Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 1dc429fc0da4cc5ff4f62617760447613f85980b authored by vbhandawat on 01 February 2021, 13:54:09 UTC, committed by GitHub on 01 February 2021, 13:54:09 UTC
Add files via upload
1 parent 17f20a6
  • Files
  • Changes
  • 345c390
  • /
  • Plotting
  • /
  • SpringyTripod.m
Raw File Download
Permalinks

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:1dc429fc0da4cc5ff4f62617760447613f85980b
directory badge Iframe embedding
swh:1:dir:ddb546bdf9afa165db506498058e495480e377c9
content badge Iframe embedding
swh:1:cnt:1ccb86f91971e941e2740a2e2869b21c0cdcb754
Citations

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
SpringyTripod.m
% This code finds the best fitting K (springy tripod's
% spring constant) to individual flies (NOT to steps). Check if leg spread
% alone can explain change in gammaA and gammaS as predicted by optimal
% fits.
%
% Figure 7C, 8
%
% @Chanwoo Chun, Jan. 31, 2021, <cc2465@cornell.edu>

pathToMatlab = strcat(extractBefore(pwd,'MATLAB'),'MATLAB');
addpath(genpath(pathToMatlab));

filepath = ['..' filesep '..' filesep 'Data' filesep 'StepData' filesep];
load([filepath 'stepData2000.mat']);
data=stepData;

filepath = ['..' filesep '..' filesep 'Data' filesep 'StepData' filesep 'proper_fit' filesep];
load([filepath 'stepData2.mat']);
datak=stepData;

g = 9807;
omitThis = zeros(1,10000);
Midx=1;
Nidx=1;
omitI=1;
ka=nan(1,length(data)); ks=ka; Ra=ka; R=ka; m=ka; L=ka; flynums=ka; rm=ka;
indexing = ka;
for i=1:length(data)
    l=data{i}.tripod.L;
    comz=data{i}.tripod.yMid;
    if isnan(comz) || isnan(l) || ~isfield(data{i},'ARSLIP')
       continue
    end
    
    flynums(i) = data{i}.source.flynum;
    L(i)=l;
    m(i)=data{i}.source.weight/1000;
    R(i)=data{i}.source.legLength;
    Ra(i)=datak{i}.ARSLIP.Rnat;
    ka(i)=datak{i}.ARSLIP.Ka;
    ks(i)=datak{i}.ARSLIP.Ks;
    rm(i)=comz;
    indexing(i)=i;
%     if  data{i}.PTR <25
%         omitThis(omitI) = i;
%         omitI = omitI+1;
%     end
end

wildFlynums = flynums;
uniqueWild = unique(flynums);
kaE = cell(1,length(uniqueWild));
ksE = cell(1,length(uniqueWild));
gaE = cell(1,length(uniqueWild));
gsE = cell(1,length(uniqueWild));
RaE = cell(1,length(uniqueWild));
IDX = cell(1,length(uniqueWild));
Kcell = cell(1,length(uniqueWild));
Rcell = cell(1,length(uniqueWild));
gammaCell = cell(1,length(uniqueWild));
LRCell = cell(1,length(uniqueWild)); 
parpool('local',4);
for j=1:length(uniqueWild)
    oneFly = wildFlynums==uniqueWild(j);
    L7=L(oneFly); ka7=ka(oneFly); ks7=ks(oneFly); Ra7=Ra(oneFly); rm7=rm(oneFly); indexing7=indexing(oneFly);
    
    R7=R(oneFly); R7=unique(R7); %this actual leg length will be used as an initial searching point.
    m7=m(oneFly); m7=unique(m7);
    
    if length(find(oneFly)) < 6
       continue 
    end
    
    L7t=L7; ka7t=ka7; ks7t=ks7; Ra7t=Ra7; rm7t = rm7;
    L7(isnan(L7t+ka7t+ks7t+Ra7t+rm7t))=[];
    ka7(isnan(L7t+ka7t+ks7t+Ra7t+rm7t))=[];
    ks7(isnan(L7t+ka7t+ks7t+Ra7t+rm7t))=[];
    Ra7(isnan(L7t+ka7t+ks7t+Ra7t+rm7t))=[];
    rm7(isnan(L7t+ka7t+ks7t+Ra7t+rm7t))=[];
    indexing7(isnan(L7t+ka7t+ks7t+Ra7t+rm7t))=[];
    
    disp([num2str(length(find(oneFly))) ' ' num2str(j/length(uniqueWild)*100)])
    
    objective = @(X) objectiveFunc(X,m7,L7,ka7,ks7,Ra7,rm7);
    k0 = 7;
    R0 = R7;
    init = [k0, R0];
    lb = [3, R0*1/5];
    ub = [16, R0*2];
    options = optimoptions('fmincon','Algorithm','interior-point','Display','iter', ...
        'GradObj','off');
    problem = createOptimProblem('fmincon','x0',init,'objective',objective,...
        'lb',lb,'ub',ub,'options',options);
    gs7 = GlobalSearch('NumTrialPoints', 200);
    [reconstructed, f] = run(gs7, problem);
    Kselected = reconstructed(1);
    Rselected = reconstructed(2);
    Kbest(j)    = Kselected;
    Rbest(j)    = Rselected;
    RMSE(j)     = f;
    massUnq(j)     = m7;
    RUnq(j)        = R7;
    
    
    ksExpect = NaN(1,length(L7));
    kaExpect = NaN(1,length(L7));
    RaExpect = NaN(1,length(L7));
    gsExpect = NaN(1,length(L7));
    gaExpect = NaN(1,length(L7));
    gs7 = NaN(1,length(L7));
    ga7 = NaN(1,length(L7));
    for i = 1:length(L7)
        [kae,kse,Rae]=solveForARSLIP(rm7(i),L7(i),Rselected,Kselected);
        ksExpect(i) = kse;
        kaExpect(i) = kae;
        RaExpect(i) = Rae;
        gsExpect(i) = kse*Rae/(m7*g);
        gaExpect(i) = kae/(m7*g*Rae);
        gs7(i) = ks7(i)*Ra7(i)/(m7*g);
        ga7(i) = ka7(i)/(m7*g*Ra7(i));
    end
    ksE{j} = [ks7;ksExpect];
    kaE{j} = [ka7;kaExpect];
    gsE{j} = [gs7;gsExpect];
    gaE{j} = [ga7;gaExpect];
    RaE{j} = [Ra7;RaExpect];
    IDX{j} = indexing7;
    Kcell{j} = Kselected*ones(1,length(ks7));
    Rcell{j} = Rselected*ones(1,length(ks7));
    
    gammaCell{j} = Kselected*Rselected/(m7*g)*ones(1,length(ks7));
    LRCell{j} = [L7; rm7];
    
    disp(num2str(Kbest))
end
kaEM=cell2mat(kaE);
ksEM=cell2mat(ksE);
gaEM=cell2mat(gaE);
gsEM=cell2mat(gsE);
RaEM=cell2mat(RaE);
IDXM=cell2mat(IDX);
KM=cell2mat(Kcell);
RM=cell2mat(Rcell);
gc_exp=cell2mat(gammaCell);
lr_exp=cell2mat(LRCell);

%%
figure
subplot(1,3,1)
hold on
scatter(gaEM(1,:),gaEM(2,:),'k','filled')
plot([min(gaEM) max(gaEM)],[min(gaEM) max(gaEM)],'r')
hold off
pbaspect([1 1 1])
Ra = corrcoef(gaEM(1,:)',gaEM(2,:)');
R2a = Ra(1,2)^2;
xlabel('gammaA ARSLIP fit')
ylabel('gammaA predicted')
title(['R2=' num2str(R2a)])

subplot(1,3,2)
hold on
scatter(gsEM(1,:),gsEM(2,:),'k','filled')
plot([min(gsEM) max(gsEM)],[min(gsEM) max(gsEM)],'r')
hold off
pbaspect([1 1 1])
Rs = corrcoef(gsEM(1,:)',gsEM(2,:)');
R2s = Rs(1,2)^2;
title(['R2=' num2str(R2s) ' n=' num2str(length(gaEM))])
xlabel('gammaS ARSLIP fit')
ylabel('gammaS predicted')
set(gcf, 'Position', [400 100 1000 500], 'Visible', 'on')

subplot(1,3,3)
hold on
scatter(RaEM(1,:),RaEM(2,:),'k','filled')
plot([min(RaEM) max(RaEM)],[min(RaEM) max(RaEM)],'r')
hold off
pbaspect([1 1 1])
Rr = corrcoef(RaEM(1,:)',RaEM(2,:)');
R2r = Rr(1,2)^2;
title(['R2=' num2str(R2r)])
xlabel('Ra ARSLIP fit')
ylabel('Ra predicted')
set(gcf, 'Position', [400 100 1000 500], 'Visible', 'on')

figure
x=(1-1./gsEM(1,:)).*RaEM(1,:);
y=(1-1./gsEM(2,:)).*RaEM(2,:);
hold on
scatter(x,y,'k','filled')
plot([min([x y]) max([x y])],[min([x y]) max([x y])],'r')
hold off
pbaspect([1 1 1])
Rrf = corrcoef(x',y');
R2rf = Rrf(1,2)^2;
title(['R2=' num2str(R2rf)])
xlabel('Rf ARSLIP fit')
ylabel('Rf predicted')
set(gcf, 'Position', [400 100 1000 500], 'Visible', 'on')


%%
minV = 0.5;
maxV = 3.5;
n=linspace(minV,maxV,100);
gc = solveGc(n);
n_exp = lr_exp(1,:)./lr_exp(2,:); 
figure
hold on
plot(n,gc,'b','linewidth',2)
%plot([minV maxV],[gamma gamma])
scatter(n_exp,gc_exp,15,'k','filled');
[f,xi] = ksdensity(n_exp); 
plot(xi,f/8+1,'r','linewidth',2);

hold off
ylabel('equ D.21')
xlabel('L/H')
title(['horizontal line is gamma. n=' num2str(length(n_exp))])

%%

delete(gcp);

function f=objectiveFunc(toBeFitted,m,L,ka,ks,Ra,rm)
g = 9807;
k=toBeFitted(1);
R=toBeFitted(2);
ksExpect = NaN(1,length(L));
kaExpect = NaN(1,length(L));
gsExpect = NaN(1,length(L));
gaExpect = NaN(1,length(L));
RaExpect = NaN(1,length(L));
gs = NaN(1,length(L));
ga = NaN(1,length(L));
parfor i = 1:length(L)
[kae,kse,Rae]=solveForARSLIP(rm(i),L(i),R,k)
ksExpect(i) = kse;
kaExpect(i) = kae;
RaExpect(i) = Rae;
gsExpect(i) = kse*Rae/(m*g);
gaExpect(i) = kae/(m*g*Rae);
gs(i) = ks(i)*Ra(i)/(m*g);
ga(i) = ka(i)/(m*g*Ra(i));
end
slopeS = mean(abs(gsExpect./gs-1));
slopeA = mean(abs(gaExpect./ga-1));
slopeR = mean(abs(RaExpect./Ra-1));
f=slopeS+slopeA+slopeR;

% Rs = corrcoef(gs',gsExpect'); R2s = Rs(1,2)^2;
% Ra = corrcoef(ga',gaExpect'); R2a = Ra(1,2)^2;
% f = -(R2s+R2a);
end

function [ka,ks,Ra]=solveForARSLIP(rm,L_mine,R,k)
% L=2*L_mine;
% 
% ka=4*k*L^2*rm^2*R/(L^2+4*rm^2)^(3/2);
% ks=k*(3-4*L^2*R/(L^2+4*rm^2)^(3/2));
% Ra=k/ks*(R-rm*(3-4*R/(L^2+4*rm^2)^(1/2)))+rm;

H=rm;
L=L_mine;
ka = k*L^2*H^2*2*R/((L^2+H^2)^(3/2));
ks = k*(3-2*L^2*R/((L^2+H^2)^(3/2)));
Ra = k/ks*(R-H*(3-2*R/((L^2+H^2)^(1/2))))+rm;
end

function gc = solveGc(n)
gc=((n.^2+1).^(3/2))./(2*n.^2);
end
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Contact— JavaScript license information— Web API

back to top