdown/syntax#header)
1 parent 309eaaf
  • Files
  • Changes
  • 16c81df
  • /
  • R
  • /
  • ADMM_cholcache.R
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:1cd38d9f3ccee69bb49615c02f610f1c676597bb
directory badge Iframe embedding
swh:1:dir:601afeb022bee3e7471f0b8dcff84a62082afdb4
content badge Iframe embedding
swh:1:cnt:aa69199d149d9899c29deef8fd6ccbced148daa4
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
ADMM_cholcache.R
# Fits the weighted fused lasso by ADMM where D is the discrete difference operator on a graph
# D is a sparse matrix of class 'dgCMatrix' [package "Matrix"]

fit_graphfusedlasso_cholcache = function(y, lambda, D, chol_factor = NULL, weights=NULL, initial_values = NULL, iter_max = 10000, rel_tol = 1e-4, alpha=1.0, inflate=2, adaptive=FALSE) {
	require(Matrix)
	
	n = length(y)
	m = nrow(D)
	a = 2*lambda # step-size parameter
		
	if(missing(weights)) {
		weights = rep(1, n)
	}
	
	# Check if we need a Cholesky decomp of system involving graph Laplacian
	if(missing(chol_factor)) {
		L = Matrix::crossprod(D)
		chol_factor = Matrix::Cholesky(L + Matrix::Diagonal(n))
	}

	# Initialize primal and dual variables from warm start
	if(missing(initial_values)) {
		x = rep(0, n) # likelihood term
		z = rep(0, n) # slack variable for likelihood
		r = rep(0, m) # penalty term
		s = rep(0, m) # slack variable for penalty
		u_dual = rep(0,n) # scaled dual variable for constraint x = z
		t_dual = rep(0,m) # scaled dual variable for constraint r = s
	} else {
		x = initial_values$x
		z = initial_values$z
		r = initial_values$r
		s = initial_values$s
		t_dual = initial_values$t_dual
		u_dual = initial_values$u_dual
	}
	
	primal_trace = NULL
	dual_trace = NULL
	converged = FALSE
	counter = 0
	while(!converged & counter < iter_max) {
		
		# Update x
		x = {weights * y + a*(z - u_dual)}/{weights + a}
		x_accel = alpha*x + (1-alpha)*z
		
		# Update constraint term r
		arg = s - t_dual
		if(adaptive) {
			local_lambda = 1/{1+(lambda)*abs(arg)}  # Minimax-concave penalty instead?
		} else {
			local_lambda = lambda
		}
		r = softthresh(arg, local_lambda/a)
		r_accel = alpha*r + (1-alpha)*s
		
		# Projection to constraint set
		arg = x_accel + u_dual + Matrix::crossprod(D, r_accel + t_dual)
		z_new = drop(Matrix::solve(chol_factor, arg))
		s_new = as.numeric(D %*% z_new)
		dual_residual_u = a*(z_new - z)
		dual_residual_t = a*(s_new - s)
		z = z_new
		s = s_new
		
		# Dual update
		primal_residual_x = x_accel - z
		primal_residual_r = r_accel - s
		u_dual = u_dual + primal_residual_x
		t_dual = t_dual + primal_residual_r
		
		# Check convergence
		primal_resnorm = sqrt(mean(c(primal_residual_x, primal_residual_r)^2))
		dual_resnorm = sqrt(mean(c(dual_residual_u, dual_residual_t)^2))
		if(dual_resnorm < rel_tol && primal_resnorm < rel_tol) {
			converged=TRUE
		}
		primal_trace = c(primal_trace, primal_resnorm)
		dual_trace = c(dual_trace, dual_resnorm)
		counter = counter+1
		
		# Update step-size parameter based on norm of primal and dual residuals
		if(primal_resnorm > 5*dual_resnorm) {
			a = inflate*a
			u_dual = u_dual/inflate
			t_dual = t_dual/inflate
		} else if(dual_resnorm > 5*primal_resnorm) {
			a = a/inflate
			u_dual = inflate*u_dual
			t_dual = inflate*t_dual
		}
	}
	list(x=x, r=r, z=z, s=s, u_dual=u_dual, t_dual=t_dual,
		primal_trace = primal_trace, dual_trace=dual_trace, counter=counter)
}
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API