Revision 1f32dc7d2b6721a1fe13eb515d52e5cd6f110f59 authored by Andrew Kryczka on 14 June 2018, 00:28:31 UTC, committed by Facebook Github Bot on 14 June 2018, 00:32:04 UTC
Summary:
Rebased and resubmitting #1831 on behalf of stevelittle.

The problem is when a single process attempts to open the same DB twice, the second attempt fails due to LOCK file held. If the second attempt had opened the LOCK file, it'll now need to close it, and closing causes the file to be unlocked. Then, any subsequent attempt to open the DB will succeed, which is the wrong behavior.

The solution was to track which files a process has locked in PosixEnv, and check those before opening a LOCK file.

Fixes #1780.
Closes https://github.com/facebook/rocksdb/pull/3993

Differential Revision: D8398984

Pulled By: ajkr

fbshipit-source-id: 2755fe66950a0c9de63075f932f9e15768041918
1 parent 7497f99
Raw File
db_test.cc
//  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.
//  This source code is licensed under both the GPLv2 (found in the
//  COPYING file in the root directory) and Apache 2.0 License
//  (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.

// Introduction of SyncPoint effectively disabled building and running this test
// in Release build.
// which is a pity, it is a good test
#include <fcntl.h>
#include <algorithm>
#include <set>
#include <thread>
#include <unordered_set>
#include <utility>
#ifndef OS_WIN
#include <unistd.h>
#endif
#ifdef OS_SOLARIS
#include <alloca.h>
#endif

#include "cache/lru_cache.h"
#include "db/db_impl.h"
#include "db/db_test_util.h"
#include "db/dbformat.h"
#include "db/job_context.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "env/mock_env.h"
#include "memtable/hash_linklist_rep.h"
#include "monitoring/thread_status_util.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/experimental.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "rocksdb/thread_status.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "table/block_based_table_factory.h"
#include "table/mock_table.h"
#include "table/plain_table_factory.h"
#include "table/scoped_arena_iterator.h"
#include "util/compression.h"
#include "util/file_reader_writer.h"
#include "util/filename.h"
#include "util/mutexlock.h"
#include "util/rate_limiter.h"
#include "util/string_util.h"
#include "util/sync_point.h"
#include "util/testharness.h"
#include "util/testutil.h"
#include "utilities/merge_operators.h"

namespace rocksdb {

class DBTest : public DBTestBase {
 public:
  DBTest() : DBTestBase("/db_test") {}
};

class DBTestWithParam
    : public DBTest,
      public testing::WithParamInterface<std::tuple<uint32_t, bool>> {
 public:
  DBTestWithParam() {
    max_subcompactions_ = std::get<0>(GetParam());
    exclusive_manual_compaction_ = std::get<1>(GetParam());
  }

  // Required if inheriting from testing::WithParamInterface<>
  static void SetUpTestCase() {}
  static void TearDownTestCase() {}

  uint32_t max_subcompactions_;
  bool exclusive_manual_compaction_;
};

TEST_F(DBTest, MockEnvTest) {
  unique_ptr<MockEnv> env{new MockEnv(Env::Default())};
  Options options;
  options.create_if_missing = true;
  options.env = env.get();
  DB* db;

  const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")};
  const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")};

  ASSERT_OK(DB::Open(options, "/dir/db", &db));
  for (size_t i = 0; i < 3; ++i) {
    ASSERT_OK(db->Put(WriteOptions(), keys[i], vals[i]));
  }

  for (size_t i = 0; i < 3; ++i) {
    std::string res;
    ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
    ASSERT_TRUE(res == vals[i]);
  }

  Iterator* iterator = db->NewIterator(ReadOptions());
  iterator->SeekToFirst();
  for (size_t i = 0; i < 3; ++i) {
    ASSERT_TRUE(iterator->Valid());
    ASSERT_TRUE(keys[i] == iterator->key());
    ASSERT_TRUE(vals[i] == iterator->value());
    iterator->Next();
  }
  ASSERT_TRUE(!iterator->Valid());
  delete iterator;

// TEST_FlushMemTable() is not supported in ROCKSDB_LITE
#ifndef ROCKSDB_LITE
  DBImpl* dbi = reinterpret_cast<DBImpl*>(db);
  ASSERT_OK(dbi->TEST_FlushMemTable());

  for (size_t i = 0; i < 3; ++i) {
    std::string res;
    ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
    ASSERT_TRUE(res == vals[i]);
  }
#endif  // ROCKSDB_LITE

  delete db;
}

// NewMemEnv returns nullptr in ROCKSDB_LITE since class InMemoryEnv isn't
// defined.
#ifndef ROCKSDB_LITE
TEST_F(DBTest, MemEnvTest) {
  unique_ptr<Env> env{NewMemEnv(Env::Default())};
  Options options;
  options.create_if_missing = true;
  options.env = env.get();
  DB* db;

  const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")};
  const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")};

  ASSERT_OK(DB::Open(options, "/dir/db", &db));
  for (size_t i = 0; i < 3; ++i) {
    ASSERT_OK(db->Put(WriteOptions(), keys[i], vals[i]));
  }

  for (size_t i = 0; i < 3; ++i) {
    std::string res;
    ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
    ASSERT_TRUE(res == vals[i]);
  }

  Iterator* iterator = db->NewIterator(ReadOptions());
  iterator->SeekToFirst();
  for (size_t i = 0; i < 3; ++i) {
    ASSERT_TRUE(iterator->Valid());
    ASSERT_TRUE(keys[i] == iterator->key());
    ASSERT_TRUE(vals[i] == iterator->value());
    iterator->Next();
  }
  ASSERT_TRUE(!iterator->Valid());
  delete iterator;

  DBImpl* dbi = reinterpret_cast<DBImpl*>(db);
  ASSERT_OK(dbi->TEST_FlushMemTable());

  for (size_t i = 0; i < 3; ++i) {
    std::string res;
    ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
    ASSERT_TRUE(res == vals[i]);
  }

  delete db;

  options.create_if_missing = false;
  ASSERT_OK(DB::Open(options, "/dir/db", &db));
  for (size_t i = 0; i < 3; ++i) {
    std::string res;
    ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
    ASSERT_TRUE(res == vals[i]);
  }
  delete db;
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, WriteEmptyBatch) {
  Options options = CurrentOptions();
  options.env = env_;
  options.write_buffer_size = 100000;
  CreateAndReopenWithCF({"pikachu"}, options);

  ASSERT_OK(Put(1, "foo", "bar"));
  WriteOptions wo;
  wo.sync = true;
  wo.disableWAL = false;
  WriteBatch empty_batch;
  ASSERT_OK(dbfull()->Write(wo, &empty_batch));

  // make sure we can re-open it.
  ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
  ASSERT_EQ("bar", Get(1, "foo"));
}

TEST_F(DBTest, SkipDelay) {
  Options options = CurrentOptions();
  options.env = env_;
  options.write_buffer_size = 100000;
  CreateAndReopenWithCF({"pikachu"}, options);

  for (bool sync : {true, false}) {
    for (bool disableWAL : {true, false}) {
      if (sync && disableWAL) {
        // sync and disableWAL is incompatible.
        continue;
      }
      // Use a small number to ensure a large delay that is still effective
      // when we do Put
      // TODO(myabandeh): this is time dependent and could potentially make
      // the test flaky
      auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
      std::atomic<int> sleep_count(0);
      rocksdb::SyncPoint::GetInstance()->SetCallBack(
          "DBImpl::DelayWrite:Sleep",
          [&](void* /*arg*/) { sleep_count.fetch_add(1); });
      std::atomic<int> wait_count(0);
      rocksdb::SyncPoint::GetInstance()->SetCallBack(
          "DBImpl::DelayWrite:Wait",
          [&](void* /*arg*/) { wait_count.fetch_add(1); });
      rocksdb::SyncPoint::GetInstance()->EnableProcessing();

      WriteOptions wo;
      wo.sync = sync;
      wo.disableWAL = disableWAL;
      wo.no_slowdown = true;
      dbfull()->Put(wo, "foo", "bar");
      // We need the 2nd write to trigger delay. This is because delay is
      // estimated based on the last write size which is 0 for the first write.
      ASSERT_NOK(dbfull()->Put(wo, "foo2", "bar2"));
      ASSERT_GE(sleep_count.load(), 0);
      ASSERT_GE(wait_count.load(), 0);
      token.reset();

      token = dbfull()->TEST_write_controler().GetDelayToken(1000000000);
      wo.no_slowdown = false;
      ASSERT_OK(dbfull()->Put(wo, "foo3", "bar3"));
      ASSERT_GE(sleep_count.load(), 1);
      token.reset();
    }
  }
}

#ifndef ROCKSDB_LITE

TEST_F(DBTest, LevelLimitReopen) {
  Options options = CurrentOptions();
  CreateAndReopenWithCF({"pikachu"}, options);

  const std::string value(1024 * 1024, ' ');
  int i = 0;
  while (NumTableFilesAtLevel(2, 1) == 0) {
    ASSERT_OK(Put(1, Key(i++), value));
  }

  options.num_levels = 1;
  options.max_bytes_for_level_multiplier_additional.resize(1, 1);
  Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
  ASSERT_EQ(s.IsInvalidArgument(), true);
  ASSERT_EQ(s.ToString(),
            "Invalid argument: db has more levels than options.num_levels");

  options.num_levels = 10;
  options.max_bytes_for_level_multiplier_additional.resize(10, 1);
  ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
#endif  // ROCKSDB_LITE


TEST_F(DBTest, PutSingleDeleteGet) {
  do {
    CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
    ASSERT_OK(Put(1, "foo", "v1"));
    ASSERT_EQ("v1", Get(1, "foo"));
    ASSERT_OK(Put(1, "foo2", "v2"));
    ASSERT_EQ("v2", Get(1, "foo2"));
    ASSERT_OK(SingleDelete(1, "foo"));
    ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
    // Skip HashCuckooRep as it does not support single delete. FIFO and
    // universal compaction do not apply to the test case. Skip MergePut
    // because single delete does not get removed when it encounters a merge.
  } while (ChangeOptions(kSkipHashCuckoo | kSkipFIFOCompaction |
                         kSkipUniversalCompaction | kSkipMergePut));
}

TEST_F(DBTest, ReadFromPersistedTier) {
  do {
    Random rnd(301);
    Options options = CurrentOptions();
    for (int disableWAL = 0; disableWAL <= 1; ++disableWAL) {
      CreateAndReopenWithCF({"pikachu"}, options);
      WriteOptions wopt;
      wopt.disableWAL = (disableWAL == 1);
      // 1st round: put but not flush
      ASSERT_OK(db_->Put(wopt, handles_[1], "foo", "first"));
      ASSERT_OK(db_->Put(wopt, handles_[1], "bar", "one"));
      ASSERT_EQ("first", Get(1, "foo"));
      ASSERT_EQ("one", Get(1, "bar"));

      // Read directly from persited data.
      ReadOptions ropt;
      ropt.read_tier = kPersistedTier;
      std::string value;
      if (wopt.disableWAL) {
        // as data has not yet being flushed, we expect not found.
        ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).IsNotFound());
        ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).IsNotFound());
      } else {
        ASSERT_OK(db_->Get(ropt, handles_[1], "foo", &value));
        ASSERT_OK(db_->Get(ropt, handles_[1], "bar", &value));
      }

      // Multiget
      std::vector<ColumnFamilyHandle*> multiget_cfs;
      multiget_cfs.push_back(handles_[1]);
      multiget_cfs.push_back(handles_[1]);
      std::vector<Slice> multiget_keys;
      multiget_keys.push_back("foo");
      multiget_keys.push_back("bar");
      std::vector<std::string> multiget_values;
      auto statuses =
          db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
      if (wopt.disableWAL) {
        ASSERT_TRUE(statuses[0].IsNotFound());
        ASSERT_TRUE(statuses[1].IsNotFound());
      } else {
        ASSERT_OK(statuses[0]);
        ASSERT_OK(statuses[1]);
      }

      // 2nd round: flush and put a new value in memtable.
      ASSERT_OK(Flush(1));
      ASSERT_OK(db_->Put(wopt, handles_[1], "rocksdb", "hello"));

      // once the data has been flushed, we are able to get the
      // data when kPersistedTier is used.
      ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).ok());
      ASSERT_EQ(value, "first");
      ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).ok());
      ASSERT_EQ(value, "one");
      if (wopt.disableWAL) {
        ASSERT_TRUE(
            db_->Get(ropt, handles_[1], "rocksdb", &value).IsNotFound());
      } else {
        ASSERT_OK(db_->Get(ropt, handles_[1], "rocksdb", &value));
        ASSERT_EQ(value, "hello");
      }

      // Expect same result in multiget
      multiget_cfs.push_back(handles_[1]);
      multiget_keys.push_back("rocksdb");
      statuses =
          db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
      ASSERT_TRUE(statuses[0].ok());
      ASSERT_EQ("first", multiget_values[0]);
      ASSERT_TRUE(statuses[1].ok());
      ASSERT_EQ("one", multiget_values[1]);
      if (wopt.disableWAL) {
        ASSERT_TRUE(statuses[2].IsNotFound());
      } else {
        ASSERT_OK(statuses[2]);
      }

      // 3rd round: delete and flush
      ASSERT_OK(db_->Delete(wopt, handles_[1], "foo"));
      Flush(1);
      ASSERT_OK(db_->Delete(wopt, handles_[1], "bar"));

      ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).IsNotFound());
      if (wopt.disableWAL) {
        // Still expect finding the value as its delete has not yet being
        // flushed.
        ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).ok());
        ASSERT_EQ(value, "one");
      } else {
        ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).IsNotFound());
      }
      ASSERT_TRUE(db_->Get(ropt, handles_[1], "rocksdb", &value).ok());
      ASSERT_EQ(value, "hello");

      statuses =
          db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
      ASSERT_TRUE(statuses[0].IsNotFound());
      if (wopt.disableWAL) {
        ASSERT_TRUE(statuses[1].ok());
        ASSERT_EQ("one", multiget_values[1]);
      } else {
        ASSERT_TRUE(statuses[1].IsNotFound());
      }
      ASSERT_TRUE(statuses[2].ok());
      ASSERT_EQ("hello", multiget_values[2]);
      if (wopt.disableWAL == 0) {
        DestroyAndReopen(options);
      }
    }
  } while (ChangeOptions(kSkipHashCuckoo));
}

TEST_F(DBTest, SingleDeleteFlush) {
  // Test to check whether flushing preserves a single delete hidden
  // behind a put.
  do {
    Random rnd(301);

    Options options = CurrentOptions();
    options.disable_auto_compactions = true;
    CreateAndReopenWithCF({"pikachu"}, options);

    // Put values on second level (so that they will not be in the same
    // compaction as the other operations.
    Put(1, "foo", "first");
    Put(1, "bar", "one");
    ASSERT_OK(Flush(1));
    MoveFilesToLevel(2, 1);

    // (Single) delete hidden by a put
    SingleDelete(1, "foo");
    Put(1, "foo", "second");
    Delete(1, "bar");
    Put(1, "bar", "two");
    ASSERT_OK(Flush(1));

    SingleDelete(1, "foo");
    Delete(1, "bar");
    ASSERT_OK(Flush(1));

    dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
                           nullptr);

    ASSERT_EQ("NOT_FOUND", Get(1, "bar"));
    ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
    // Skip HashCuckooRep as it does not support single delete. FIFO and
    // universal compaction do not apply to the test case. Skip MergePut
    // because merges cannot be combined with single deletions.
  } while (ChangeOptions(kSkipHashCuckoo | kSkipFIFOCompaction |
                         kSkipUniversalCompaction | kSkipMergePut));
}

TEST_F(DBTest, SingleDeletePutFlush) {
  // Single deletes that encounter the matching put in a flush should get
  // removed.
  do {
    Random rnd(301);

    Options options = CurrentOptions();
    options.disable_auto_compactions = true;
    CreateAndReopenWithCF({"pikachu"}, options);

    Put(1, "foo", Slice());
    Put(1, "a", Slice());
    SingleDelete(1, "a");
    ASSERT_OK(Flush(1));

    ASSERT_EQ("[ ]", AllEntriesFor("a", 1));
    // Skip HashCuckooRep as it does not support single delete. FIFO and
    // universal compaction do not apply to the test case. Skip MergePut
    // because merges cannot be combined with single deletions.
  } while (ChangeOptions(kSkipHashCuckoo | kSkipFIFOCompaction |
                         kSkipUniversalCompaction | kSkipMergePut));
}

// Disable because not all platform can run it.
// It requires more than 9GB memory to run it, With single allocation
// of more than 3GB.
TEST_F(DBTest, DISABLED_SanitizeVeryVeryLargeValue) {
  const size_t kValueSize = 4 * size_t{1024 * 1024 * 1024};  // 4GB value
  std::string raw(kValueSize, 'v');
  Options options = CurrentOptions();
  options.env = env_;
  options.merge_operator = MergeOperators::CreatePutOperator();
  options.write_buffer_size = 100000;  // Small write buffer
  options.paranoid_checks = true;
  DestroyAndReopen(options);

  ASSERT_OK(Put("boo", "v1"));
  ASSERT_TRUE(Put("foo", raw).IsInvalidArgument());
  ASSERT_TRUE(Merge("foo", raw).IsInvalidArgument());

  WriteBatch wb;
  ASSERT_TRUE(wb.Put("foo", raw).IsInvalidArgument());
  ASSERT_TRUE(wb.Merge("foo", raw).IsInvalidArgument());

  Slice value_slice = raw;
  Slice key_slice = "foo";
  SliceParts sp_key(&key_slice, 1);
  SliceParts sp_value(&value_slice, 1);

  ASSERT_TRUE(wb.Put(sp_key, sp_value).IsInvalidArgument());
  ASSERT_TRUE(wb.Merge(sp_key, sp_value).IsInvalidArgument());
}

// Disable because not all platform can run it.
// It requires more than 9GB memory to run it, With single allocation
// of more than 3GB.
TEST_F(DBTest, DISABLED_VeryLargeValue) {
  const size_t kValueSize = 3221225472u;  // 3GB value
  const size_t kKeySize = 8388608u;       // 8MB key
  std::string raw(kValueSize, 'v');
  std::string key1(kKeySize, 'c');
  std::string key2(kKeySize, 'd');

  Options options = CurrentOptions();
  options.env = env_;
  options.write_buffer_size = 100000;  // Small write buffer
  options.paranoid_checks = true;
  DestroyAndReopen(options);

  ASSERT_OK(Put("boo", "v1"));
  ASSERT_OK(Put("foo", "v1"));
  ASSERT_OK(Put(key1, raw));
  raw[0] = 'w';
  ASSERT_OK(Put(key2, raw));
  dbfull()->TEST_WaitForFlushMemTable();

#ifndef ROCKSDB_LITE
  ASSERT_EQ(1, NumTableFilesAtLevel(0));
#endif  // !ROCKSDB_LITE

  std::string value;
  Status s = db_->Get(ReadOptions(), key1, &value);
  ASSERT_OK(s);
  ASSERT_EQ(kValueSize, value.size());
  ASSERT_EQ('v', value[0]);

  s = db_->Get(ReadOptions(), key2, &value);
  ASSERT_OK(s);
  ASSERT_EQ(kValueSize, value.size());
  ASSERT_EQ('w', value[0]);

  // Compact all files.
  Flush();
  db_->CompactRange(CompactRangeOptions(), nullptr, nullptr);

  // Check DB is not in read-only state.
  ASSERT_OK(Put("boo", "v1"));

  s = db_->Get(ReadOptions(), key1, &value);
  ASSERT_OK(s);
  ASSERT_EQ(kValueSize, value.size());
  ASSERT_EQ('v', value[0]);

  s = db_->Get(ReadOptions(), key2, &value);
  ASSERT_OK(s);
  ASSERT_EQ(kValueSize, value.size());
  ASSERT_EQ('w', value[0]);
}

TEST_F(DBTest, GetFromImmutableLayer) {
  do {
    Options options = CurrentOptions();
    options.env = env_;
    CreateAndReopenWithCF({"pikachu"}, options);

    ASSERT_OK(Put(1, "foo", "v1"));
    ASSERT_EQ("v1", Get(1, "foo"));

    // Block sync calls
    env_->delay_sstable_sync_.store(true, std::memory_order_release);
    Put(1, "k1", std::string(100000, 'x'));  // Fill memtable
    Put(1, "k2", std::string(100000, 'y'));  // Trigger flush
    ASSERT_EQ("v1", Get(1, "foo"));
    ASSERT_EQ("NOT_FOUND", Get(0, "foo"));
    // Release sync calls
    env_->delay_sstable_sync_.store(false, std::memory_order_release);
  } while (ChangeOptions());
}


TEST_F(DBTest, GetLevel0Ordering) {
  do {
    CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
    // Check that we process level-0 files in correct order.  The code
    // below generates two level-0 files where the earlier one comes
    // before the later one in the level-0 file list since the earlier
    // one has a smaller "smallest" key.
    ASSERT_OK(Put(1, "bar", "b"));
    ASSERT_OK(Put(1, "foo", "v1"));
    ASSERT_OK(Flush(1));
    ASSERT_OK(Put(1, "foo", "v2"));
    ASSERT_OK(Flush(1));
    ASSERT_EQ("v2", Get(1, "foo"));
  } while (ChangeOptions());
}

TEST_F(DBTest, WrongLevel0Config) {
  Options options = CurrentOptions();
  Close();
  ASSERT_OK(DestroyDB(dbname_, options));
  options.level0_stop_writes_trigger = 1;
  options.level0_slowdown_writes_trigger = 2;
  options.level0_file_num_compaction_trigger = 3;
  ASSERT_OK(DB::Open(options, dbname_, &db_));
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, GetOrderedByLevels) {
  do {
    CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
    ASSERT_OK(Put(1, "foo", "v1"));
    Compact(1, "a", "z");
    ASSERT_EQ("v1", Get(1, "foo"));
    ASSERT_OK(Put(1, "foo", "v2"));
    ASSERT_EQ("v2", Get(1, "foo"));
    ASSERT_OK(Flush(1));
    ASSERT_EQ("v2", Get(1, "foo"));
  } while (ChangeOptions());
}

TEST_F(DBTest, GetPicksCorrectFile) {
  do {
    CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
    // Arrange to have multiple files in a non-level-0 level.
    ASSERT_OK(Put(1, "a", "va"));
    Compact(1, "a", "b");
    ASSERT_OK(Put(1, "x", "vx"));
    Compact(1, "x", "y");
    ASSERT_OK(Put(1, "f", "vf"));
    Compact(1, "f", "g");
    ASSERT_EQ("va", Get(1, "a"));
    ASSERT_EQ("vf", Get(1, "f"));
    ASSERT_EQ("vx", Get(1, "x"));
  } while (ChangeOptions());
}

TEST_F(DBTest, GetEncountersEmptyLevel) {
  do {
    Options options = CurrentOptions();
    CreateAndReopenWithCF({"pikachu"}, options);
    // Arrange for the following to happen:
    //   * sstable A in level 0
    //   * nothing in level 1
    //   * sstable B in level 2
    // Then do enough Get() calls to arrange for an automatic compaction
    // of sstable A.  A bug would cause the compaction to be marked as
    // occurring at level 1 (instead of the correct level 0).

    // Step 1: First place sstables in levels 0 and 2
    Put(1, "a", "begin");
    Put(1, "z", "end");
    ASSERT_OK(Flush(1));
    dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);
    dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]);
    Put(1, "a", "begin");
    Put(1, "z", "end");
    ASSERT_OK(Flush(1));
    ASSERT_GT(NumTableFilesAtLevel(0, 1), 0);
    ASSERT_GT(NumTableFilesAtLevel(2, 1), 0);

    // Step 2: clear level 1 if necessary.
    dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]);
    ASSERT_EQ(NumTableFilesAtLevel(0, 1), 1);
    ASSERT_EQ(NumTableFilesAtLevel(1, 1), 0);
    ASSERT_EQ(NumTableFilesAtLevel(2, 1), 1);

    // Step 3: read a bunch of times
    for (int i = 0; i < 1000; i++) {
      ASSERT_EQ("NOT_FOUND", Get(1, "missing"));
    }

    // Step 4: Wait for compaction to finish
    dbfull()->TEST_WaitForCompact();

    ASSERT_EQ(NumTableFilesAtLevel(0, 1), 1);  // XXX
  } while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction));
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, FlushMultipleMemtable) {
  do {
    Options options = CurrentOptions();
    WriteOptions writeOpt = WriteOptions();
    writeOpt.disableWAL = true;
    options.max_write_buffer_number = 4;
    options.min_write_buffer_number_to_merge = 3;
    options.max_write_buffer_number_to_maintain = -1;
    CreateAndReopenWithCF({"pikachu"}, options);
    ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
    ASSERT_OK(Flush(1));
    ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));

    ASSERT_EQ("v1", Get(1, "foo"));
    ASSERT_EQ("v1", Get(1, "bar"));
    ASSERT_OK(Flush(1));
  } while (ChangeCompactOptions());
}
#ifndef ROCKSDB_LITE
TEST_F(DBTest, FlushSchedule) {
  Options options = CurrentOptions();
  options.disable_auto_compactions = true;
  options.level0_stop_writes_trigger = 1 << 10;
  options.level0_slowdown_writes_trigger = 1 << 10;
  options.min_write_buffer_number_to_merge = 1;
  options.max_write_buffer_number_to_maintain = 1;
  options.max_write_buffer_number = 2;
  options.write_buffer_size = 120 * 1024;
  CreateAndReopenWithCF({"pikachu"}, options);
  std::vector<port::Thread> threads;

  std::atomic<int> thread_num(0);
  // each column family will have 5 thread, each thread generating 2 memtables.
  // each column family should end up with 10 table files
  std::function<void()> fill_memtable_func = [&]() {
    int a = thread_num.fetch_add(1);
    Random rnd(a);
    WriteOptions wo;
    // this should fill up 2 memtables
    for (int k = 0; k < 5000; ++k) {
      ASSERT_OK(db_->Put(wo, handles_[a & 1], RandomString(&rnd, 13), ""));
    }
  };

  for (int i = 0; i < 10; ++i) {
    threads.emplace_back(fill_memtable_func);
  }

  for (auto& t : threads) {
    t.join();
  }

  auto default_tables = GetNumberOfSstFilesForColumnFamily(db_, "default");
  auto pikachu_tables = GetNumberOfSstFilesForColumnFamily(db_, "pikachu");
  ASSERT_LE(default_tables, static_cast<uint64_t>(10));
  ASSERT_GT(default_tables, static_cast<uint64_t>(0));
  ASSERT_LE(pikachu_tables, static_cast<uint64_t>(10));
  ASSERT_GT(pikachu_tables, static_cast<uint64_t>(0));
}
#endif  // ROCKSDB_LITE

namespace {
class KeepFilter : public CompactionFilter {
 public:
  virtual bool Filter(int /*level*/, const Slice& /*key*/,
                      const Slice& /*value*/, std::string* /*new_value*/,
                      bool* /*value_changed*/) const override {
    return false;
  }

  virtual const char* Name() const override { return "KeepFilter"; }
};

class KeepFilterFactory : public CompactionFilterFactory {
 public:
  explicit KeepFilterFactory(bool check_context = false)
      : check_context_(check_context) {}

  virtual std::unique_ptr<CompactionFilter> CreateCompactionFilter(
      const CompactionFilter::Context& context) override {
    if (check_context_) {
      EXPECT_EQ(expect_full_compaction_.load(), context.is_full_compaction);
      EXPECT_EQ(expect_manual_compaction_.load(), context.is_manual_compaction);
    }
    return std::unique_ptr<CompactionFilter>(new KeepFilter());
  }

  virtual const char* Name() const override { return "KeepFilterFactory"; }
  bool check_context_;
  std::atomic_bool expect_full_compaction_;
  std::atomic_bool expect_manual_compaction_;
};

class DelayFilter : public CompactionFilter {
 public:
  explicit DelayFilter(DBTestBase* d) : db_test(d) {}
  virtual bool Filter(int /*level*/, const Slice& /*key*/,
                      const Slice& /*value*/, std::string* /*new_value*/,
                      bool* /*value_changed*/) const override {
    db_test->env_->addon_time_.fetch_add(1000);
    return true;
  }

  virtual const char* Name() const override { return "DelayFilter"; }

 private:
  DBTestBase* db_test;
};

class DelayFilterFactory : public CompactionFilterFactory {
 public:
  explicit DelayFilterFactory(DBTestBase* d) : db_test(d) {}
  virtual std::unique_ptr<CompactionFilter> CreateCompactionFilter(
      const CompactionFilter::Context& /*context*/) override {
    return std::unique_ptr<CompactionFilter>(new DelayFilter(db_test));
  }

  virtual const char* Name() const override { return "DelayFilterFactory"; }

 private:
  DBTestBase* db_test;
};
}  // namespace

#ifndef ROCKSDB_LITE

static std::string CompressibleString(Random* rnd, int len) {
  std::string r;
  test::CompressibleString(rnd, 0.8, len, &r);
  return r;
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, FailMoreDbPaths) {
  Options options = CurrentOptions();
  options.db_paths.emplace_back(dbname_, 10000000);
  options.db_paths.emplace_back(dbname_ + "_2", 1000000);
  options.db_paths.emplace_back(dbname_ + "_3", 1000000);
  options.db_paths.emplace_back(dbname_ + "_4", 1000000);
  options.db_paths.emplace_back(dbname_ + "_5", 1000000);
  ASSERT_TRUE(TryReopen(options).IsNotSupported());
}

void CheckColumnFamilyMeta(const ColumnFamilyMetaData& cf_meta) {
  uint64_t cf_size = 0;
  uint64_t cf_csize = 0;
  size_t file_count = 0;
  for (auto level_meta : cf_meta.levels) {
    uint64_t level_size = 0;
    uint64_t level_csize = 0;
    file_count += level_meta.files.size();
    for (auto file_meta : level_meta.files) {
      level_size += file_meta.size;
    }
    ASSERT_EQ(level_meta.size, level_size);
    cf_size += level_size;
    cf_csize += level_csize;
  }
  ASSERT_EQ(cf_meta.file_count, file_count);
  ASSERT_EQ(cf_meta.size, cf_size);
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, ColumnFamilyMetaDataTest) {
  Options options = CurrentOptions();
  options.create_if_missing = true;
  DestroyAndReopen(options);

  Random rnd(301);
  int key_index = 0;
  ColumnFamilyMetaData cf_meta;
  for (int i = 0; i < 100; ++i) {
    GenerateNewFile(&rnd, &key_index);
    db_->GetColumnFamilyMetaData(&cf_meta);
    CheckColumnFamilyMeta(cf_meta);
  }
}

namespace {
void MinLevelHelper(DBTest* self, Options& options) {
  Random rnd(301);

  for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
       num++) {
    std::vector<std::string> values;
    // Write 120KB (12 values, each 10K)
    for (int i = 0; i < 12; i++) {
      values.push_back(DBTestBase::RandomString(&rnd, 10000));
      ASSERT_OK(self->Put(DBTestBase::Key(i), values[i]));
    }
    self->dbfull()->TEST_WaitForFlushMemTable();
    ASSERT_EQ(self->NumTableFilesAtLevel(0), num + 1);
  }

  // generate one more file in level-0, and should trigger level-0 compaction
  std::vector<std::string> values;
  for (int i = 0; i < 12; i++) {
    values.push_back(DBTestBase::RandomString(&rnd, 10000));
    ASSERT_OK(self->Put(DBTestBase::Key(i), values[i]));
  }
  self->dbfull()->TEST_WaitForCompact();

  ASSERT_EQ(self->NumTableFilesAtLevel(0), 0);
  ASSERT_EQ(self->NumTableFilesAtLevel(1), 1);
}

// returns false if the calling-Test should be skipped
bool MinLevelToCompress(CompressionType& type, Options& options, int wbits,
                        int lev, int strategy) {
  fprintf(stderr,
          "Test with compression options : window_bits = %d, level =  %d, "
          "strategy = %d}\n",
          wbits, lev, strategy);
  options.write_buffer_size = 100 << 10;  // 100KB
  options.arena_block_size = 4096;
  options.num_levels = 3;
  options.level0_file_num_compaction_trigger = 3;
  options.create_if_missing = true;

  if (Snappy_Supported()) {
    type = kSnappyCompression;
    fprintf(stderr, "using snappy\n");
  } else if (Zlib_Supported()) {
    type = kZlibCompression;
    fprintf(stderr, "using zlib\n");
  } else if (BZip2_Supported()) {
    type = kBZip2Compression;
    fprintf(stderr, "using bzip2\n");
  } else if (LZ4_Supported()) {
    type = kLZ4Compression;
    fprintf(stderr, "using lz4\n");
  } else if (XPRESS_Supported()) {
    type = kXpressCompression;
    fprintf(stderr, "using xpress\n");
  } else if (ZSTD_Supported()) {
    type = kZSTD;
    fprintf(stderr, "using ZSTD\n");
  } else {
    fprintf(stderr, "skipping test, compression disabled\n");
    return false;
  }
  options.compression_per_level.resize(options.num_levels);

  // do not compress L0
  for (int i = 0; i < 1; i++) {
    options.compression_per_level[i] = kNoCompression;
  }
  for (int i = 1; i < options.num_levels; i++) {
    options.compression_per_level[i] = type;
  }
  return true;
}
}  // namespace

TEST_F(DBTest, MinLevelToCompress1) {
  Options options = CurrentOptions();
  CompressionType type = kSnappyCompression;
  if (!MinLevelToCompress(type, options, -14, -1, 0)) {
    return;
  }
  Reopen(options);
  MinLevelHelper(this, options);

  // do not compress L0 and L1
  for (int i = 0; i < 2; i++) {
    options.compression_per_level[i] = kNoCompression;
  }
  for (int i = 2; i < options.num_levels; i++) {
    options.compression_per_level[i] = type;
  }
  DestroyAndReopen(options);
  MinLevelHelper(this, options);
}

TEST_F(DBTest, MinLevelToCompress2) {
  Options options = CurrentOptions();
  CompressionType type = kSnappyCompression;
  if (!MinLevelToCompress(type, options, 15, -1, 0)) {
    return;
  }
  Reopen(options);
  MinLevelHelper(this, options);

  // do not compress L0 and L1
  for (int i = 0; i < 2; i++) {
    options.compression_per_level[i] = kNoCompression;
  }
  for (int i = 2; i < options.num_levels; i++) {
    options.compression_per_level[i] = type;
  }
  DestroyAndReopen(options);
  MinLevelHelper(this, options);
}

// This test may fail because of a legit case that multiple L0 files
// are trivial moved to L1.
TEST_F(DBTest, DISABLED_RepeatedWritesToSameKey) {
  do {
    Options options = CurrentOptions();
    options.env = env_;
    options.write_buffer_size = 100000;  // Small write buffer
    CreateAndReopenWithCF({"pikachu"}, options);

    // We must have at most one file per level except for level-0,
    // which may have up to kL0_StopWritesTrigger files.
    const int kMaxFiles =
        options.num_levels + options.level0_stop_writes_trigger;

    Random rnd(301);
    std::string value =
        RandomString(&rnd, static_cast<int>(2 * options.write_buffer_size));
    for (int i = 0; i < 5 * kMaxFiles; i++) {
      ASSERT_OK(Put(1, "key", value));
      ASSERT_LE(TotalTableFiles(1), kMaxFiles);
    }
  } while (ChangeCompactOptions());
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, SparseMerge) {
  do {
    Options options = CurrentOptions();
    options.compression = kNoCompression;
    CreateAndReopenWithCF({"pikachu"}, options);

    FillLevels("A", "Z", 1);

    // Suppose there is:
    //    small amount of data with prefix A
    //    large amount of data with prefix B
    //    small amount of data with prefix C
    // and that recent updates have made small changes to all three prefixes.
    // Check that we do not do a compaction that merges all of B in one shot.
    const std::string value(1000, 'x');
    Put(1, "A", "va");
    // Write approximately 100MB of "B" values
    for (int i = 0; i < 100000; i++) {
      char key[100];
      snprintf(key, sizeof(key), "B%010d", i);
      Put(1, key, value);
    }
    Put(1, "C", "vc");
    ASSERT_OK(Flush(1));
    dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);

    // Make sparse update
    Put(1, "A", "va2");
    Put(1, "B100", "bvalue2");
    Put(1, "C", "vc2");
    ASSERT_OK(Flush(1));

    // Compactions should not cause us to create a situation where
    // a file overlaps too much data at the next level.
    ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(handles_[1]),
              20 * 1048576);
    dbfull()->TEST_CompactRange(0, nullptr, nullptr);
    ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(handles_[1]),
              20 * 1048576);
    dbfull()->TEST_CompactRange(1, nullptr, nullptr);
    ASSERT_LE(dbfull()->TEST_MaxNextLevelOverlappingBytes(handles_[1]),
              20 * 1048576);
  } while (ChangeCompactOptions());
}

#ifndef ROCKSDB_LITE
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
  bool result = (val >= low) && (val <= high);
  if (!result) {
    fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
            (unsigned long long)(val), (unsigned long long)(low),
            (unsigned long long)(high));
  }
  return result;
}

TEST_F(DBTest, ApproximateSizesMemTable) {
  Options options = CurrentOptions();
  options.write_buffer_size = 100000000;  // Large write buffer
  options.compression = kNoCompression;
  options.create_if_missing = true;
  DestroyAndReopen(options);

  const int N = 128;
  Random rnd(301);
  for (int i = 0; i < N; i++) {
    ASSERT_OK(Put(Key(i), RandomString(&rnd, 1024)));
  }

  uint64_t size;
  std::string start = Key(50);
  std::string end = Key(60);
  Range r(start, end);
  uint8_t include_both = DB::SizeApproximationFlags::INCLUDE_FILES |
                         DB::SizeApproximationFlags::INCLUDE_MEMTABLES;
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_GT(size, 6000);
  ASSERT_LT(size, 204800);
  // Zero if not including mem table
  db_->GetApproximateSizes(&r, 1, &size);
  ASSERT_EQ(size, 0);

  start = Key(500);
  end = Key(600);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_EQ(size, 0);

  for (int i = 0; i < N; i++) {
    ASSERT_OK(Put(Key(1000 + i), RandomString(&rnd, 1024)));
  }

  start = Key(500);
  end = Key(600);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_EQ(size, 0);

  start = Key(100);
  end = Key(1020);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_GT(size, 6000);

  options.max_write_buffer_number = 8;
  options.min_write_buffer_number_to_merge = 5;
  options.write_buffer_size = 1024 * N;  // Not very large
  DestroyAndReopen(options);

  int keys[N * 3];
  for (int i = 0; i < N; i++) {
    keys[i * 3] = i * 5;
    keys[i * 3 + 1] = i * 5 + 1;
    keys[i * 3 + 2] = i * 5 + 2;
  }
  std::random_shuffle(std::begin(keys), std::end(keys));

  for (int i = 0; i < N * 3; i++) {
    ASSERT_OK(Put(Key(keys[i] + 1000), RandomString(&rnd, 1024)));
  }

  start = Key(100);
  end = Key(300);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_EQ(size, 0);

  start = Key(1050);
  end = Key(1080);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_GT(size, 6000);

  start = Key(2100);
  end = Key(2300);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size, include_both);
  ASSERT_EQ(size, 0);

  start = Key(1050);
  end = Key(1080);
  r = Range(start, end);
  uint64_t size_with_mt, size_without_mt;
  db_->GetApproximateSizes(&r, 1, &size_with_mt, include_both);
  ASSERT_GT(size_with_mt, 6000);
  db_->GetApproximateSizes(&r, 1, &size_without_mt);
  ASSERT_EQ(size_without_mt, 0);

  Flush();

  for (int i = 0; i < N; i++) {
    ASSERT_OK(Put(Key(i + 1000), RandomString(&rnd, 1024)));
  }

  start = Key(1050);
  end = Key(1080);
  r = Range(start, end);
  db_->GetApproximateSizes(&r, 1, &size_with_mt, include_both);
  db_->GetApproximateSizes(&r, 1, &size_without_mt);
  ASSERT_GT(size_with_mt, size_without_mt);
  ASSERT_GT(size_without_mt, 6000);
}

TEST_F(DBTest, GetApproximateMemTableStats) {
  Options options = CurrentOptions();
  options.write_buffer_size = 100000000;
  options.compression = kNoCompression;
  options.create_if_missing = true;
  DestroyAndReopen(options);

  const int N = 128;
  Random rnd(301);
  for (int i = 0; i < N; i++) {
    ASSERT_OK(Put(Key(i), RandomString(&rnd, 1024)));
  }

  uint64_t count;
  uint64_t size;

  std::string start = Key(50);
  std::string end = Key(60);
  Range r(start, end);
  db_->GetApproximateMemTableStats(r, &count, &size);
  ASSERT_GT(count, 0);
  ASSERT_LE(count, N);
  ASSERT_GT(size, 6000);
  ASSERT_LT(size, 204800);

  start = Key(500);
  end = Key(600);
  r = Range(start, end);
  db_->GetApproximateMemTableStats(r, &count, &size);
  ASSERT_EQ(count, 0);
  ASSERT_EQ(size, 0);

  Flush();

  start = Key(50);
  end = Key(60);
  r = Range(start, end);
  db_->GetApproximateMemTableStats(r, &count, &size);
  ASSERT_EQ(count, 0);
  ASSERT_EQ(size, 0);

  for (int i = 0; i < N; i++) {
    ASSERT_OK(Put(Key(1000 + i), RandomString(&rnd, 1024)));
  }

  start = Key(100);
  end = Key(1020);
  r = Range(start, end);
  db_->GetApproximateMemTableStats(r, &count, &size);
  ASSERT_GT(count, 20);
  ASSERT_GT(size, 6000);
}

TEST_F(DBTest, ApproximateSizes) {
  do {
    Options options = CurrentOptions();
    options.write_buffer_size = 100000000;  // Large write buffer
    options.compression = kNoCompression;
    options.create_if_missing = true;
    DestroyAndReopen(options);
    CreateAndReopenWithCF({"pikachu"}, options);

    ASSERT_TRUE(Between(Size("", "xyz", 1), 0, 0));
    ReopenWithColumnFamilies({"default", "pikachu"}, options);
    ASSERT_TRUE(Between(Size("", "xyz", 1), 0, 0));

    // Write 8MB (80 values, each 100K)
    ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
    const int N = 80;
    static const int S1 = 100000;
    static const int S2 = 105000;  // Allow some expansion from metadata
    Random rnd(301);
    for (int i = 0; i < N; i++) {
      ASSERT_OK(Put(1, Key(i), RandomString(&rnd, S1)));
    }

    // 0 because GetApproximateSizes() does not account for memtable space
    ASSERT_TRUE(Between(Size("", Key(50), 1), 0, 0));

    // Check sizes across recovery by reopening a few times
    for (int run = 0; run < 3; run++) {
      ReopenWithColumnFamilies({"default", "pikachu"}, options);

      for (int compact_start = 0; compact_start < N; compact_start += 10) {
        for (int i = 0; i < N; i += 10) {
          ASSERT_TRUE(Between(Size("", Key(i), 1), S1 * i, S2 * i));
          ASSERT_TRUE(Between(Size("", Key(i) + ".suffix", 1), S1 * (i + 1),
                              S2 * (i + 1)));
          ASSERT_TRUE(Between(Size(Key(i), Key(i + 10), 1), S1 * 10, S2 * 10));
        }
        ASSERT_TRUE(Between(Size("", Key(50), 1), S1 * 50, S2 * 50));
        ASSERT_TRUE(
            Between(Size("", Key(50) + ".suffix", 1), S1 * 50, S2 * 50));

        std::string cstart_str = Key(compact_start);
        std::string cend_str = Key(compact_start + 9);
        Slice cstart = cstart_str;
        Slice cend = cend_str;
        dbfull()->TEST_CompactRange(0, &cstart, &cend, handles_[1]);
      }

      ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
      ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);
    }
    // ApproximateOffsetOf() is not yet implemented in plain table format.
  } while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction |
                         kSkipPlainTable | kSkipHashIndex));
}

TEST_F(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
  do {
    Options options = CurrentOptions();
    options.compression = kNoCompression;
    CreateAndReopenWithCF({"pikachu"}, options);

    Random rnd(301);
    std::string big1 = RandomString(&rnd, 100000);
    ASSERT_OK(Put(1, Key(0), RandomString(&rnd, 10000)));
    ASSERT_OK(Put(1, Key(1), RandomString(&rnd, 10000)));
    ASSERT_OK(Put(1, Key(2), big1));
    ASSERT_OK(Put(1, Key(3), RandomString(&rnd, 10000)));
    ASSERT_OK(Put(1, Key(4), big1));
    ASSERT_OK(Put(1, Key(5), RandomString(&rnd, 10000)));
    ASSERT_OK(Put(1, Key(6), RandomString(&rnd, 300000)));
    ASSERT_OK(Put(1, Key(7), RandomString(&rnd, 10000)));

    // Check sizes across recovery by reopening a few times
    for (int run = 0; run < 3; run++) {
      ReopenWithColumnFamilies({"default", "pikachu"}, options);

      ASSERT_TRUE(Between(Size("", Key(0), 1), 0, 0));
      ASSERT_TRUE(Between(Size("", Key(1), 1), 10000, 11000));
      ASSERT_TRUE(Between(Size("", Key(2), 1), 20000, 21000));
      ASSERT_TRUE(Between(Size("", Key(3), 1), 120000, 121000));
      ASSERT_TRUE(Between(Size("", Key(4), 1), 130000, 131000));
      ASSERT_TRUE(Between(Size("", Key(5), 1), 230000, 231000));
      ASSERT_TRUE(Between(Size("", Key(6), 1), 240000, 241000));
      ASSERT_TRUE(Between(Size("", Key(7), 1), 540000, 541000));
      ASSERT_TRUE(Between(Size("", Key(8), 1), 550000, 560000));

      ASSERT_TRUE(Between(Size(Key(3), Key(5), 1), 110000, 111000));

      dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]);
    }
    // ApproximateOffsetOf() is not yet implemented in plain table format.
  } while (ChangeOptions(kSkipPlainTable));
}
#endif  // ROCKSDB_LITE

#ifndef ROCKSDB_LITE
TEST_F(DBTest, Snapshot) {
  anon::OptionsOverride options_override;
  options_override.skip_policy = kSkipNoSnapshot;
  do {
    CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
    Put(0, "foo", "0v1");
    Put(1, "foo", "1v1");

    const Snapshot* s1 = db_->GetSnapshot();
    ASSERT_EQ(1U, GetNumSnapshots());
    uint64_t time_snap1 = GetTimeOldestSnapshots();
    ASSERT_GT(time_snap1, 0U);
    Put(0, "foo", "0v2");
    Put(1, "foo", "1v2");

    env_->addon_time_.fetch_add(1);

    const Snapshot* s2 = db_->GetSnapshot();
    ASSERT_EQ(2U, GetNumSnapshots());
    ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
    Put(0, "foo", "0v3");
    Put(1, "foo", "1v3");

    {
      ManagedSnapshot s3(db_);
      ASSERT_EQ(3U, GetNumSnapshots());
      ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());

      Put(0, "foo", "0v4");
      Put(1, "foo", "1v4");
      ASSERT_EQ("0v1", Get(0, "foo", s1));
      ASSERT_EQ("1v1", Get(1, "foo", s1));
      ASSERT_EQ("0v2", Get(0, "foo", s2));
      ASSERT_EQ("1v2", Get(1, "foo", s2));
      ASSERT_EQ("0v3", Get(0, "foo", s3.snapshot()));
      ASSERT_EQ("1v3", Get(1, "foo", s3.snapshot()));
      ASSERT_EQ("0v4", Get(0, "foo"));
      ASSERT_EQ("1v4", Get(1, "foo"));
    }

    ASSERT_EQ(2U, GetNumSnapshots());
    ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
    ASSERT_EQ("0v1", Get(0, "foo", s1));
    ASSERT_EQ("1v1", Get(1, "foo", s1));
    ASSERT_EQ("0v2", Get(0, "foo", s2));
    ASSERT_EQ("1v2", Get(1, "foo", s2));
    ASSERT_EQ("0v4", Get(0, "foo"));
    ASSERT_EQ("1v4", Get(1, "foo"));

    db_->ReleaseSnapshot(s1);
    ASSERT_EQ("0v2", Get(0, "foo", s2));
    ASSERT_EQ("1v2", Get(1, "foo", s2));
    ASSERT_EQ("0v4", Get(0, "foo"));
    ASSERT_EQ("1v4", Get(1, "foo"));
    ASSERT_EQ(1U, GetNumSnapshots());
    ASSERT_LT(time_snap1, GetTimeOldestSnapshots());

    db_->ReleaseSnapshot(s2);
    ASSERT_EQ(0U, GetNumSnapshots());
    ASSERT_EQ("0v4", Get(0, "foo"));
    ASSERT_EQ("1v4", Get(1, "foo"));
  } while (ChangeOptions(kSkipHashCuckoo));
}

TEST_F(DBTest, HiddenValuesAreRemoved) {
  anon::OptionsOverride options_override;
  options_override.skip_policy = kSkipNoSnapshot;
  do {
    Options options = CurrentOptions(options_override);
    CreateAndReopenWithCF({"pikachu"}, options);
    Random rnd(301);
    FillLevels("a", "z", 1);

    std::string big = RandomString(&rnd, 50000);
    Put(1, "foo", big);
    Put(1, "pastfoo", "v");
    const Snapshot* snapshot = db_->GetSnapshot();
    Put(1, "foo", "tiny");
    Put(1, "pastfoo2", "v2");  // Advance sequence number one more

    ASSERT_OK(Flush(1));
    ASSERT_GT(NumTableFilesAtLevel(0, 1), 0);

    ASSERT_EQ(big, Get(1, "foo", snapshot));
    ASSERT_TRUE(Between(Size("", "pastfoo", 1), 50000, 60000));
    db_->ReleaseSnapshot(snapshot);
    ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny, " + big + " ]");
    Slice x("x");
    dbfull()->TEST_CompactRange(0, nullptr, &x, handles_[1]);
    ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny ]");
    ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
    ASSERT_GE(NumTableFilesAtLevel(1, 1), 1);
    dbfull()->TEST_CompactRange(1, nullptr, &x, handles_[1]);
    ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny ]");

    ASSERT_TRUE(Between(Size("", "pastfoo", 1), 0, 1000));
    // ApproximateOffsetOf() is not yet implemented in plain table format,
    // which is used by Size().
    // skip HashCuckooRep as it does not support snapshot
  } while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction |
                         kSkipPlainTable | kSkipHashCuckoo));
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, UnremovableSingleDelete) {
  // If we compact:
  //
  // Put(A, v1) Snapshot SingleDelete(A) Put(A, v2)
  //
  // We do not want to end up with:
  //
  // Put(A, v1) Snapshot Put(A, v2)
  //
  // Because a subsequent SingleDelete(A) would delete the Put(A, v2)
  // but not Put(A, v1), so Get(A) would return v1.
  anon::OptionsOverride options_override;
  options_override.skip_policy = kSkipNoSnapshot;
  do {
    Options options = CurrentOptions(options_override);
    options.disable_auto_compactions = true;
    CreateAndReopenWithCF({"pikachu"}, options);

    Put(1, "foo", "first");
    const Snapshot* snapshot = db_->GetSnapshot();
    SingleDelete(1, "foo");
    Put(1, "foo", "second");
    ASSERT_OK(Flush(1));

    ASSERT_EQ("first", Get(1, "foo", snapshot));
    ASSERT_EQ("second", Get(1, "foo"));

    dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
                           nullptr);
    ASSERT_EQ("[ second, SDEL, first ]", AllEntriesFor("foo", 1));

    SingleDelete(1, "foo");

    ASSERT_EQ("first", Get(1, "foo", snapshot));
    ASSERT_EQ("NOT_FOUND", Get(1, "foo"));

    dbfull()->CompactRange(CompactRangeOptions(), handles_[1], nullptr,
                           nullptr);

    ASSERT_EQ("first", Get(1, "foo", snapshot));
    ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
    db_->ReleaseSnapshot(snapshot);
    // Skip HashCuckooRep as it does not support single delete.  FIFO and
    // universal compaction do not apply to the test case.  Skip MergePut
    // because single delete does not get removed when it encounters a merge.
  } while (ChangeOptions(kSkipHashCuckoo | kSkipFIFOCompaction |
                         kSkipUniversalCompaction | kSkipMergePut));
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, DeletionMarkers1) {
  Options options = CurrentOptions();
  CreateAndReopenWithCF({"pikachu"}, options);
  Put(1, "foo", "v1");
  ASSERT_OK(Flush(1));
  const int last = 2;
  MoveFilesToLevel(last, 1);
  // foo => v1 is now in last level
  ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);

  // Place a table at level last-1 to prevent merging with preceding mutation
  Put(1, "a", "begin");
  Put(1, "z", "end");
  Flush(1);
  MoveFilesToLevel(last - 1, 1);
  ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
  ASSERT_EQ(NumTableFilesAtLevel(last - 1, 1), 1);

  Delete(1, "foo");
  Put(1, "foo", "v2");
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, DEL, v1 ]");
  ASSERT_OK(Flush(1));  // Moves to level last-2
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
  Slice z("z");
  dbfull()->TEST_CompactRange(last - 2, nullptr, &z, handles_[1]);
  // DEL eliminated, but v1 remains because we aren't compacting that level
  // (DEL can be eliminated because v2 hides v1).
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
  dbfull()->TEST_CompactRange(last - 1, nullptr, nullptr, handles_[1]);
  // Merging last-1 w/ last, so we are the base level for "foo", so
  // DEL is removed.  (as is v1).
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2 ]");
}

TEST_F(DBTest, DeletionMarkers2) {
  Options options = CurrentOptions();
  CreateAndReopenWithCF({"pikachu"}, options);
  Put(1, "foo", "v1");
  ASSERT_OK(Flush(1));
  const int last = 2;
  MoveFilesToLevel(last, 1);
  // foo => v1 is now in last level
  ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);

  // Place a table at level last-1 to prevent merging with preceding mutation
  Put(1, "a", "begin");
  Put(1, "z", "end");
  Flush(1);
  MoveFilesToLevel(last - 1, 1);
  ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
  ASSERT_EQ(NumTableFilesAtLevel(last - 1, 1), 1);

  Delete(1, "foo");
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
  ASSERT_OK(Flush(1));  // Moves to level last-2
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
  dbfull()->TEST_CompactRange(last - 2, nullptr, nullptr, handles_[1]);
  // DEL kept: "last" file overlaps
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
  dbfull()->TEST_CompactRange(last - 1, nullptr, nullptr, handles_[1]);
  // Merging last-1 w/ last, so we are the base level for "foo", so
  // DEL is removed.  (as is v1).
  ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
}

TEST_F(DBTest, OverlapInLevel0) {
  do {
    Options options = CurrentOptions();
    CreateAndReopenWithCF({"pikachu"}, options);

    // Fill levels 1 and 2 to disable the pushing of new memtables to levels >
    // 0.
    ASSERT_OK(Put(1, "100", "v100"));
    ASSERT_OK(Put(1, "999", "v999"));
    Flush(1);
    MoveFilesToLevel(2, 1);
    ASSERT_OK(Delete(1, "100"));
    ASSERT_OK(Delete(1, "999"));
    Flush(1);
    MoveFilesToLevel(1, 1);
    ASSERT_EQ("0,1,1", FilesPerLevel(1));

    // Make files spanning the following ranges in level-0:
    //  files[0]  200 .. 900
    //  files[1]  300 .. 500
    // Note that files are sorted by smallest key.
    ASSERT_OK(Put(1, "300", "v300"));
    ASSERT_OK(Put(1, "500", "v500"));
    Flush(1);
    ASSERT_OK(Put(1, "200", "v200"));
    ASSERT_OK(Put(1, "600", "v600"));
    ASSERT_OK(Put(1, "900", "v900"));
    Flush(1);
    ASSERT_EQ("2,1,1", FilesPerLevel(1));

    // Compact away the placeholder files we created initially
    dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]);
    dbfull()->TEST_CompactRange(2, nullptr, nullptr, handles_[1]);
    ASSERT_EQ("2", FilesPerLevel(1));

    // Do a memtable compaction.  Before bug-fix, the compaction would
    // not detect the overlap with level-0 files and would incorrectly place
    // the deletion in a deeper level.
    ASSERT_OK(Delete(1, "600"));
    Flush(1);
    ASSERT_EQ("3", FilesPerLevel(1));
    ASSERT_EQ("NOT_FOUND", Get(1, "600"));
  } while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction));
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, ComparatorCheck) {
  class NewComparator : public Comparator {
   public:
    virtual const char* Name() const override {
      return "rocksdb.NewComparator";
    }
    virtual int Compare(const Slice& a, const Slice& b) const override {
      return BytewiseComparator()->Compare(a, b);
    }
    virtual void FindShortestSeparator(std::string* s,
                                       const Slice& l) const override {
      BytewiseComparator()->FindShortestSeparator(s, l);
    }
    virtual void FindShortSuccessor(std::string* key) const override {
      BytewiseComparator()->FindShortSuccessor(key);
    }
  };
  Options new_options, options;
  NewComparator cmp;
  do {
    options = CurrentOptions();
    CreateAndReopenWithCF({"pikachu"}, options);
    new_options = CurrentOptions();
    new_options.comparator = &cmp;
    // only the non-default column family has non-matching comparator
    Status s = TryReopenWithColumnFamilies(
        {"default", "pikachu"}, std::vector<Options>({options, new_options}));
    ASSERT_TRUE(!s.ok());
    ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
        << s.ToString();
  } while (ChangeCompactOptions());
}

TEST_F(DBTest, CustomComparator) {
  class NumberComparator : public Comparator {
   public:
    virtual const char* Name() const override {
      return "test.NumberComparator";
    }
    virtual int Compare(const Slice& a, const Slice& b) const override {
      return ToNumber(a) - ToNumber(b);
    }
    virtual void FindShortestSeparator(std::string* s,
                                       const Slice& l) const override {
      ToNumber(*s);  // Check format
      ToNumber(l);   // Check format
    }
    virtual void FindShortSuccessor(std::string* key) const override {
      ToNumber(*key);  // Check format
    }

   private:
    static int ToNumber(const Slice& x) {
      // Check that there are no extra characters.
      EXPECT_TRUE(x.size() >= 2 && x[0] == '[' && x[x.size() - 1] == ']')
          << EscapeString(x);
      int val;
      char ignored;
      EXPECT_TRUE(sscanf(x.ToString().c_str(), "[%i]%c", &val, &ignored) == 1)
          << EscapeString(x);
      return val;
    }
  };
  Options new_options;
  NumberComparator cmp;
  do {
    new_options = CurrentOptions();
    new_options.create_if_missing = true;
    new_options.comparator = &cmp;
    new_options.write_buffer_size = 4096;  // Compact more often
    new_options.arena_block_size = 4096;
    new_options = CurrentOptions(new_options);
    DestroyAndReopen(new_options);
    CreateAndReopenWithCF({"pikachu"}, new_options);
    ASSERT_OK(Put(1, "[10]", "ten"));
    ASSERT_OK(Put(1, "[0x14]", "twenty"));
    for (int i = 0; i < 2; i++) {
      ASSERT_EQ("ten", Get(1, "[10]"));
      ASSERT_EQ("ten", Get(1, "[0xa]"));
      ASSERT_EQ("twenty", Get(1, "[20]"));
      ASSERT_EQ("twenty", Get(1, "[0x14]"));
      ASSERT_EQ("NOT_FOUND", Get(1, "[15]"));
      ASSERT_EQ("NOT_FOUND", Get(1, "[0xf]"));
      Compact(1, "[0]", "[9999]");
    }

    for (int run = 0; run < 2; run++) {
      for (int i = 0; i < 1000; i++) {
        char buf[100];
        snprintf(buf, sizeof(buf), "[%d]", i * 10);
        ASSERT_OK(Put(1, buf, buf));
      }
      Compact(1, "[0]", "[1000000]");
    }
  } while (ChangeCompactOptions());
}

TEST_F(DBTest, DBOpen_Options) {
  Options options = CurrentOptions();
  std::string dbname = test::TmpDir(env_) + "/db_options_test";
  ASSERT_OK(DestroyDB(dbname, options));

  // Does not exist, and create_if_missing == false: error
  DB* db = nullptr;
  options.create_if_missing = false;
  Status s = DB::Open(options, dbname, &db);
  ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != nullptr);
  ASSERT_TRUE(db == nullptr);

  // Does not exist, and create_if_missing == true: OK
  options.create_if_missing = true;
  s = DB::Open(options, dbname, &db);
  ASSERT_OK(s);
  ASSERT_TRUE(db != nullptr);

  delete db;
  db = nullptr;

  // Does exist, and error_if_exists == true: error
  options.create_if_missing = false;
  options.error_if_exists = true;
  s = DB::Open(options, dbname, &db);
  ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != nullptr);
  ASSERT_TRUE(db == nullptr);

  // Does exist, and error_if_exists == false: OK
  options.create_if_missing = true;
  options.error_if_exists = false;
  s = DB::Open(options, dbname, &db);
  ASSERT_OK(s);
  ASSERT_TRUE(db != nullptr);

  delete db;
  db = nullptr;
}

TEST_F(DBTest, DBOpen_Change_NumLevels) {
  Options options = CurrentOptions();
  options.create_if_missing = true;
  DestroyAndReopen(options);
  ASSERT_TRUE(db_ != nullptr);
  CreateAndReopenWithCF({"pikachu"}, options);

  ASSERT_OK(Put(1, "a", "123"));
  ASSERT_OK(Put(1, "b", "234"));
  Flush(1);
  MoveFilesToLevel(3, 1);
  Close();

  options.create_if_missing = false;
  options.num_levels = 2;
  Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
  ASSERT_TRUE(strstr(s.ToString().c_str(), "Invalid argument") != nullptr);
  ASSERT_TRUE(db_ == nullptr);
}

TEST_F(DBTest, DestroyDBMetaDatabase) {
  std::string dbname = test::TmpDir(env_) + "/db_meta";
  ASSERT_OK(env_->CreateDirIfMissing(dbname));
  std::string metadbname = MetaDatabaseName(dbname, 0);
  ASSERT_OK(env_->CreateDirIfMissing(metadbname));
  std::string metametadbname = MetaDatabaseName(metadbname, 0);
  ASSERT_OK(env_->CreateDirIfMissing(metametadbname));

  // Destroy previous versions if they exist. Using the long way.
  Options options = CurrentOptions();
  ASSERT_OK(DestroyDB(metametadbname, options));
  ASSERT_OK(DestroyDB(metadbname, options));
  ASSERT_OK(DestroyDB(dbname, options));

  // Setup databases
  DB* db = nullptr;
  ASSERT_OK(DB::Open(options, dbname, &db));
  delete db;
  db = nullptr;
  ASSERT_OK(DB::Open(options, metadbname, &db));
  delete db;
  db = nullptr;
  ASSERT_OK(DB::Open(options, metametadbname, &db));
  delete db;
  db = nullptr;

  // Delete databases
  ASSERT_OK(DestroyDB(dbname, options));

  // Check if deletion worked.
  options.create_if_missing = false;
  ASSERT_TRUE(!(DB::Open(options, dbname, &db)).ok());
  ASSERT_TRUE(!(DB::Open(options, metadbname, &db)).ok());
  ASSERT_TRUE(!(DB::Open(options, metametadbname, &db)).ok());
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, SnapshotFiles) {
  do {
    Options options = CurrentOptions();
    options.write_buffer_size = 100000000;  // Large write buffer
    CreateAndReopenWithCF({"pikachu"}, options);

    Random rnd(301);

    // Write 8MB (80 values, each 100K)
    ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
    std::vector<std::string> values;
    for (int i = 0; i < 80; i++) {
      values.push_back(RandomString(&rnd, 100000));
      ASSERT_OK(Put((i < 40), Key(i), values[i]));
    }

    // assert that nothing makes it to disk yet.
    ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);

    // get a file snapshot
    uint64_t manifest_number = 0;
    uint64_t manifest_size = 0;
    std::vector<std::string> files;
    dbfull()->DisableFileDeletions();
    dbfull()->GetLiveFiles(files, &manifest_size);

    // CURRENT, MANIFEST, OPTIONS, *.sst files (one for each CF)
    ASSERT_EQ(files.size(), 5U);

    uint64_t number = 0;
    FileType type;

    // copy these files to a new snapshot directory
    std::string snapdir = dbname_ + ".snapdir/";
    ASSERT_OK(env_->CreateDirIfMissing(snapdir));

    for (size_t i = 0; i < files.size(); i++) {
      // our clients require that GetLiveFiles returns
      // files with "/" as first character!
      ASSERT_EQ(files[i][0], '/');
      std::string src = dbname_ + files[i];
      std::string dest = snapdir + files[i];

      uint64_t size;
      ASSERT_OK(env_->GetFileSize(src, &size));

      // record the number and the size of the
      // latest manifest file
      if (ParseFileName(files[i].substr(1), &number, &type)) {
        if (type == kDescriptorFile) {
          if (number > manifest_number) {
            manifest_number = number;
            ASSERT_GE(size, manifest_size);
            size = manifest_size;  // copy only valid MANIFEST data
          }
        }
      }
      CopyFile(src, dest, size);
    }

    // release file snapshot
    dbfull()->DisableFileDeletions();
    // overwrite one key, this key should not appear in the snapshot
    std::vector<std::string> extras;
    for (unsigned int i = 0; i < 1; i++) {
      extras.push_back(RandomString(&rnd, 100000));
      ASSERT_OK(Put(0, Key(i), extras[i]));
    }

    // verify that data in the snapshot are correct
    std::vector<ColumnFamilyDescriptor> column_families;
    column_families.emplace_back("default", ColumnFamilyOptions());
    column_families.emplace_back("pikachu", ColumnFamilyOptions());
    std::vector<ColumnFamilyHandle*> cf_handles;
    DB* snapdb;
    DBOptions opts;
    opts.env = env_;
    opts.create_if_missing = false;
    Status stat =
        DB::Open(opts, snapdir, column_families, &cf_handles, &snapdb);
    ASSERT_OK(stat);

    ReadOptions roptions;
    std::string val;
    for (unsigned int i = 0; i < 80; i++) {
      stat = snapdb->Get(roptions, cf_handles[i < 40], Key(i), &val);
      ASSERT_EQ(values[i].compare(val), 0);
    }
    for (auto cfh : cf_handles) {
      delete cfh;
    }
    delete snapdb;

    // look at the new live files after we added an 'extra' key
    // and after we took the first snapshot.
    uint64_t new_manifest_number = 0;
    uint64_t new_manifest_size = 0;
    std::vector<std::string> newfiles;
    dbfull()->DisableFileDeletions();
    dbfull()->GetLiveFiles(newfiles, &new_manifest_size);

    // find the new manifest file. assert that this manifest file is
    // the same one as in the previous snapshot. But its size should be
    // larger because we added an extra key after taking the
    // previous shapshot.
    for (size_t i = 0; i < newfiles.size(); i++) {
      std::string src = dbname_ + "/" + newfiles[i];
      // record the lognumber and the size of the
      // latest manifest file
      if (ParseFileName(newfiles[i].substr(1), &number, &type)) {
        if (type == kDescriptorFile) {
          if (number > new_manifest_number) {
            uint64_t size;
            new_manifest_number = number;
            ASSERT_OK(env_->GetFileSize(src, &size));
            ASSERT_GE(size, new_manifest_size);
          }
        }
      }
    }
    ASSERT_EQ(manifest_number, new_manifest_number);
    ASSERT_GT(new_manifest_size, manifest_size);

    // release file snapshot
    dbfull()->DisableFileDeletions();
  } while (ChangeCompactOptions());
}
#endif

TEST_F(DBTest, PurgeInfoLogs) {
  Options options = CurrentOptions();
  options.keep_log_file_num = 5;
  options.create_if_missing = true;
  for (int mode = 0; mode <= 1; mode++) {
    if (mode == 1) {
      options.db_log_dir = dbname_ + "_logs";
      env_->CreateDirIfMissing(options.db_log_dir);
    } else {
      options.db_log_dir = "";
    }
    for (int i = 0; i < 8; i++) {
      Reopen(options);
    }

    std::vector<std::string> files;
    env_->GetChildren(options.db_log_dir.empty() ? dbname_ : options.db_log_dir,
                      &files);
    int info_log_count = 0;
    for (std::string file : files) {
      if (file.find("LOG") != std::string::npos) {
        info_log_count++;
      }
    }
    ASSERT_EQ(5, info_log_count);

    Destroy(options);
    // For mode (1), test DestroyDB() to delete all the logs under DB dir.
    // For mode (2), no info log file should have been put under DB dir.
    std::vector<std::string> db_files;
    env_->GetChildren(dbname_, &db_files);
    for (std::string file : db_files) {
      ASSERT_TRUE(file.find("LOG") == std::string::npos);
    }

    if (mode == 1) {
      // Cleaning up
      env_->GetChildren(options.db_log_dir, &files);
      for (std::string file : files) {
        env_->DeleteFile(options.db_log_dir + "/" + file);
      }
      env_->DeleteDir(options.db_log_dir);
    }
  }
}

#ifndef ROCKSDB_LITE
// Multi-threaded test:
namespace {

static const int kColumnFamilies = 10;
static const int kNumThreads = 10;
static const int kTestSeconds = 10;
static const int kNumKeys = 1000;

struct MTState {
  DBTest* test;
  std::atomic<bool> stop;
  std::atomic<int> counter[kNumThreads];
  std::atomic<bool> thread_done[kNumThreads];
};

struct MTThread {
  MTState* state;
  int id;
};

static void MTThreadBody(void* arg) {
  MTThread* t = reinterpret_cast<MTThread*>(arg);
  int id = t->id;
  DB* db = t->state->test->db_;
  int counter = 0;
  fprintf(stderr, "... starting thread %d\n", id);
  Random rnd(1000 + id);
  char valbuf[1500];
  while (t->state->stop.load(std::memory_order_acquire) == false) {
    t->state->counter[id].store(counter, std::memory_order_release);

    int key = rnd.Uniform(kNumKeys);
    char keybuf[20];
    snprintf(keybuf, sizeof(keybuf), "%016d", key);

    if (rnd.OneIn(2)) {
      // Write values of the form <key, my id, counter, cf, unique_id>.
      // into each of the CFs
      // We add some padding for force compactions.
      int unique_id = rnd.Uniform(1000000);

      // Half of the time directly use WriteBatch. Half of the time use
      // WriteBatchWithIndex.
      if (rnd.OneIn(2)) {
        WriteBatch batch;
        for (int cf = 0; cf < kColumnFamilies; ++cf) {
          snprintf(valbuf, sizeof(valbuf), "%d.%d.%d.%d.%-1000d", key, id,
                   static_cast<int>(counter), cf, unique_id);
          batch.Put(t->state->test->handles_[cf], Slice(keybuf), Slice(valbuf));
        }
        ASSERT_OK(db->Write(WriteOptions(), &batch));
      } else {
        WriteBatchWithIndex batch(db->GetOptions().comparator);
        for (int cf = 0; cf < kColumnFamilies; ++cf) {
          snprintf(valbuf, sizeof(valbuf), "%d.%d.%d.%d.%-1000d", key, id,
                   static_cast<int>(counter), cf, unique_id);
          batch.Put(t->state->test->handles_[cf], Slice(keybuf), Slice(valbuf));
        }
        ASSERT_OK(db->Write(WriteOptions(), batch.GetWriteBatch()));
      }
    } else {
      // Read a value and verify that it matches the pattern written above
      // and that writes to all column families were atomic (unique_id is the
      // same)
      std::vector<Slice> keys(kColumnFamilies, Slice(keybuf));
      std::vector<std::string> values;
      std::vector<Status> statuses =
          db->MultiGet(ReadOptions(), t->state->test->handles_, keys, &values);
      Status s = statuses[0];
      // all statuses have to be the same
      for (size_t i = 1; i < statuses.size(); ++i) {
        // they are either both ok or both not-found
        ASSERT_TRUE((s.ok() && statuses[i].ok()) ||
                    (s.IsNotFound() && statuses[i].IsNotFound()));
      }
      if (s.IsNotFound()) {
        // Key has not yet been written
      } else {
        // Check that the writer thread counter is >= the counter in the value
        ASSERT_OK(s);
        int unique_id = -1;
        for (int i = 0; i < kColumnFamilies; ++i) {
          int k, w, c, cf, u;
          ASSERT_EQ(5, sscanf(values[i].c_str(), "%d.%d.%d.%d.%d", &k, &w, &c,
                              &cf, &u))
              << values[i];
          ASSERT_EQ(k, key);
          ASSERT_GE(w, 0);
          ASSERT_LT(w, kNumThreads);
          ASSERT_LE(c, t->state->counter[w].load(std::memory_order_acquire));
          ASSERT_EQ(cf, i);
          if (i == 0) {
            unique_id = u;
          } else {
            // this checks that updates across column families happened
            // atomically -- all unique ids are the same
            ASSERT_EQ(u, unique_id);
          }
        }
      }
    }
    counter++;
  }
  t->state->thread_done[id].store(true, std::memory_order_release);
  fprintf(stderr, "... stopping thread %d after %d ops\n", id, int(counter));
}

}  // namespace

class MultiThreadedDBTest : public DBTest,
                            public ::testing::WithParamInterface<int> {
 public:
  virtual void SetUp() override { option_config_ = GetParam(); }

  static std::vector<int> GenerateOptionConfigs() {
    std::vector<int> optionConfigs;
    for (int optionConfig = kDefault; optionConfig < kEnd; ++optionConfig) {
      // skip as HashCuckooRep does not support snapshot
      if (optionConfig != kHashCuckoo) {
        optionConfigs.push_back(optionConfig);
      }
    }
    return optionConfigs;
  }
};

TEST_P(MultiThreadedDBTest, MultiThreaded) {
  anon::OptionsOverride options_override;
  options_override.skip_policy = kSkipNoSnapshot;
  Options options = CurrentOptions(options_override);
  std::vector<std::string> cfs;
  for (int i = 1; i < kColumnFamilies; ++i) {
    cfs.push_back(ToString(i));
  }
  Reopen(options);
  CreateAndReopenWithCF(cfs, options);
  // Initialize state
  MTState mt;
  mt.test = this;
  mt.stop.store(false, std::memory_order_release);
  for (int id = 0; id < kNumThreads; id++) {
    mt.counter[id].store(0, std::memory_order_release);
    mt.thread_done[id].store(false, std::memory_order_release);
  }

  // Start threads
  MTThread thread[kNumThreads];
  for (int id = 0; id < kNumThreads; id++) {
    thread[id].state = &mt;
    thread[id].id = id;
    env_->StartThread(MTThreadBody, &thread[id]);
  }

  // Let them run for a while
  env_->SleepForMicroseconds(kTestSeconds * 1000000);

  // Stop the threads and wait for them to finish
  mt.stop.store(true, std::memory_order_release);
  for (int id = 0; id < kNumThreads; id++) {
    while (mt.thread_done[id].load(std::memory_order_acquire) == false) {
      env_->SleepForMicroseconds(100000);
    }
  }
}

INSTANTIATE_TEST_CASE_P(
    MultiThreaded, MultiThreadedDBTest,
    ::testing::ValuesIn(MultiThreadedDBTest::GenerateOptionConfigs()));
#endif  // ROCKSDB_LITE

// Group commit test:
namespace {

static const int kGCNumThreads = 4;
static const int kGCNumKeys = 1000;

struct GCThread {
  DB* db;
  int id;
  std::atomic<bool> done;
};

static void GCThreadBody(void* arg) {
  GCThread* t = reinterpret_cast<GCThread*>(arg);
  int id = t->id;
  DB* db = t->db;
  WriteOptions wo;

  for (int i = 0; i < kGCNumKeys; ++i) {
    std::string kv(ToString(i + id * kGCNumKeys));
    ASSERT_OK(db->Put(wo, kv, kv));
  }
  t->done = true;
}

}  // namespace

TEST_F(DBTest, GroupCommitTest) {
  do {
    Options options = CurrentOptions();
    options.env = env_;
    options.statistics = rocksdb::CreateDBStatistics();
    Reopen(options);

    rocksdb::SyncPoint::GetInstance()->LoadDependency(
        {{"WriteThread::JoinBatchGroup:BeganWaiting",
          "DBImpl::WriteImpl:BeforeLeaderEnters"}});
    rocksdb::SyncPoint::GetInstance()->EnableProcessing();

    // Start threads
    GCThread thread[kGCNumThreads];
    for (int id = 0; id < kGCNumThreads; id++) {
      thread[id].id = id;
      thread[id].db = db_;
      thread[id].done = false;
      env_->StartThread(GCThreadBody, &thread[id]);
    }
    env_->WaitForJoin();

    ASSERT_GT(TestGetTickerCount(options, WRITE_DONE_BY_OTHER), 0);

    std::vector<std::string> expected_db;
    for (int i = 0; i < kGCNumThreads * kGCNumKeys; ++i) {
      expected_db.push_back(ToString(i));
    }
    std::sort(expected_db.begin(), expected_db.end());

    Iterator* itr = db_->NewIterator(ReadOptions());
    itr->SeekToFirst();
    for (auto x : expected_db) {
      ASSERT_TRUE(itr->Valid());
      ASSERT_EQ(itr->key().ToString(), x);
      ASSERT_EQ(itr->value().ToString(), x);
      itr->Next();
    }
    ASSERT_TRUE(!itr->Valid());
    delete itr;

    HistogramData hist_data;
    options.statistics->histogramData(DB_WRITE, &hist_data);
    ASSERT_GT(hist_data.average, 0.0);
  } while (ChangeOptions(kSkipNoSeekToLast));
}

namespace {
typedef std::map<std::string, std::string> KVMap;
}

class ModelDB : public DB {
 public:
  class ModelSnapshot : public Snapshot {
   public:
    KVMap map_;

    virtual SequenceNumber GetSequenceNumber() const override {
      // no need to call this
      assert(false);
      return 0;
    }
  };

  explicit ModelDB(const Options& options) : options_(options) {}
  using DB::Put;
  virtual Status Put(const WriteOptions& o, ColumnFamilyHandle* cf,
                     const Slice& k, const Slice& v) override {
    WriteBatch batch;
    batch.Put(cf, k, v);
    return Write(o, &batch);
  }
  using DB::Close;
  virtual Status Close() override { return Status::OK(); }
  using DB::Delete;
  virtual Status Delete(const WriteOptions& o, ColumnFamilyHandle* cf,
                        const Slice& key) override {
    WriteBatch batch;
    batch.Delete(cf, key);
    return Write(o, &batch);
  }
  using DB::SingleDelete;
  virtual Status SingleDelete(const WriteOptions& o, ColumnFamilyHandle* cf,
                              const Slice& key) override {
    WriteBatch batch;
    batch.SingleDelete(cf, key);
    return Write(o, &batch);
  }
  using DB::Merge;
  virtual Status Merge(const WriteOptions& o, ColumnFamilyHandle* cf,
                       const Slice& k, const Slice& v) override {
    WriteBatch batch;
    batch.Merge(cf, k, v);
    return Write(o, &batch);
  }
  using DB::Get;
  virtual Status Get(const ReadOptions& /*options*/, ColumnFamilyHandle* /*cf*/,
                     const Slice& key, PinnableSlice* /*value*/) override {
    return Status::NotSupported(key);
  }

  using DB::MultiGet;
  virtual std::vector<Status> MultiGet(
      const ReadOptions& /*options*/,
      const std::vector<ColumnFamilyHandle*>& /*column_family*/,
      const std::vector<Slice>& keys,
      std::vector<std::string>* /*values*/) override {
    std::vector<Status> s(keys.size(),
                          Status::NotSupported("Not implemented."));
    return s;
  }

#ifndef ROCKSDB_LITE
  using DB::IngestExternalFile;
  virtual Status IngestExternalFile(
      ColumnFamilyHandle* /*column_family*/,
      const std::vector<std::string>& /*external_files*/,
      const IngestExternalFileOptions& /*options*/) override {
    return Status::NotSupported("Not implemented.");
  }

  virtual Status VerifyChecksum() override {
    return Status::NotSupported("Not implemented.");
  }

  using DB::GetPropertiesOfAllTables;
  virtual Status GetPropertiesOfAllTables(
      ColumnFamilyHandle* /*column_family*/,
      TablePropertiesCollection* /*props*/) override {
    return Status();
  }

  virtual Status GetPropertiesOfTablesInRange(
      ColumnFamilyHandle* /*column_family*/, const Range* /*range*/,
      std::size_t /*n*/, TablePropertiesCollection* /*props*/) override {
    return Status();
  }
#endif  // ROCKSDB_LITE

  using DB::KeyMayExist;
  virtual bool KeyMayExist(const ReadOptions& /*options*/,
                           ColumnFamilyHandle* /*column_family*/,
                           const Slice& /*key*/, std::string* /*value*/,
                           bool* value_found = nullptr) override {
    if (value_found != nullptr) {
      *value_found = false;
    }
    return true;  // Not Supported directly
  }
  using DB::NewIterator;
  virtual Iterator* NewIterator(
      const ReadOptions& options,
      ColumnFamilyHandle* /*column_family*/) override {
    if (options.snapshot == nullptr) {
      KVMap* saved = new KVMap;
      *saved = map_;
      return new ModelIter(saved, true);
    } else {
      const KVMap* snapshot_state =
          &(reinterpret_cast<const ModelSnapshot*>(options.snapshot)->map_);
      return new ModelIter(snapshot_state, false);
    }
  }
  virtual Status NewIterators(
      const ReadOptions& /*options*/,
      const std::vector<ColumnFamilyHandle*>& /*column_family*/,
      std::vector<Iterator*>* /*iterators*/) override {
    return Status::NotSupported("Not supported yet");
  }
  virtual const Snapshot* GetSnapshot() override {
    ModelSnapshot* snapshot = new ModelSnapshot;
    snapshot->map_ = map_;
    return snapshot;
  }

  virtual void ReleaseSnapshot(const Snapshot* snapshot) override {
    delete reinterpret_cast<const ModelSnapshot*>(snapshot);
  }

  virtual Status Write(const WriteOptions& /*options*/,
                       WriteBatch* batch) override {
    class Handler : public WriteBatch::Handler {
     public:
      KVMap* map_;
      virtual void Put(const Slice& key, const Slice& value) override {
        (*map_)[key.ToString()] = value.ToString();
      }
      virtual void Merge(const Slice& /*key*/,
                         const Slice& /*value*/) override {
        // ignore merge for now
        // (*map_)[key.ToString()] = value.ToString();
      }
      virtual void Delete(const Slice& key) override {
        map_->erase(key.ToString());
      }
    };
    Handler handler;
    handler.map_ = &map_;
    return batch->Iterate(&handler);
  }

  using DB::GetProperty;
  virtual bool GetProperty(ColumnFamilyHandle* /*column_family*/,
                           const Slice& /*property*/,
                           std::string* /*value*/) override {
    return false;
  }
  using DB::GetIntProperty;
  virtual bool GetIntProperty(ColumnFamilyHandle* /*column_family*/,
                              const Slice& /*property*/,
                              uint64_t* /*value*/) override {
    return false;
  }
  using DB::GetMapProperty;
  virtual bool GetMapProperty(
      ColumnFamilyHandle* /*column_family*/, const Slice& /*property*/,
      std::map<std::string, std::string>* /*value*/) override {
    return false;
  }
  using DB::GetAggregatedIntProperty;
  virtual bool GetAggregatedIntProperty(const Slice& /*property*/,
                                        uint64_t* /*value*/) override {
    return false;
  }
  using DB::GetApproximateSizes;
  virtual void GetApproximateSizes(ColumnFamilyHandle* /*column_family*/,
                                   const Range* /*range*/, int n,
                                   uint64_t* sizes,
                                   uint8_t /*include_flags*/
                                   = INCLUDE_FILES) override {
    for (int i = 0; i < n; i++) {
      sizes[i] = 0;
    }
  }
  using DB::GetApproximateMemTableStats;
  virtual void GetApproximateMemTableStats(
      ColumnFamilyHandle* /*column_family*/, const Range& /*range*/,
      uint64_t* const count, uint64_t* const size) override {
    *count = 0;
    *size = 0;
  }
  using DB::CompactRange;
  virtual Status CompactRange(const CompactRangeOptions& /*options*/,
                              ColumnFamilyHandle* /*column_family*/,
                              const Slice* /*start*/,
                              const Slice* /*end*/) override {
    return Status::NotSupported("Not supported operation.");
  }

  virtual Status SetDBOptions(
      const std::unordered_map<std::string, std::string>& /*new_options*/)
      override {
    return Status::NotSupported("Not supported operation.");
  }

  using DB::CompactFiles;
  virtual Status CompactFiles(
      const CompactionOptions& /*compact_options*/,
      ColumnFamilyHandle* /*column_family*/,
      const std::vector<std::string>& /*input_file_names*/,
      const int /*output_level*/, const int /*output_path_id*/ = -1,
      std::vector<std::string>* const /*output_file_names*/ = nullptr
      ) override {
    return Status::NotSupported("Not supported operation.");
  }

  Status PauseBackgroundWork() override {
    return Status::NotSupported("Not supported operation.");
  }

  Status ContinueBackgroundWork() override {
    return Status::NotSupported("Not supported operation.");
  }

  Status EnableAutoCompaction(
      const std::vector<ColumnFamilyHandle*>& /*column_family_handles*/)
      override {
    return Status::NotSupported("Not supported operation.");
  }

  using DB::NumberLevels;
  virtual int NumberLevels(ColumnFamilyHandle* /*column_family*/) override {
    return 1;
  }

  using DB::MaxMemCompactionLevel;
  virtual int MaxMemCompactionLevel(
      ColumnFamilyHandle* /*column_family*/) override {
    return 1;
  }

  using DB::Level0StopWriteTrigger;
  virtual int Level0StopWriteTrigger(
      ColumnFamilyHandle* /*column_family*/) override {
    return -1;
  }

  virtual const std::string& GetName() const override { return name_; }

  virtual Env* GetEnv() const override { return nullptr; }

  using DB::GetOptions;
  virtual Options GetOptions(
      ColumnFamilyHandle* /*column_family*/) const override {
    return options_;
  }

  using DB::GetDBOptions;
  virtual DBOptions GetDBOptions() const override { return options_; }

  using DB::Flush;
  virtual Status Flush(const rocksdb::FlushOptions& /*options*/,
                       ColumnFamilyHandle* /*column_family*/) override {
    Status ret;
    return ret;
  }

  virtual Status SyncWAL() override { return Status::OK(); }

#ifndef ROCKSDB_LITE
  virtual Status DisableFileDeletions() override { return Status::OK(); }

  virtual Status EnableFileDeletions(bool /*force*/) override {
    return Status::OK();
  }
  virtual Status GetLiveFiles(std::vector<std::string>&, uint64_t* /*size*/,
                              bool /*flush_memtable*/ = true) override {
    return Status::OK();
  }

  virtual Status GetSortedWalFiles(VectorLogPtr& /*files*/) override {
    return Status::OK();
  }

  virtual Status DeleteFile(std::string /*name*/) override {
    return Status::OK();
  }

  virtual Status GetUpdatesSince(
      rocksdb::SequenceNumber, unique_ptr<rocksdb::TransactionLogIterator>*,
      const TransactionLogIterator::ReadOptions& /*read_options*/ =
          TransactionLogIterator::ReadOptions()) override {
    return Status::NotSupported("Not supported in Model DB");
  }

  virtual void GetColumnFamilyMetaData(
      ColumnFamilyHandle* /*column_family*/,
      ColumnFamilyMetaData* /*metadata*/) override {}
#endif  // ROCKSDB_LITE

  virtual Status GetDbIdentity(std::string& /*identity*/) const override {
    return Status::OK();
  }

  virtual SequenceNumber GetLatestSequenceNumber() const override { return 0; }

  virtual bool SetPreserveDeletesSequenceNumber(
      SequenceNumber /*seqnum*/) override {
    return true;
  }

  virtual ColumnFamilyHandle* DefaultColumnFamily() const override {
    return nullptr;
  }

 private:
  class ModelIter : public Iterator {
   public:
    ModelIter(const KVMap* map, bool owned)
        : map_(map), owned_(owned), iter_(map_->end()) {}
    ~ModelIter() {
      if (owned_) delete map_;
    }
    virtual bool Valid() const override { return iter_ != map_->end(); }
    virtual void SeekToFirst() override { iter_ = map_->begin(); }
    virtual void SeekToLast() override {
      if (map_->empty()) {
        iter_ = map_->end();
      } else {
        iter_ = map_->find(map_->rbegin()->first);
      }
    }
    virtual void Seek(const Slice& k) override {
      iter_ = map_->lower_bound(k.ToString());
    }
    virtual void SeekForPrev(const Slice& k) override {
      iter_ = map_->upper_bound(k.ToString());
      Prev();
    }
    virtual void Next() override { ++iter_; }
    virtual void Prev() override {
      if (iter_ == map_->begin()) {
        iter_ = map_->end();
        return;
      }
      --iter_;
    }

    virtual Slice key() const override { return iter_->first; }
    virtual Slice value() const override { return iter_->second; }
    virtual Status status() const override { return Status::OK(); }

   private:
    const KVMap* const map_;
    const bool owned_;  // Do we own map_
    KVMap::const_iterator iter_;
  };
  const Options options_;
  KVMap map_;
  std::string name_ = "";
};

#ifndef ROCKSDB_VALGRIND_RUN
static std::string RandomKey(Random* rnd, int minimum = 0) {
  int len;
  do {
    len = (rnd->OneIn(3)
               ? 1  // Short sometimes to encourage collisions
               : (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
  } while (len < minimum);
  return test::RandomKey(rnd, len);
}

static bool CompareIterators(int step, DB* model, DB* db,
                             const Snapshot* model_snap,
                             const Snapshot* db_snap) {
  ReadOptions options;
  options.snapshot = model_snap;
  Iterator* miter = model->NewIterator(options);
  options.snapshot = db_snap;
  Iterator* dbiter = db->NewIterator(options);
  bool ok = true;
  int count = 0;
  for (miter->SeekToFirst(), dbiter->SeekToFirst();
       ok && miter->Valid() && dbiter->Valid(); miter->Next(), dbiter->Next()) {
    count++;
    if (miter->key().compare(dbiter->key()) != 0) {
      fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n", step,
              EscapeString(miter->key()).c_str(),
              EscapeString(dbiter->key()).c_str());
      ok = false;
      break;
    }

    if (miter->value().compare(dbiter->value()) != 0) {
      fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
              step, EscapeString(miter->key()).c_str(),
              EscapeString(miter->value()).c_str(),
              EscapeString(miter->value()).c_str());
      ok = false;
    }
  }

  if (ok) {
    if (miter->Valid() != dbiter->Valid()) {
      fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
              step, miter->Valid(), dbiter->Valid());
      ok = false;
    }
  }
  delete miter;
  delete dbiter;
  return ok;
}

class DBTestRandomized : public DBTest,
                         public ::testing::WithParamInterface<int> {
 public:
  virtual void SetUp() override { option_config_ = GetParam(); }

  static std::vector<int> GenerateOptionConfigs() {
    std::vector<int> option_configs;
    // skip cuckoo hash as it does not support snapshot.
    for (int option_config = kDefault; option_config < kEnd; ++option_config) {
      if (!ShouldSkipOptions(option_config, kSkipDeletesFilterFirst |
                                                kSkipNoSeekToLast |
                                                kSkipHashCuckoo)) {
        option_configs.push_back(option_config);
      }
    }
    option_configs.push_back(kBlockBasedTableWithIndexRestartInterval);
    return option_configs;
  }
};

INSTANTIATE_TEST_CASE_P(
    DBTestRandomized, DBTestRandomized,
    ::testing::ValuesIn(DBTestRandomized::GenerateOptionConfigs()));

TEST_P(DBTestRandomized, Randomized) {
  anon::OptionsOverride options_override;
  options_override.skip_policy = kSkipNoSnapshot;
  Options options = CurrentOptions(options_override);
  DestroyAndReopen(options);

  Random rnd(test::RandomSeed() + GetParam());
  ModelDB model(options);
  const int N = 10000;
  const Snapshot* model_snap = nullptr;
  const Snapshot* db_snap = nullptr;
  std::string k, v;
  for (int step = 0; step < N; step++) {
    // TODO(sanjay): Test Get() works
    int p = rnd.Uniform(100);
    int minimum = 0;
    if (option_config_ == kHashSkipList || option_config_ == kHashLinkList ||
        option_config_ == kHashCuckoo ||
        option_config_ == kPlainTableFirstBytePrefix ||
        option_config_ == kBlockBasedTableWithWholeKeyHashIndex ||
        option_config_ == kBlockBasedTableWithPrefixHashIndex) {
      minimum = 1;
    }
    if (p < 45) {  // Put
      k = RandomKey(&rnd, minimum);
      v = RandomString(&rnd,
                       rnd.OneIn(20) ? 100 + rnd.Uniform(100) : rnd.Uniform(8));
      ASSERT_OK(model.Put(WriteOptions(), k, v));
      ASSERT_OK(db_->Put(WriteOptions(), k, v));
    } else if (p < 90) {  // Delete
      k = RandomKey(&rnd, minimum);
      ASSERT_OK(model.Delete(WriteOptions(), k));
      ASSERT_OK(db_->Delete(WriteOptions(), k));
    } else {  // Multi-element batch
      WriteBatch b;
      const int num = rnd.Uniform(8);
      for (int i = 0; i < num; i++) {
        if (i == 0 || !rnd.OneIn(10)) {
          k = RandomKey(&rnd, minimum);
        } else {
          // Periodically re-use the same key from the previous iter, so
          // we have multiple entries in the write batch for the same key
        }
        if (rnd.OneIn(2)) {
          v = RandomString(&rnd, rnd.Uniform(10));
          b.Put(k, v);
        } else {
          b.Delete(k);
        }
      }
      ASSERT_OK(model.Write(WriteOptions(), &b));
      ASSERT_OK(db_->Write(WriteOptions(), &b));
    }

    if ((step % 100) == 0) {
      // For DB instances that use the hash index + block-based table, the
      // iterator will be invalid right when seeking a non-existent key, right
      // than return a key that is close to it.
      if (option_config_ != kBlockBasedTableWithWholeKeyHashIndex &&
          option_config_ != kBlockBasedTableWithPrefixHashIndex) {
        ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
        ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
      }

      // Save a snapshot from each DB this time that we'll use next
      // time we compare things, to make sure the current state is
      // preserved with the snapshot
      if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
      if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);

      Reopen(options);
      ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));

      model_snap = model.GetSnapshot();
      db_snap = db_->GetSnapshot();
    }
  }
  if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
  if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
}
#endif  // ROCKSDB_VALGRIND_RUN

TEST_F(DBTest, BlockBasedTablePrefixIndexTest) {
  // create a DB with block prefix index
  BlockBasedTableOptions table_options;
  Options options = CurrentOptions();
  table_options.index_type = BlockBasedTableOptions::kHashSearch;
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  options.prefix_extractor.reset(NewFixedPrefixTransform(1));

  Reopen(options);
  ASSERT_OK(Put("k1", "v1"));
  Flush();
  ASSERT_OK(Put("k2", "v2"));

  // Reopen it without prefix extractor, make sure everything still works.
  // RocksDB should just fall back to the binary index.
  table_options.index_type = BlockBasedTableOptions::kBinarySearch;
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  options.prefix_extractor.reset();

  Reopen(options);
  ASSERT_EQ("v1", Get("k1"));
  ASSERT_EQ("v2", Get("k2"));
}

TEST_F(DBTest, ChecksumTest) {
  BlockBasedTableOptions table_options;
  Options options = CurrentOptions();

  table_options.checksum = kCRC32c;
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  Reopen(options);
  ASSERT_OK(Put("a", "b"));
  ASSERT_OK(Put("c", "d"));
  ASSERT_OK(Flush());  // table with crc checksum

  table_options.checksum = kxxHash;
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  Reopen(options);
  ASSERT_OK(Put("e", "f"));
  ASSERT_OK(Put("g", "h"));
  ASSERT_OK(Flush());  // table with xxhash checksum

  table_options.checksum = kCRC32c;
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  Reopen(options);
  ASSERT_EQ("b", Get("a"));
  ASSERT_EQ("d", Get("c"));
  ASSERT_EQ("f", Get("e"));
  ASSERT_EQ("h", Get("g"));

  table_options.checksum = kCRC32c;
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  Reopen(options);
  ASSERT_EQ("b", Get("a"));
  ASSERT_EQ("d", Get("c"));
  ASSERT_EQ("f", Get("e"));
  ASSERT_EQ("h", Get("g"));
}

#ifndef ROCKSDB_LITE
TEST_P(DBTestWithParam, FIFOCompactionTest) {
  for (int iter = 0; iter < 2; ++iter) {
    // first iteration -- auto compaction
    // second iteration -- manual compaction
    Options options;
    options.compaction_style = kCompactionStyleFIFO;
    options.write_buffer_size = 100 << 10;  // 100KB
    options.arena_block_size = 4096;
    options.compaction_options_fifo.max_table_files_size = 500 << 10;  // 500KB
    options.compression = kNoCompression;
    options.create_if_missing = true;
    options.max_subcompactions = max_subcompactions_;
    if (iter == 1) {
      options.disable_auto_compactions = true;
    }
    options = CurrentOptions(options);
    DestroyAndReopen(options);

    Random rnd(301);
    for (int i = 0; i < 6; ++i) {
      for (int j = 0; j < 110; ++j) {
        ASSERT_OK(Put(ToString(i * 100 + j), RandomString(&rnd, 980)));
      }
      // flush should happen here
      ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
    }
    if (iter == 0) {
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    } else {
      CompactRangeOptions cro;
      cro.exclusive_manual_compaction = exclusive_manual_compaction_;
      ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
    }
    // only 5 files should survive
    ASSERT_EQ(NumTableFilesAtLevel(0), 5);
    for (int i = 0; i < 50; ++i) {
      // these keys should be deleted in previous compaction
      ASSERT_EQ("NOT_FOUND", Get(ToString(i)));
    }
  }
}

TEST_F(DBTest, FIFOCompactionTestWithCompaction) {
  Options options;
  options.compaction_style = kCompactionStyleFIFO;
  options.write_buffer_size = 20 << 10;  // 20K
  options.arena_block_size = 4096;
  options.compaction_options_fifo.max_table_files_size = 1500 << 10;  // 1MB
  options.compaction_options_fifo.allow_compaction = true;
  options.level0_file_num_compaction_trigger = 6;
  options.compression = kNoCompression;
  options.create_if_missing = true;
  options = CurrentOptions(options);
  DestroyAndReopen(options);

  Random rnd(301);
  for (int i = 0; i < 60; i++) {
    // Generate and flush a file about 20KB.
    for (int j = 0; j < 20; j++) {
      ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
    }
    Flush();
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
  }
  // It should be compacted to 10 files.
  ASSERT_EQ(NumTableFilesAtLevel(0), 10);

  for (int i = 0; i < 60; i++) {
    // Generate and flush a file about 20KB.
    for (int j = 0; j < 20; j++) {
      ASSERT_OK(Put(ToString(i * 20 + j + 2000), RandomString(&rnd, 980)));
    }
    Flush();
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
  }

  // It should be compacted to no more than 20 files.
  ASSERT_GT(NumTableFilesAtLevel(0), 10);
  ASSERT_LT(NumTableFilesAtLevel(0), 18);
  // Size limit is still guaranteed.
  ASSERT_LE(SizeAtLevel(0),
            options.compaction_options_fifo.max_table_files_size);
}

TEST_F(DBTest, FIFOCompactionStyleWithCompactionAndDelete) {
  Options options;
  options.compaction_style = kCompactionStyleFIFO;
  options.write_buffer_size = 20 << 10;  // 20K
  options.arena_block_size = 4096;
  options.compaction_options_fifo.max_table_files_size = 1500 << 10;  // 1MB
  options.compaction_options_fifo.allow_compaction = true;
  options.level0_file_num_compaction_trigger = 3;
  options.compression = kNoCompression;
  options.create_if_missing = true;
  options = CurrentOptions(options);
  DestroyAndReopen(options);

  Random rnd(301);
  for (int i = 0; i < 3; i++) {
    // Each file contains a different key which will be dropped later.
    ASSERT_OK(Put("a" + ToString(i), RandomString(&rnd, 500)));
    ASSERT_OK(Put("key" + ToString(i), ""));
    ASSERT_OK(Put("z" + ToString(i), RandomString(&rnd, 500)));
    Flush();
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
  }
  ASSERT_EQ(NumTableFilesAtLevel(0), 1);
  for (int i = 0; i < 3; i++) {
    ASSERT_EQ("", Get("key" + ToString(i)));
  }
  for (int i = 0; i < 3; i++) {
    // Each file contains a different key which will be dropped later.
    ASSERT_OK(Put("a" + ToString(i), RandomString(&rnd, 500)));
    ASSERT_OK(Delete("key" + ToString(i)));
    ASSERT_OK(Put("z" + ToString(i), RandomString(&rnd, 500)));
    Flush();
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
  }
  ASSERT_EQ(NumTableFilesAtLevel(0), 2);
  for (int i = 0; i < 3; i++) {
    ASSERT_EQ("NOT_FOUND", Get("key" + ToString(i)));
  }
}

// Check that FIFO-with-TTL is not supported with max_open_files != -1.
TEST_F(DBTest, FIFOCompactionWithTTLAndMaxOpenFilesTest) {
  Options options;
  options.compaction_style = kCompactionStyleFIFO;
  options.create_if_missing = true;
  options.compaction_options_fifo.ttl = 600;  // seconds

  // Check that it is not supported with max_open_files != -1.
  options.max_open_files = 100;
  options = CurrentOptions(options);
  ASSERT_TRUE(TryReopen(options).IsNotSupported());

  options.max_open_files = -1;
  ASSERT_OK(TryReopen(options));
}

// Check that FIFO-with-TTL is supported only with BlockBasedTableFactory.
TEST_F(DBTest, FIFOCompactionWithTTLAndVariousTableFormatsTest) {
  Options options;
  options.compaction_style = kCompactionStyleFIFO;
  options.create_if_missing = true;
  options.compaction_options_fifo.ttl = 600;  // seconds

  options = CurrentOptions(options);
  options.table_factory.reset(NewBlockBasedTableFactory());
  ASSERT_OK(TryReopen(options));

  Destroy(options);
  options.table_factory.reset(NewPlainTableFactory());
  ASSERT_TRUE(TryReopen(options).IsNotSupported());

  Destroy(options);
  options.table_factory.reset(NewCuckooTableFactory());
  ASSERT_TRUE(TryReopen(options).IsNotSupported());

  Destroy(options);
  options.table_factory.reset(NewAdaptiveTableFactory());
  ASSERT_TRUE(TryReopen(options).IsNotSupported());
}

TEST_F(DBTest, FIFOCompactionWithTTLTest) {
  Options options;
  options.compaction_style = kCompactionStyleFIFO;
  options.write_buffer_size = 10 << 10;  // 10KB
  options.arena_block_size = 4096;
  options.compression = kNoCompression;
  options.create_if_missing = true;
  env_->time_elapse_only_sleep_ = false;
  options.env = env_;

  // Test to make sure that all files with expired ttl are deleted on next
  // manual compaction.
  {
    env_->addon_time_.store(0);
    options.compaction_options_fifo.max_table_files_size = 150 << 10;  // 150KB
    options.compaction_options_fifo.allow_compaction = false;
    options.compaction_options_fifo.ttl = 1 * 60 * 60 ;  // 1 hour
    options = CurrentOptions(options);
    DestroyAndReopen(options);

    Random rnd(301);
    for (int i = 0; i < 10; i++) {
      // Generate and flush a file about 10KB.
      for (int j = 0; j < 10; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    ASSERT_EQ(NumTableFilesAtLevel(0), 10);

    // Sleep for 2 hours -- which is much greater than TTL.
    // Note: Couldn't use SleepForMicroseconds because it takes an int instead
    // of uint64_t. Hence used addon_time_ directly.
    // env_->SleepForMicroseconds(2 * 60 * 60 * 1000 * 1000);
    env_->addon_time_.fetch_add(2 * 60 * 60);

    // Since no flushes and compactions have run, the db should still be in
    // the same state even after considerable time has passed.
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
    ASSERT_EQ(NumTableFilesAtLevel(0), 10);

    dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
    ASSERT_EQ(NumTableFilesAtLevel(0), 0);
  }

  // Test to make sure that all files with expired ttl are deleted on next
  // automatic compaction.
  {
    options.compaction_options_fifo.max_table_files_size = 150 << 10;  // 150KB
    options.compaction_options_fifo.allow_compaction = false;
    options.compaction_options_fifo.ttl = 1 * 60 * 60;  // 1 hour
    options = CurrentOptions(options);
    DestroyAndReopen(options);

    Random rnd(301);
    for (int i = 0; i < 10; i++) {
      // Generate and flush a file about 10KB.
      for (int j = 0; j < 10; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    ASSERT_EQ(NumTableFilesAtLevel(0), 10);

    // Sleep for 2 hours -- which is much greater than TTL.
    env_->addon_time_.fetch_add(2 * 60 * 60);
    // Just to make sure that we are in the same state even after sleeping.
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
    ASSERT_EQ(NumTableFilesAtLevel(0), 10);

    // Create 1 more file to trigger TTL compaction. The old files are dropped.
    for (int i = 0; i < 1; i++) {
      for (int j = 0; j < 10; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
    }

    ASSERT_OK(dbfull()->TEST_WaitForCompact());
    // Only the new 10 files remain.
    ASSERT_EQ(NumTableFilesAtLevel(0), 1);
    ASSERT_LE(SizeAtLevel(0),
              options.compaction_options_fifo.max_table_files_size);
  }

  // Test that shows the fall back to size-based FIFO compaction if TTL-based
  // deletion doesn't move the total size to be less than max_table_files_size.
  {
    options.write_buffer_size = 10 << 10;                              // 10KB
    options.compaction_options_fifo.max_table_files_size = 150 << 10;  // 150KB
    options.compaction_options_fifo.allow_compaction = false;
    options.compaction_options_fifo.ttl =  1 * 60 * 60;  // 1 hour
    options = CurrentOptions(options);
    DestroyAndReopen(options);

    Random rnd(301);
    for (int i = 0; i < 3; i++) {
      // Generate and flush a file about 10KB.
      for (int j = 0; j < 10; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    ASSERT_EQ(NumTableFilesAtLevel(0), 3);

    // Sleep for 2 hours -- which is much greater than TTL.
    env_->addon_time_.fetch_add(2 * 60 * 60);
    // Just to make sure that we are in the same state even after sleeping.
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
    ASSERT_EQ(NumTableFilesAtLevel(0), 3);

    for (int i = 0; i < 5; i++) {
      for (int j = 0; j < 140; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    // Size limit is still guaranteed.
    ASSERT_LE(SizeAtLevel(0),
              options.compaction_options_fifo.max_table_files_size);
  }

  // Test with TTL + Intra-L0 compactions.
  {
    options.compaction_options_fifo.max_table_files_size = 150 << 10;  // 150KB
    options.compaction_options_fifo.allow_compaction = true;
    options.compaction_options_fifo.ttl = 1 * 60 * 60;  // 1 hour
    options.level0_file_num_compaction_trigger = 6;
    options = CurrentOptions(options);
    DestroyAndReopen(options);

    Random rnd(301);
    for (int i = 0; i < 10; i++) {
      // Generate and flush a file about 10KB.
      for (int j = 0; j < 10; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    // With Intra-L0 compaction, out of 10 files, 6 files will be compacted to 1
    // (due to level0_file_num_compaction_trigger = 6).
    // So total files = 1 + remaining 4 = 5.
    ASSERT_EQ(NumTableFilesAtLevel(0), 5);

    // Sleep for 2 hours -- which is much greater than TTL.
    env_->addon_time_.fetch_add(2 * 60 * 60);
    // Just to make sure that we are in the same state even after sleeping.
    ASSERT_OK(dbfull()->TEST_WaitForCompact());
    ASSERT_EQ(NumTableFilesAtLevel(0), 5);

    // Create 10 more files. The old 5 files are dropped as their ttl expired.
    for (int i = 0; i < 10; i++) {
      for (int j = 0; j < 10; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    ASSERT_EQ(NumTableFilesAtLevel(0), 5);
    ASSERT_LE(SizeAtLevel(0),
              options.compaction_options_fifo.max_table_files_size);
  }

  // Test with large TTL + Intra-L0 compactions.
  // Files dropped based on size, as ttl doesn't kick in.
  {
    options.write_buffer_size = 20 << 10;                               // 20K
    options.compaction_options_fifo.max_table_files_size = 1500 << 10;  // 1.5MB
    options.compaction_options_fifo.allow_compaction = true;
    options.compaction_options_fifo.ttl = 1 * 60 * 60;  // 1 hour
    options.level0_file_num_compaction_trigger = 6;
    options = CurrentOptions(options);
    DestroyAndReopen(options);

    Random rnd(301);
    for (int i = 0; i < 60; i++) {
      // Generate and flush a file about 20KB.
      for (int j = 0; j < 20; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }
    // It should be compacted to 10 files.
    ASSERT_EQ(NumTableFilesAtLevel(0), 10);

    for (int i = 0; i < 60; i++) {
      // Generate and flush a file about 20KB.
      for (int j = 0; j < 20; j++) {
        ASSERT_OK(Put(ToString(i * 20 + j + 2000), RandomString(&rnd, 980)));
      }
      Flush();
      ASSERT_OK(dbfull()->TEST_WaitForCompact());
    }

    // It should be compacted to no more than 20 files.
    ASSERT_GT(NumTableFilesAtLevel(0), 10);
    ASSERT_LT(NumTableFilesAtLevel(0), 18);
    // Size limit is still guaranteed.
    ASSERT_LE(SizeAtLevel(0),
              options.compaction_options_fifo.max_table_files_size);
  }
}
#endif  // ROCKSDB_LITE

#ifndef ROCKSDB_LITE
/*
 * This test is not reliable enough as it heavily depends on disk behavior.
 * Disable as it is flaky.
 */
TEST_F(DBTest, DISABLED_RateLimitingTest) {
  Options options = CurrentOptions();
  options.write_buffer_size = 1 << 20;  // 1MB
  options.level0_file_num_compaction_trigger = 2;
  options.target_file_size_base = 1 << 20;     // 1MB
  options.max_bytes_for_level_base = 4 << 20;  // 4MB
  options.max_bytes_for_level_multiplier = 4;
  options.compression = kNoCompression;
  options.create_if_missing = true;
  options.env = env_;
  options.statistics = rocksdb::CreateDBStatistics();
  options.IncreaseParallelism(4);
  DestroyAndReopen(options);

  WriteOptions wo;
  wo.disableWAL = true;

  // # no rate limiting
  Random rnd(301);
  uint64_t start = env_->NowMicros();
  // Write ~96M data
  for (int64_t i = 0; i < (96 << 10); ++i) {
    ASSERT_OK(
        Put(RandomString(&rnd, 32), RandomString(&rnd, (1 << 10) + 1), wo));
  }
  uint64_t elapsed = env_->NowMicros() - start;
  double raw_rate = env_->bytes_written_ * 1000000.0 / elapsed;
  uint64_t rate_limiter_drains =
      TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS);
  ASSERT_EQ(0, rate_limiter_drains);
  Close();

  // # rate limiting with 0.7 x threshold
  options.rate_limiter.reset(
      NewGenericRateLimiter(static_cast<int64_t>(0.7 * raw_rate)));
  env_->bytes_written_ = 0;
  DestroyAndReopen(options);

  start = env_->NowMicros();
  // Write ~96M data
  for (int64_t i = 0; i < (96 << 10); ++i) {
    ASSERT_OK(
        Put(RandomString(&rnd, 32), RandomString(&rnd, (1 << 10) + 1), wo));
  }
  rate_limiter_drains =
      TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS) -
      rate_limiter_drains;
  elapsed = env_->NowMicros() - start;
  Close();
  ASSERT_EQ(options.rate_limiter->GetTotalBytesThrough(), env_->bytes_written_);
  // Most intervals should've been drained (interval time is 100ms, elapsed is
  // micros)
  ASSERT_GT(rate_limiter_drains, 0);
  ASSERT_LE(rate_limiter_drains, elapsed / 100000 + 1);
  double ratio = env_->bytes_written_ * 1000000 / elapsed / raw_rate;
  fprintf(stderr, "write rate ratio = %.2lf, expected 0.7\n", ratio);
  ASSERT_TRUE(ratio < 0.8);

  // # rate limiting with half of the raw_rate
  options.rate_limiter.reset(
      NewGenericRateLimiter(static_cast<int64_t>(raw_rate / 2)));
  env_->bytes_written_ = 0;
  DestroyAndReopen(options);

  start = env_->NowMicros();
  // Write ~96M data
  for (int64_t i = 0; i < (96 << 10); ++i) {
    ASSERT_OK(
        Put(RandomString(&rnd, 32), RandomString(&rnd, (1 << 10) + 1), wo));
  }
  elapsed = env_->NowMicros() - start;
  rate_limiter_drains =
      TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS) -
      rate_limiter_drains;
  Close();
  ASSERT_EQ(options.rate_limiter->GetTotalBytesThrough(), env_->bytes_written_);
  // Most intervals should've been drained (interval time is 100ms, elapsed is
  // micros)
  ASSERT_GT(rate_limiter_drains, elapsed / 100000 / 2);
  ASSERT_LE(rate_limiter_drains, elapsed / 100000 + 1);
  ratio = env_->bytes_written_ * 1000000 / elapsed / raw_rate;
  fprintf(stderr, "write rate ratio = %.2lf, expected 0.5\n", ratio);
  ASSERT_LT(ratio, 0.6);
}

TEST_F(DBTest, TableOptionsSanitizeTest) {
  Options options = CurrentOptions();
  options.create_if_missing = true;
  DestroyAndReopen(options);
  ASSERT_EQ(db_->GetOptions().allow_mmap_reads, false);

  options.table_factory.reset(new PlainTableFactory());
  options.prefix_extractor.reset(NewNoopTransform());
  Destroy(options);
  ASSERT_TRUE(!TryReopen(options).IsNotSupported());

  // Test for check of prefix_extractor when hash index is used for
  // block-based table
  BlockBasedTableOptions to;
  to.index_type = BlockBasedTableOptions::kHashSearch;
  options = CurrentOptions();
  options.create_if_missing = true;
  options.table_factory.reset(NewBlockBasedTableFactory(to));
  ASSERT_TRUE(TryReopen(options).IsInvalidArgument());
  options.prefix_extractor.reset(NewFixedPrefixTransform(1));
  ASSERT_OK(TryReopen(options));
}

TEST_F(DBTest, ConcurrentMemtableNotSupported) {
  Options options = CurrentOptions();
  options.allow_concurrent_memtable_write = true;
  options.soft_pending_compaction_bytes_limit = 0;
  options.hard_pending_compaction_bytes_limit = 100;
  options.create_if_missing = true;

  DestroyDB(dbname_, options);
  options.memtable_factory.reset(NewHashLinkListRepFactory(4, 0, 3, true, 4));
  ASSERT_NOK(TryReopen(options));

  options.memtable_factory.reset(new SkipListFactory);
  ASSERT_OK(TryReopen(options));

  ColumnFamilyOptions cf_options(options);
  cf_options.memtable_factory.reset(
      NewHashLinkListRepFactory(4, 0, 3, true, 4));
  ColumnFamilyHandle* handle;
  ASSERT_NOK(db_->CreateColumnFamily(cf_options, "name", &handle));
}

#endif  // ROCKSDB_LITE

TEST_F(DBTest, SanitizeNumThreads) {
  for (int attempt = 0; attempt < 2; attempt++) {
    const size_t kTotalTasks = 8;
    test::SleepingBackgroundTask sleeping_tasks[kTotalTasks];

    Options options = CurrentOptions();
    if (attempt == 0) {
      options.max_background_compactions = 3;
      options.max_background_flushes = 2;
    }
    options.create_if_missing = true;
    DestroyAndReopen(options);

    for (size_t i = 0; i < kTotalTasks; i++) {
      // Insert 5 tasks to low priority queue and 5 tasks to high priority queue
      env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
                     &sleeping_tasks[i],
                     (i < 4) ? Env::Priority::LOW : Env::Priority::HIGH);
    }

    // Wait 100 milliseconds for they are scheduled.
    env_->SleepForMicroseconds(100000);

    // pool size 3, total task 4. Queue size should be 1.
    ASSERT_EQ(1U, options.env->GetThreadPoolQueueLen(Env::Priority::LOW));
    // pool size 2, total task 4. Queue size should be 2.
    ASSERT_EQ(2U, options.env->GetThreadPoolQueueLen(Env::Priority::HIGH));

    for (size_t i = 0; i < kTotalTasks; i++) {
      sleeping_tasks[i].WakeUp();
      sleeping_tasks[i].WaitUntilDone();
    }

    ASSERT_OK(Put("abc", "def"));
    ASSERT_EQ("def", Get("abc"));
    Flush();
    ASSERT_EQ("def", Get("abc"));
  }
}

TEST_F(DBTest, WriteSingleThreadEntry) {
  std::vector<port::Thread> threads;
  dbfull()->TEST_LockMutex();
  auto w = dbfull()->TEST_BeginWrite();
  threads.emplace_back([&] { Put("a", "b"); });
  env_->SleepForMicroseconds(10000);
  threads.emplace_back([&] { Flush(); });
  env_->SleepForMicroseconds(10000);
  dbfull()->TEST_UnlockMutex();
  dbfull()->TEST_LockMutex();
  dbfull()->TEST_EndWrite(w);
  dbfull()->TEST_UnlockMutex();

  for (auto& t : threads) {
    t.join();
  }
}

TEST_F(DBTest, ConcurrentFlushWAL) {
  const size_t cnt = 100;
  Options options;
  WriteOptions wopt;
  ReadOptions ropt;
  for (bool two_write_queues : {false, true}) {
    for (bool manual_wal_flush : {false, true}) {
      options.two_write_queues = two_write_queues;
      options.manual_wal_flush = manual_wal_flush;
      options.create_if_missing = true;
      DestroyAndReopen(options);
      std::vector<port::Thread> threads;
      threads.emplace_back([&] {
        for (size_t i = 0; i < cnt; i++) {
          auto istr = ToString(i);
          db_->Put(wopt, db_->DefaultColumnFamily(), "a" + istr, "b" + istr);
        }
      });
      if (two_write_queues) {
        threads.emplace_back([&] {
          for (size_t i = cnt; i < 2 * cnt; i++) {
            auto istr = ToString(i);
            WriteBatch batch;
            batch.Put("a" + istr, "b" + istr);
            dbfull()->WriteImpl(wopt, &batch, nullptr, nullptr, 0, true);
          }
        });
      }
      threads.emplace_back([&] {
        for (size_t i = 0; i < cnt * 100; i++) {  // FlushWAL is faster than Put
          db_->FlushWAL(false);
        }
      });
      for (auto& t : threads) {
        t.join();
      }
      options.create_if_missing = false;
      // Recover from the wal and make sure that it is not corrupted
      Reopen(options);
      for (size_t i = 0; i < cnt; i++) {
        PinnableSlice pval;
        auto istr = ToString(i);
        ASSERT_OK(
            db_->Get(ropt, db_->DefaultColumnFamily(), "a" + istr, &pval));
        ASSERT_TRUE(pval == ("b" + istr));
      }
    }
  }
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, DynamicMemtableOptions) {
  const uint64_t k64KB = 1 << 16;
  const uint64_t k128KB = 1 << 17;
  const uint64_t k5KB = 5 * 1024;
  Options options;
  options.env = env_;
  options.create_if_missing = true;
  options.compression = kNoCompression;
  options.max_background_compactions = 1;
  options.write_buffer_size = k64KB;
  options.arena_block_size = 16 * 1024;
  options.max_write_buffer_number = 2;
  // Don't trigger compact/slowdown/stop
  options.level0_file_num_compaction_trigger = 1024;
  options.level0_slowdown_writes_trigger = 1024;
  options.level0_stop_writes_trigger = 1024;
  DestroyAndReopen(options);

  auto gen_l0_kb = [this](int size) {
    const int kNumPutsBeforeWaitForFlush = 64;
    Random rnd(301);
    for (int i = 0; i < size; i++) {
      ASSERT_OK(Put(Key(i), RandomString(&rnd, 1024)));

      // The following condition prevents a race condition between flush jobs
      // acquiring work and this thread filling up multiple memtables. Without
      // this, the flush might produce less files than expected because
      // multiple memtables are flushed into a single L0 file. This race
      // condition affects assertion (A).
      if (i % kNumPutsBeforeWaitForFlush == kNumPutsBeforeWaitForFlush - 1) {
        dbfull()->TEST_WaitForFlushMemTable();
      }
    }
    dbfull()->TEST_WaitForFlushMemTable();
  };

  // Test write_buffer_size
  gen_l0_kb(64);
  ASSERT_EQ(NumTableFilesAtLevel(0), 1);
  ASSERT_LT(SizeAtLevel(0), k64KB + k5KB);
  ASSERT_GT(SizeAtLevel(0), k64KB - k5KB * 2);

  // Clean up L0
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
  ASSERT_EQ(NumTableFilesAtLevel(0), 0);

  // Increase buffer size
  ASSERT_OK(dbfull()->SetOptions({
      {"write_buffer_size", "131072"},
  }));

  // The existing memtable inflated 64KB->128KB when we invoked SetOptions().
  // Write 192KB, we should have a 128KB L0 file and a memtable with 64KB data.
  gen_l0_kb(192);
  ASSERT_EQ(NumTableFilesAtLevel(0), 1);  // (A)
  ASSERT_LT(SizeAtLevel(0), k128KB + 2 * k5KB);
  ASSERT_GT(SizeAtLevel(0), k128KB - 4 * k5KB);

  // Decrease buffer size below current usage
  ASSERT_OK(dbfull()->SetOptions({
      {"write_buffer_size", "65536"},
  }));
  // The existing memtable became eligible for flush when we reduced its
  // capacity to 64KB. Two keys need to be added to trigger flush: first causes
  // memtable to be marked full, second schedules the flush. Then we should have
  // a 128KB L0 file, a 64KB L0 file, and a memtable with just one key.
  gen_l0_kb(2);
  ASSERT_EQ(NumTableFilesAtLevel(0), 2);
  ASSERT_LT(SizeAtLevel(0), k128KB + k64KB + 2 * k5KB);
  ASSERT_GT(SizeAtLevel(0), k128KB + k64KB - 4 * k5KB);

  // Test max_write_buffer_number
  // Block compaction thread, which will also block the flushes because
  // max_background_flushes == 0, so flushes are getting executed by the
  // compaction thread
  env_->SetBackgroundThreads(1, Env::LOW);
  test::SleepingBackgroundTask sleeping_task_low;
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  // Start from scratch and disable compaction/flush. Flush can only happen
  // during compaction but trigger is pretty high
  options.disable_auto_compactions = true;
  DestroyAndReopen(options);
  env_->SetBackgroundThreads(0, Env::HIGH);

  // Put until writes are stopped, bounded by 256 puts. We should see stop at
  // ~128KB
  int count = 0;
  Random rnd(301);

  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "DBImpl::DelayWrite:Wait",
      [&](void* /*arg*/) { sleeping_task_low.WakeUp(); });
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  while (!sleeping_task_low.WokenUp() && count < 256) {
    ASSERT_OK(Put(Key(count), RandomString(&rnd, 1024), WriteOptions()));
    count++;
  }
  ASSERT_GT(static_cast<double>(count), 128 * 0.8);
  ASSERT_LT(static_cast<double>(count), 128 * 1.2);

  sleeping_task_low.WaitUntilDone();

  // Increase
  ASSERT_OK(dbfull()->SetOptions({
      {"max_write_buffer_number", "8"},
  }));
  // Clean up memtable and L0
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);

  sleeping_task_low.Reset();
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  count = 0;
  while (!sleeping_task_low.WokenUp() && count < 1024) {
    ASSERT_OK(Put(Key(count), RandomString(&rnd, 1024), WriteOptions()));
    count++;
  }
// Windows fails this test. Will tune in the future and figure out
// approp number
#ifndef OS_WIN
  ASSERT_GT(static_cast<double>(count), 512 * 0.8);
  ASSERT_LT(static_cast<double>(count), 512 * 1.2);
#endif
  sleeping_task_low.WaitUntilDone();

  // Decrease
  ASSERT_OK(dbfull()->SetOptions({
      {"max_write_buffer_number", "4"},
  }));
  // Clean up memtable and L0
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);

  sleeping_task_low.Reset();
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);

  count = 0;
  while (!sleeping_task_low.WokenUp() && count < 1024) {
    ASSERT_OK(Put(Key(count), RandomString(&rnd, 1024), WriteOptions()));
    count++;
  }
// Windows fails this test. Will tune in the future and figure out
// approp number
#ifndef OS_WIN
  ASSERT_GT(static_cast<double>(count), 256 * 0.8);
  ASSERT_LT(static_cast<double>(count), 266 * 1.2);
#endif
  sleeping_task_low.WaitUntilDone();

  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
}
#endif  // ROCKSDB_LITE

#ifdef ROCKSDB_USING_THREAD_STATUS
namespace {
void VerifyOperationCount(Env* env, ThreadStatus::OperationType op_type,
                          int expected_count) {
  int op_count = 0;
  std::vector<ThreadStatus> thread_list;
  ASSERT_OK(env->GetThreadList(&thread_list));
  for (auto thread : thread_list) {
    if (thread.operation_type == op_type) {
      op_count++;
    }
  }
  ASSERT_EQ(op_count, expected_count);
}
}  // namespace

TEST_F(DBTest, GetThreadStatus) {
  Options options;
  options.env = env_;
  options.enable_thread_tracking = true;
  TryReopen(options);

  std::vector<ThreadStatus> thread_list;
  Status s = env_->GetThreadList(&thread_list);

  for (int i = 0; i < 2; ++i) {
    // repeat the test with differet number of high / low priority threads
    const int kTestCount = 3;
    const unsigned int kHighPriCounts[kTestCount] = {3, 2, 5};
    const unsigned int kLowPriCounts[kTestCount] = {10, 15, 3};
    const unsigned int kBottomPriCounts[kTestCount] = {2, 1, 4};
    for (int test = 0; test < kTestCount; ++test) {
      // Change the number of threads in high / low priority pool.
      env_->SetBackgroundThreads(kHighPriCounts[test], Env::HIGH);
      env_->SetBackgroundThreads(kLowPriCounts[test], Env::LOW);
      env_->SetBackgroundThreads(kBottomPriCounts[test], Env::BOTTOM);
      // Wait to ensure the all threads has been registered
      unsigned int thread_type_counts[ThreadStatus::NUM_THREAD_TYPES];
      // TODO(ajkr): it'd be better if SetBackgroundThreads returned only after
      // all threads have been registered.
      // Try up to 60 seconds.
      for (int num_try = 0; num_try < 60000; num_try++) {
        env_->SleepForMicroseconds(1000);
        thread_list.clear();
        s = env_->GetThreadList(&thread_list);
        ASSERT_OK(s);
        memset(thread_type_counts, 0, sizeof(thread_type_counts));
        for (auto thread : thread_list) {
          ASSERT_LT(thread.thread_type, ThreadStatus::NUM_THREAD_TYPES);
          thread_type_counts[thread.thread_type]++;
        }
        if (thread_type_counts[ThreadStatus::HIGH_PRIORITY] ==
                kHighPriCounts[test] &&
            thread_type_counts[ThreadStatus::LOW_PRIORITY] ==
                kLowPriCounts[test] &&
            thread_type_counts[ThreadStatus::BOTTOM_PRIORITY] ==
                kBottomPriCounts[test]) {
          break;
        }
      }
      // Verify the number of high-priority threads
      ASSERT_EQ(thread_type_counts[ThreadStatus::HIGH_PRIORITY],
                kHighPriCounts[test]);
      // Verify the number of low-priority threads
      ASSERT_EQ(thread_type_counts[ThreadStatus::LOW_PRIORITY],
                kLowPriCounts[test]);
      // Verify the number of bottom-priority threads
      ASSERT_EQ(thread_type_counts[ThreadStatus::BOTTOM_PRIORITY],
                kBottomPriCounts[test]);
    }
    if (i == 0) {
      // repeat the test with multiple column families
      CreateAndReopenWithCF({"pikachu", "about-to-remove"}, options);
      env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
                                                                     true);
    }
  }
  db_->DropColumnFamily(handles_[2]);
  delete handles_[2];
  handles_.erase(handles_.begin() + 2);
  env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
                                                                 true);
  Close();
  env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
                                                                 true);
}

TEST_F(DBTest, DisableThreadStatus) {
  Options options;
  options.env = env_;
  options.enable_thread_tracking = false;
  TryReopen(options);
  CreateAndReopenWithCF({"pikachu", "about-to-remove"}, options);
  // Verify non of the column family info exists
  env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
                                                                 false);
}

TEST_F(DBTest, ThreadStatusFlush) {
  Options options;
  options.env = env_;
  options.write_buffer_size = 100000;  // Small write buffer
  options.enable_thread_tracking = true;
  options = CurrentOptions(options);

  rocksdb::SyncPoint::GetInstance()->LoadDependency({
      {"FlushJob::FlushJob()", "DBTest::ThreadStatusFlush:1"},
      {"DBTest::ThreadStatusFlush:2", "FlushJob::WriteLevel0Table"},
  });
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  CreateAndReopenWithCF({"pikachu"}, options);
  VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 0);

  ASSERT_OK(Put(1, "foo", "v1"));
  ASSERT_EQ("v1", Get(1, "foo"));
  VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 0);

  uint64_t num_running_flushes = 0;
  db_->GetIntProperty(DB::Properties::kNumRunningFlushes, &num_running_flushes);
  ASSERT_EQ(num_running_flushes, 0);

  Put(1, "k1", std::string(100000, 'x'));  // Fill memtable
  Put(1, "k2", std::string(100000, 'y'));  // Trigger flush

  // The first sync point is to make sure there's one flush job
  // running when we perform VerifyOperationCount().
  TEST_SYNC_POINT("DBTest::ThreadStatusFlush:1");
  VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 1);
  db_->GetIntProperty(DB::Properties::kNumRunningFlushes, &num_running_flushes);
  ASSERT_EQ(num_running_flushes, 1);
  // This second sync point is to ensure the flush job will not
  // be completed until we already perform VerifyOperationCount().
  TEST_SYNC_POINT("DBTest::ThreadStatusFlush:2");
  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
}

TEST_P(DBTestWithParam, ThreadStatusSingleCompaction) {
  const int kTestKeySize = 16;
  const int kTestValueSize = 984;
  const int kEntrySize = kTestKeySize + kTestValueSize;
  const int kEntriesPerBuffer = 100;
  Options options;
  options.create_if_missing = true;
  options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
  options.compaction_style = kCompactionStyleLevel;
  options.target_file_size_base = options.write_buffer_size;
  options.max_bytes_for_level_base = options.target_file_size_base * 2;
  options.max_bytes_for_level_multiplier = 2;
  options.compression = kNoCompression;
  options = CurrentOptions(options);
  options.env = env_;
  options.enable_thread_tracking = true;
  const int kNumL0Files = 4;
  options.level0_file_num_compaction_trigger = kNumL0Files;
  options.max_subcompactions = max_subcompactions_;

  rocksdb::SyncPoint::GetInstance()->LoadDependency({
      {"DBTest::ThreadStatusSingleCompaction:0", "DBImpl::BGWorkCompaction"},
      {"CompactionJob::Run():Start", "DBTest::ThreadStatusSingleCompaction:1"},
      {"DBTest::ThreadStatusSingleCompaction:2", "CompactionJob::Run():End"},
  });
  for (int tests = 0; tests < 2; ++tests) {
    DestroyAndReopen(options);
    rocksdb::SyncPoint::GetInstance()->ClearTrace();
    rocksdb::SyncPoint::GetInstance()->EnableProcessing();

    Random rnd(301);
    // The Put Phase.
    for (int file = 0; file < kNumL0Files; ++file) {
      for (int key = 0; key < kEntriesPerBuffer; ++key) {
        ASSERT_OK(Put(ToString(key + file * kEntriesPerBuffer),
                      RandomString(&rnd, kTestValueSize)));
      }
      Flush();
    }
    // This makes sure a compaction won't be scheduled until
    // we have done with the above Put Phase.
    uint64_t num_running_compactions = 0;
    db_->GetIntProperty(DB::Properties::kNumRunningCompactions,
                        &num_running_compactions);
    ASSERT_EQ(num_running_compactions, 0);
    TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:0");
    ASSERT_GE(NumTableFilesAtLevel(0),
              options.level0_file_num_compaction_trigger);

    // This makes sure at least one compaction is running.
    TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:1");

    if (options.enable_thread_tracking) {
      // expecting one single L0 to L1 compaction
      VerifyOperationCount(env_, ThreadStatus::OP_COMPACTION, 1);
    } else {
      // If thread tracking is not enabled, compaction count should be 0.
      VerifyOperationCount(env_, ThreadStatus::OP_COMPACTION, 0);
    }
    db_->GetIntProperty(DB::Properties::kNumRunningCompactions,
                        &num_running_compactions);
    ASSERT_EQ(num_running_compactions, 1);
    // TODO(yhchiang): adding assert to verify each compaction stage.
    TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:2");

    // repeat the test with disabling thread tracking.
    options.enable_thread_tracking = false;
    rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  }
}

TEST_P(DBTestWithParam, PreShutdownManualCompaction) {
  Options options = CurrentOptions();
  options.max_subcompactions = max_subcompactions_;
  CreateAndReopenWithCF({"pikachu"}, options);

  // iter - 0 with 7 levels
  // iter - 1 with 3 levels
  for (int iter = 0; iter < 2; ++iter) {
    MakeTables(3, "p", "q", 1);
    ASSERT_EQ("1,1,1", FilesPerLevel(1));

    // Compaction range falls before files
    Compact(1, "", "c");
    ASSERT_EQ("1,1,1", FilesPerLevel(1));

    // Compaction range falls after files
    Compact(1, "r", "z");
    ASSERT_EQ("1,1,1", FilesPerLevel(1));

    // Compaction range overlaps files
    Compact(1, "p1", "p9");
    ASSERT_EQ("0,0,1", FilesPerLevel(1));

    // Populate a different range
    MakeTables(3, "c", "e", 1);
    ASSERT_EQ("1,1,2", FilesPerLevel(1));

    // Compact just the new range
    Compact(1, "b", "f");
    ASSERT_EQ("0,0,2", FilesPerLevel(1));

    // Compact all
    MakeTables(1, "a", "z", 1);
    ASSERT_EQ("1,0,2", FilesPerLevel(1));
    CancelAllBackgroundWork(db_);
    db_->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr);
    ASSERT_EQ("1,0,2", FilesPerLevel(1));

    if (iter == 0) {
      options = CurrentOptions();
      options.num_levels = 3;
      options.create_if_missing = true;
      DestroyAndReopen(options);
      CreateAndReopenWithCF({"pikachu"}, options);
    }
  }
}

TEST_F(DBTest, PreShutdownFlush) {
  Options options = CurrentOptions();
  CreateAndReopenWithCF({"pikachu"}, options);
  ASSERT_OK(Put(1, "key", "value"));
  CancelAllBackgroundWork(db_);
  Status s =
      db_->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr);
  ASSERT_TRUE(s.IsShutdownInProgress());
}

TEST_P(DBTestWithParam, PreShutdownMultipleCompaction) {
  const int kTestKeySize = 16;
  const int kTestValueSize = 984;
  const int kEntrySize = kTestKeySize + kTestValueSize;
  const int kEntriesPerBuffer = 40;
  const int kNumL0Files = 4;

  const int kHighPriCount = 3;
  const int kLowPriCount = 5;
  env_->SetBackgroundThreads(kHighPriCount, Env::HIGH);
  env_->SetBackgroundThreads(kLowPriCount, Env::LOW);

  Options options;
  options.create_if_missing = true;
  options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
  options.compaction_style = kCompactionStyleLevel;
  options.target_file_size_base = options.write_buffer_size;
  options.max_bytes_for_level_base =
      options.target_file_size_base * kNumL0Files;
  options.compression = kNoCompression;
  options = CurrentOptions(options);
  options.env = env_;
  options.enable_thread_tracking = true;
  options.level0_file_num_compaction_trigger = kNumL0Files;
  options.max_bytes_for_level_multiplier = 2;
  options.max_background_compactions = kLowPriCount;
  options.level0_stop_writes_trigger = 1 << 10;
  options.level0_slowdown_writes_trigger = 1 << 10;
  options.max_subcompactions = max_subcompactions_;

  TryReopen(options);
  Random rnd(301);

  std::vector<ThreadStatus> thread_list;
  // Delay both flush and compaction
  rocksdb::SyncPoint::GetInstance()->LoadDependency(
      {{"FlushJob::FlushJob()", "CompactionJob::Run():Start"},
       {"CompactionJob::Run():Start",
        "DBTest::PreShutdownMultipleCompaction:Preshutdown"},
       {"CompactionJob::Run():Start",
        "DBTest::PreShutdownMultipleCompaction:VerifyCompaction"},
       {"DBTest::PreShutdownMultipleCompaction:Preshutdown",
        "CompactionJob::Run():End"},
       {"CompactionJob::Run():End",
        "DBTest::PreShutdownMultipleCompaction:VerifyPreshutdown"}});

  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  // Make rocksdb busy
  int key = 0;
  // check how many threads are doing compaction using GetThreadList
  int operation_count[ThreadStatus::NUM_OP_TYPES] = {0};
  for (int file = 0; file < 16 * kNumL0Files; ++file) {
    for (int k = 0; k < kEntriesPerBuffer; ++k) {
      ASSERT_OK(Put(ToString(key++), RandomString(&rnd, kTestValueSize)));
    }

    Status s = env_->GetThreadList(&thread_list);
    for (auto thread : thread_list) {
      operation_count[thread.operation_type]++;
    }

    // Speed up the test
    if (operation_count[ThreadStatus::OP_FLUSH] > 1 &&
        operation_count[ThreadStatus::OP_COMPACTION] >
            0.6 * options.max_background_compactions) {
      break;
    }
    if (file == 15 * kNumL0Files) {
      TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:Preshutdown");
    }
  }

  TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:Preshutdown");
  ASSERT_GE(operation_count[ThreadStatus::OP_COMPACTION], 1);
  CancelAllBackgroundWork(db_);
  TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:VerifyPreshutdown");
  dbfull()->TEST_WaitForCompact();
  // Record the number of compactions at a time.
  for (int i = 0; i < ThreadStatus::NUM_OP_TYPES; ++i) {
    operation_count[i] = 0;
  }
  Status s = env_->GetThreadList(&thread_list);
  for (auto thread : thread_list) {
    operation_count[thread.operation_type]++;
  }
  ASSERT_EQ(operation_count[ThreadStatus::OP_COMPACTION], 0);
}

TEST_P(DBTestWithParam, PreShutdownCompactionMiddle) {
  const int kTestKeySize = 16;
  const int kTestValueSize = 984;
  const int kEntrySize = kTestKeySize + kTestValueSize;
  const int kEntriesPerBuffer = 40;
  const int kNumL0Files = 4;

  const int kHighPriCount = 3;
  const int kLowPriCount = 5;
  env_->SetBackgroundThreads(kHighPriCount, Env::HIGH);
  env_->SetBackgroundThreads(kLowPriCount, Env::LOW);

  Options options;
  options.create_if_missing = true;
  options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
  options.compaction_style = kCompactionStyleLevel;
  options.target_file_size_base = options.write_buffer_size;
  options.max_bytes_for_level_base =
      options.target_file_size_base * kNumL0Files;
  options.compression = kNoCompression;
  options = CurrentOptions(options);
  options.env = env_;
  options.enable_thread_tracking = true;
  options.level0_file_num_compaction_trigger = kNumL0Files;
  options.max_bytes_for_level_multiplier = 2;
  options.max_background_compactions = kLowPriCount;
  options.level0_stop_writes_trigger = 1 << 10;
  options.level0_slowdown_writes_trigger = 1 << 10;
  options.max_subcompactions = max_subcompactions_;

  TryReopen(options);
  Random rnd(301);

  std::vector<ThreadStatus> thread_list;
  // Delay both flush and compaction
  rocksdb::SyncPoint::GetInstance()->LoadDependency(
      {{"DBTest::PreShutdownCompactionMiddle:Preshutdown",
        "CompactionJob::Run():Inprogress"},
       {"CompactionJob::Run():Start",
        "DBTest::PreShutdownCompactionMiddle:VerifyCompaction"},
       {"CompactionJob::Run():Inprogress", "CompactionJob::Run():End"},
       {"CompactionJob::Run():End",
        "DBTest::PreShutdownCompactionMiddle:VerifyPreshutdown"}});

  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  // Make rocksdb busy
  int key = 0;
  // check how many threads are doing compaction using GetThreadList
  int operation_count[ThreadStatus::NUM_OP_TYPES] = {0};
  for (int file = 0; file < 16 * kNumL0Files; ++file) {
    for (int k = 0; k < kEntriesPerBuffer; ++k) {
      ASSERT_OK(Put(ToString(key++), RandomString(&rnd, kTestValueSize)));
    }

    Status s = env_->GetThreadList(&thread_list);
    for (auto thread : thread_list) {
      operation_count[thread.operation_type]++;
    }

    // Speed up the test
    if (operation_count[ThreadStatus::OP_FLUSH] > 1 &&
        operation_count[ThreadStatus::OP_COMPACTION] >
            0.6 * options.max_background_compactions) {
      break;
    }
    if (file == 15 * kNumL0Files) {
      TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:VerifyCompaction");
    }
  }

  ASSERT_GE(operation_count[ThreadStatus::OP_COMPACTION], 1);
  CancelAllBackgroundWork(db_);
  TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:Preshutdown");
  TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:VerifyPreshutdown");
  dbfull()->TEST_WaitForCompact();
  // Record the number of compactions at a time.
  for (int i = 0; i < ThreadStatus::NUM_OP_TYPES; ++i) {
    operation_count[i] = 0;
  }
  Status s = env_->GetThreadList(&thread_list);
  for (auto thread : thread_list) {
    operation_count[thread.operation_type]++;
  }
  ASSERT_EQ(operation_count[ThreadStatus::OP_COMPACTION], 0);
}

#endif  // ROCKSDB_USING_THREAD_STATUS

#ifndef ROCKSDB_LITE
TEST_F(DBTest, FlushOnDestroy) {
  WriteOptions wo;
  wo.disableWAL = true;
  ASSERT_OK(Put("foo", "v1", wo));
  CancelAllBackgroundWork(db_);
}

TEST_F(DBTest, DynamicLevelCompressionPerLevel) {
  if (!Snappy_Supported()) {
    return;
  }
  const int kNKeys = 120;
  int keys[kNKeys];
  for (int i = 0; i < kNKeys; i++) {
    keys[i] = i;
  }
  std::random_shuffle(std::begin(keys), std::end(keys));

  Random rnd(301);
  Options options;
  options.create_if_missing = true;
  options.db_write_buffer_size = 20480;
  options.write_buffer_size = 20480;
  options.max_write_buffer_number = 2;
  options.level0_file_num_compaction_trigger = 2;
  options.level0_slowdown_writes_trigger = 2;
  options.level0_stop_writes_trigger = 2;
  options.target_file_size_base = 20480;
  options.level_compaction_dynamic_level_bytes = true;
  options.max_bytes_for_level_base = 102400;
  options.max_bytes_for_level_multiplier = 4;
  options.max_background_compactions = 1;
  options.num_levels = 5;

  options.compression_per_level.resize(3);
  options.compression_per_level[0] = kNoCompression;
  options.compression_per_level[1] = kNoCompression;
  options.compression_per_level[2] = kSnappyCompression;

  OnFileDeletionListener* listener = new OnFileDeletionListener();
  options.listeners.emplace_back(listener);

  DestroyAndReopen(options);

  // Insert more than 80K. L4 should be base level. Neither L0 nor L4 should
  // be compressed, so total data size should be more than 80K.
  for (int i = 0; i < 20; i++) {
    ASSERT_OK(Put(Key(keys[i]), CompressibleString(&rnd, 4000)));
  }
  Flush();
  dbfull()->TEST_WaitForCompact();

  ASSERT_EQ(NumTableFilesAtLevel(1), 0);
  ASSERT_EQ(NumTableFilesAtLevel(2), 0);
  ASSERT_EQ(NumTableFilesAtLevel(3), 0);
  // Assuming each files' metadata is at least 50 bytes/
  ASSERT_GT(SizeAtLevel(0) + SizeAtLevel(4), 20U * 4000U + 50U * 4);

  // Insert 400KB. Some data will be compressed
  for (int i = 21; i < 120; i++) {
    ASSERT_OK(Put(Key(keys[i]), CompressibleString(&rnd, 4000)));
  }
  Flush();
  dbfull()->TEST_WaitForCompact();
  ASSERT_EQ(NumTableFilesAtLevel(1), 0);
  ASSERT_EQ(NumTableFilesAtLevel(2), 0);
  ASSERT_LT(SizeAtLevel(0) + SizeAtLevel(3) + SizeAtLevel(4),
            120U * 4000U + 50U * 24);
  // Make sure data in files in L3 is not compacted by removing all files
  // in L4 and calculate number of rows
  ASSERT_OK(dbfull()->SetOptions({
      {"disable_auto_compactions", "true"},
  }));
  ColumnFamilyMetaData cf_meta;
  db_->GetColumnFamilyMetaData(&cf_meta);
  for (auto file : cf_meta.levels[4].files) {
    listener->SetExpectedFileName(dbname_ + file.name);
    ASSERT_OK(dbfull()->DeleteFile(file.name));
  }
  listener->VerifyMatchedCount(cf_meta.levels[4].files.size());

  int num_keys = 0;
  std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
  for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
    num_keys++;
  }
  ASSERT_OK(iter->status());
  ASSERT_GT(SizeAtLevel(0) + SizeAtLevel(3), num_keys * 4000U + num_keys * 10U);
}

TEST_F(DBTest, DynamicLevelCompressionPerLevel2) {
  if (!Snappy_Supported() || !LZ4_Supported() || !Zlib_Supported()) {
    return;
  }
  const int kNKeys = 500;
  int keys[kNKeys];
  for (int i = 0; i < kNKeys; i++) {
    keys[i] = i;
  }
  std::random_shuffle(std::begin(keys), std::end(keys));

  Random rnd(301);
  Options options;
  options.create_if_missing = true;
  options.db_write_buffer_size = 6000000;
  options.write_buffer_size = 600000;
  options.max_write_buffer_number = 2;
  options.level0_file_num_compaction_trigger = 2;
  options.level0_slowdown_writes_trigger = 2;
  options.level0_stop_writes_trigger = 2;
  options.soft_pending_compaction_bytes_limit = 1024 * 1024;
  options.target_file_size_base = 20;

  options.level_compaction_dynamic_level_bytes = true;
  options.max_bytes_for_level_base = 200;
  options.max_bytes_for_level_multiplier = 8;
  options.max_background_compactions = 1;
  options.num_levels = 5;
  std::shared_ptr<mock::MockTableFactory> mtf(new mock::MockTableFactory);
  options.table_factory = mtf;

  options.compression_per_level.resize(3);
  options.compression_per_level[0] = kNoCompression;
  options.compression_per_level[1] = kLZ4Compression;
  options.compression_per_level[2] = kZlibCompression;

  DestroyAndReopen(options);
  // When base level is L4, L4 is LZ4.
  std::atomic<int> num_zlib(0);
  std::atomic<int> num_lz4(0);
  std::atomic<int> num_no(0);
  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
        Compaction* compaction = reinterpret_cast<Compaction*>(arg);
        if (compaction->output_level() == 4) {
          ASSERT_TRUE(compaction->output_compression() == kLZ4Compression);
          num_lz4.fetch_add(1);
        }
      });
  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "FlushJob::WriteLevel0Table:output_compression", [&](void* arg) {
        auto* compression = reinterpret_cast<CompressionType*>(arg);
        ASSERT_TRUE(*compression == kNoCompression);
        num_no.fetch_add(1);
      });
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  for (int i = 0; i < 100; i++) {
    std::string value = RandomString(&rnd, 200);
    ASSERT_OK(Put(Key(keys[i]), value));
    if (i % 25 == 24) {
      Flush();
      dbfull()->TEST_WaitForCompact();
    }
  }

  Flush();
  dbfull()->TEST_WaitForFlushMemTable();
  dbfull()->TEST_WaitForCompact();
  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  rocksdb::SyncPoint::GetInstance()->ClearAllCallBacks();

  ASSERT_EQ(NumTableFilesAtLevel(1), 0);
  ASSERT_EQ(NumTableFilesAtLevel(2), 0);
  ASSERT_EQ(NumTableFilesAtLevel(3), 0);
  ASSERT_GT(NumTableFilesAtLevel(4), 0);
  ASSERT_GT(num_no.load(), 2);
  ASSERT_GT(num_lz4.load(), 0);
  int prev_num_files_l4 = NumTableFilesAtLevel(4);

  // After base level turn L4->L3, L3 becomes LZ4 and L4 becomes Zlib
  num_lz4.store(0);
  num_no.store(0);
  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
        Compaction* compaction = reinterpret_cast<Compaction*>(arg);
        if (compaction->output_level() == 4 && compaction->start_level() == 3) {
          ASSERT_TRUE(compaction->output_compression() == kZlibCompression);
          num_zlib.fetch_add(1);
        } else {
          ASSERT_TRUE(compaction->output_compression() == kLZ4Compression);
          num_lz4.fetch_add(1);
        }
      });
  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "FlushJob::WriteLevel0Table:output_compression", [&](void* arg) {
        auto* compression = reinterpret_cast<CompressionType*>(arg);
        ASSERT_TRUE(*compression == kNoCompression);
        num_no.fetch_add(1);
      });
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  for (int i = 101; i < 500; i++) {
    std::string value = RandomString(&rnd, 200);
    ASSERT_OK(Put(Key(keys[i]), value));
    if (i % 100 == 99) {
      Flush();
      dbfull()->TEST_WaitForCompact();
    }
  }

  rocksdb::SyncPoint::GetInstance()->ClearAllCallBacks();
  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  ASSERT_EQ(NumTableFilesAtLevel(1), 0);
  ASSERT_EQ(NumTableFilesAtLevel(2), 0);
  ASSERT_GT(NumTableFilesAtLevel(3), 0);
  ASSERT_GT(NumTableFilesAtLevel(4), prev_num_files_l4);
  ASSERT_GT(num_no.load(), 2);
  ASSERT_GT(num_lz4.load(), 0);
  ASSERT_GT(num_zlib.load(), 0);
}

TEST_F(DBTest, DynamicCompactionOptions) {
  // minimum write buffer size is enforced at 64KB
  const uint64_t k32KB = 1 << 15;
  const uint64_t k64KB = 1 << 16;
  const uint64_t k128KB = 1 << 17;
  const uint64_t k1MB = 1 << 20;
  const uint64_t k4KB = 1 << 12;
  Options options;
  options.env = env_;
  options.create_if_missing = true;
  options.compression = kNoCompression;
  options.soft_pending_compaction_bytes_limit = 1024 * 1024;
  options.write_buffer_size = k64KB;
  options.arena_block_size = 4 * k4KB;
  options.max_write_buffer_number = 2;
  // Compaction related options
  options.level0_file_num_compaction_trigger = 3;
  options.level0_slowdown_writes_trigger = 4;
  options.level0_stop_writes_trigger = 8;
  options.target_file_size_base = k64KB;
  options.max_compaction_bytes = options.target_file_size_base * 10;
  options.target_file_size_multiplier = 1;
  options.max_bytes_for_level_base = k128KB;
  options.max_bytes_for_level_multiplier = 4;

  // Block flush thread and disable compaction thread
  env_->SetBackgroundThreads(1, Env::LOW);
  env_->SetBackgroundThreads(1, Env::HIGH);
  DestroyAndReopen(options);

  auto gen_l0_kb = [this](int start, int size, int stride) {
    Random rnd(301);
    for (int i = 0; i < size; i++) {
      ASSERT_OK(Put(Key(start + stride * i), RandomString(&rnd, 1024)));
    }
    dbfull()->TEST_WaitForFlushMemTable();
  };

  // Write 3 files that have the same key range.
  // Since level0_file_num_compaction_trigger is 3, compaction should be
  // triggered. The compaction should result in one L1 file
  gen_l0_kb(0, 64, 1);
  ASSERT_EQ(NumTableFilesAtLevel(0), 1);
  gen_l0_kb(0, 64, 1);
  ASSERT_EQ(NumTableFilesAtLevel(0), 2);
  gen_l0_kb(0, 64, 1);
  dbfull()->TEST_WaitForCompact();
  ASSERT_EQ("0,1", FilesPerLevel());
  std::vector<LiveFileMetaData> metadata;
  db_->GetLiveFilesMetaData(&metadata);
  ASSERT_EQ(1U, metadata.size());
  ASSERT_LE(metadata[0].size, k64KB + k4KB);
  ASSERT_GE(metadata[0].size, k64KB - k4KB);

  // Test compaction trigger and target_file_size_base
  // Reduce compaction trigger to 2, and reduce L1 file size to 32KB.
  // Writing to 64KB L0 files should trigger a compaction. Since these
  // 2 L0 files have the same key range, compaction merge them and should
  // result in 2 32KB L1 files.
  ASSERT_OK(dbfull()->SetOptions({{"level0_file_num_compaction_trigger", "2"},
                                  {"target_file_size_base", ToString(k32KB)}}));

  gen_l0_kb(0, 64, 1);
  ASSERT_EQ("1,1", FilesPerLevel());
  gen_l0_kb(0, 64, 1);
  dbfull()->TEST_WaitForCompact();
  ASSERT_EQ("0,2", FilesPerLevel());
  metadata.clear();
  db_->GetLiveFilesMetaData(&metadata);
  ASSERT_EQ(2U, metadata.size());
  ASSERT_LE(metadata[0].size, k32KB + k4KB);
  ASSERT_GE(metadata[0].size, k32KB - k4KB);
  ASSERT_LE(metadata[1].size, k32KB + k4KB);
  ASSERT_GE(metadata[1].size, k32KB - k4KB);

  // Test max_bytes_for_level_base
  // Increase level base size to 256KB and write enough data that will
  // fill L1 and L2. L1 size should be around 256KB while L2 size should be
  // around 256KB x 4.
  ASSERT_OK(
      dbfull()->SetOptions({{"max_bytes_for_level_base", ToString(k1MB)}}));

  // writing 96 x 64KB => 6 * 1024KB
  // (L1 + L2) = (1 + 4) * 1024KB
  for (int i = 0; i < 96; ++i) {
    gen_l0_kb(i, 64, 96);
  }
  dbfull()->TEST_WaitForCompact();
  ASSERT_GT(SizeAtLevel(1), k1MB / 2);
  ASSERT_LT(SizeAtLevel(1), k1MB + k1MB / 2);

  // Within (0.5, 1.5) of 4MB.
  ASSERT_GT(SizeAtLevel(2), 2 * k1MB);
  ASSERT_LT(SizeAtLevel(2), 6 * k1MB);

  // Test max_bytes_for_level_multiplier and
  // max_bytes_for_level_base. Now, reduce both mulitplier and level base,
  // After filling enough data that can fit in L1 - L3, we should see L1 size
  // reduces to 128KB from 256KB which was asserted previously. Same for L2.
  ASSERT_OK(
      dbfull()->SetOptions({{"max_bytes_for_level_multiplier", "2"},
                            {"max_bytes_for_level_base", ToString(k128KB)}}));

  // writing 20 x 64KB = 10 x 128KB
  // (L1 + L2 + L3) = (1 + 2 + 4) * 128KB
  for (int i = 0; i < 20; ++i) {
    gen_l0_kb(i, 64, 32);
  }
  dbfull()->TEST_WaitForCompact();
  uint64_t total_size = SizeAtLevel(1) + SizeAtLevel(2) + SizeAtLevel(3);
  ASSERT_TRUE(total_size < k128KB * 7 * 1.5);

  // Test level0_stop_writes_trigger.
  // Clean up memtable and L0. Block compaction threads. If continue to write
  // and flush memtables. We should see put stop after 8 memtable flushes
  // since level0_stop_writes_trigger = 8
  dbfull()->TEST_FlushMemTable(true);
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
  // Block compaction
  test::SleepingBackgroundTask sleeping_task_low;
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  sleeping_task_low.WaitUntilSleeping();
  ASSERT_EQ(NumTableFilesAtLevel(0), 0);
  int count = 0;
  Random rnd(301);
  WriteOptions wo;
  while (count < 64) {
    ASSERT_OK(Put(Key(count), RandomString(&rnd, 1024), wo));
    dbfull()->TEST_FlushMemTable(true);
    count++;
    if (dbfull()->TEST_write_controler().IsStopped()) {
      sleeping_task_low.WakeUp();
      break;
    }
  }
  // Stop trigger = 8
  ASSERT_EQ(count, 8);
  // Unblock
  sleeping_task_low.WaitUntilDone();

  // Now reduce level0_stop_writes_trigger to 6. Clear up memtables and L0.
  // Block compaction thread again. Perform the put and memtable flushes
  // until we see the stop after 6 memtable flushes.
  ASSERT_OK(dbfull()->SetOptions({{"level0_stop_writes_trigger", "6"}}));
  dbfull()->TEST_FlushMemTable(true);
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
  ASSERT_EQ(NumTableFilesAtLevel(0), 0);

  // Block compaction again
  sleeping_task_low.Reset();
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  sleeping_task_low.WaitUntilSleeping();
  count = 0;
  while (count < 64) {
    ASSERT_OK(Put(Key(count), RandomString(&rnd, 1024), wo));
    dbfull()->TEST_FlushMemTable(true);
    count++;
    if (dbfull()->TEST_write_controler().IsStopped()) {
      sleeping_task_low.WakeUp();
      break;
    }
  }
  ASSERT_EQ(count, 6);
  // Unblock
  sleeping_task_low.WaitUntilDone();

  // Test disable_auto_compactions
  // Compaction thread is unblocked but auto compaction is disabled. Write
  // 4 L0 files and compaction should be triggered. If auto compaction is
  // disabled, then TEST_WaitForCompact will be waiting for nothing. Number of
  // L0 files do not change after the call.
  ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "true"}}));
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
  ASSERT_EQ(NumTableFilesAtLevel(0), 0);

  for (int i = 0; i < 4; ++i) {
    ASSERT_OK(Put(Key(i), RandomString(&rnd, 1024)));
    // Wait for compaction so that put won't stop
    dbfull()->TEST_FlushMemTable(true);
  }
  dbfull()->TEST_WaitForCompact();
  ASSERT_EQ(NumTableFilesAtLevel(0), 4);

  // Enable auto compaction and perform the same test, # of L0 files should be
  // reduced after compaction.
  ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "false"}}));
  dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr);
  ASSERT_EQ(NumTableFilesAtLevel(0), 0);

  for (int i = 0; i < 4; ++i) {
    ASSERT_OK(Put(Key(i), RandomString(&rnd, 1024)));
    // Wait for compaction so that put won't stop
    dbfull()->TEST_FlushMemTable(true);
  }
  dbfull()->TEST_WaitForCompact();
  ASSERT_LT(NumTableFilesAtLevel(0), 4);
}

// Test dynamic FIFO copmaction options.
// This test covers just option parsing and makes sure that the options are
// correctly assigned. Also look at DBOptionsTest.SetFIFOCompactionOptions
// test which makes sure that the FIFO compaction funcionality is working
// as expected on dynamically changing the options.
// Even more FIFOCompactionTests are at DBTest.FIFOCompaction* .
TEST_F(DBTest, DynamicFIFOCompactionOptions) {
  Options options;
  options.create_if_missing = true;
  DestroyAndReopen(options);

  // Initial defaults
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            1024 * 1024 * 1024);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 0);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            false);

  ASSERT_OK(dbfull()->SetOptions(
      {{"compaction_options_fifo", "{max_table_files_size=23;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            23);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 0);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            false);

  ASSERT_OK(dbfull()->SetOptions({{"compaction_options_fifo", "{ttl=97}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            23);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 97);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            false);

  ASSERT_OK(dbfull()->SetOptions({{"compaction_options_fifo", "{ttl=203;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            23);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 203);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            false);

  ASSERT_OK(dbfull()->SetOptions(
      {{"compaction_options_fifo", "{allow_compaction=true;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            23);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 203);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            true);

  ASSERT_OK(dbfull()->SetOptions(
      {{"compaction_options_fifo", "{max_table_files_size=31;ttl=19;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            31);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 19);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            true);

  ASSERT_OK(dbfull()->SetOptions(
      {{"compaction_options_fifo",
        "{max_table_files_size=51;ttl=49;allow_compaction=true;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
            51);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.ttl, 49);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
            true);
}

TEST_F(DBTest, DynamicUniversalCompactionOptions) {
  Options options;
  options.create_if_missing = true;
  DestroyAndReopen(options);

  // Initial defaults
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 1);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
            2);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
            UINT_MAX);
  ASSERT_EQ(dbfull()
                ->GetOptions()
                .compaction_options_universal.max_size_amplification_percent,
            200);
  ASSERT_EQ(dbfull()
                ->GetOptions()
                .compaction_options_universal.compression_size_percent,
            -1);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
            kCompactionStopStyleTotalSize);
  ASSERT_EQ(
      dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
      false);

  ASSERT_OK(dbfull()->SetOptions(
      {{"compaction_options_universal", "{size_ratio=7;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 7);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
            2);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
            UINT_MAX);
  ASSERT_EQ(dbfull()
                ->GetOptions()
                .compaction_options_universal.max_size_amplification_percent,
            200);
  ASSERT_EQ(dbfull()
                ->GetOptions()
                .compaction_options_universal.compression_size_percent,
            -1);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
            kCompactionStopStyleTotalSize);
  ASSERT_EQ(
      dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
      false);

  ASSERT_OK(dbfull()->SetOptions(
      {{"compaction_options_universal", "{min_merge_width=11;}"}}));
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 7);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
            11);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
            UINT_MAX);
  ASSERT_EQ(dbfull()
                ->GetOptions()
                .compaction_options_universal.max_size_amplification_percent,
            200);
  ASSERT_EQ(dbfull()
                ->GetOptions()
                .compaction_options_universal.compression_size_percent,
            -1);
  ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
            kCompactionStopStyleTotalSize);
  ASSERT_EQ(
      dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
      false);
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, FileCreationRandomFailure) {
  Options options;
  options.env = env_;
  options.create_if_missing = true;
  options.write_buffer_size = 100000;  // Small write buffer
  options.target_file_size_base = 200000;
  options.max_bytes_for_level_base = 1000000;
  options.max_bytes_for_level_multiplier = 2;

  DestroyAndReopen(options);
  Random rnd(301);

  const int kCDTKeysPerBuffer = 4;
  const int kTestSize = kCDTKeysPerBuffer * 4096;
  const int kTotalIteration = 100;
  // the second half of the test involves in random failure
  // of file creation.
  const int kRandomFailureTest = kTotalIteration / 2;
  std::vector<std::string> values;
  for (int i = 0; i < kTestSize; ++i) {
    values.push_back("NOT_FOUND");
  }
  for (int j = 0; j < kTotalIteration; ++j) {
    if (j == kRandomFailureTest) {
      env_->non_writeable_rate_.store(90);
    }
    for (int k = 0; k < kTestSize; ++k) {
      // here we expect some of the Put fails.
      std::string value = RandomString(&rnd, 100);
      Status s = Put(Key(k), Slice(value));
      if (s.ok()) {
        // update the latest successful put
        values[k] = value;
      }
      // But everything before we simulate the failure-test should succeed.
      if (j < kRandomFailureTest) {
        ASSERT_OK(s);
      }
    }
  }

  // If rocksdb does not do the correct job, internal assert will fail here.
  dbfull()->TEST_WaitForFlushMemTable();
  dbfull()->TEST_WaitForCompact();

  // verify we have the latest successful update
  for (int k = 0; k < kTestSize; ++k) {
    auto v = Get(Key(k));
    ASSERT_EQ(v, values[k]);
  }

  // reopen and reverify we have the latest successful update
  env_->non_writeable_rate_.store(0);
  Reopen(options);
  for (int k = 0; k < kTestSize; ++k) {
    auto v = Get(Key(k));
    ASSERT_EQ(v, values[k]);
  }
}

#ifndef ROCKSDB_LITE
int CountIter(Iterator* iter, const Slice& key) {
  int count = 0;
  for (iter->Seek(key); iter->Valid() && iter->status() == Status::OK();
       iter->Next()) {
    count++;
  }
  return count;
}

// Create multiple SST files each with a different prefix_extractor config,
// verify iterators can read all SST files using the latest config.
TEST_F(DBTest, DynamicBloomFilterMultipleSST) {
  Options options;
  options.create_if_missing = true;
  options.prefix_extractor.reset(NewFixedPrefixTransform(1));
  options.disable_auto_compactions = true;
  // Enable prefix bloom for SST files
  BlockBasedTableOptions table_options;
  table_options.filter_policy.reset(NewBloomFilterPolicy(10, true));
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  DestroyAndReopen(options);

  ReadOptions read_options;
  read_options.prefix_same_as_start = true;

  // first SST with fixed:1 BF
  ASSERT_OK(Put("foo2", "bar2"));
  ASSERT_OK(Put("foo", "bar"));
  ASSERT_OK(Put("foq1", "bar1"));
  ASSERT_OK(Put("fpa", "0"));
  dbfull()->Flush(FlushOptions());
  Iterator* iter_old = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter_old, "foo"), 4);

  ASSERT_OK(dbfull()->SetOptions({{"prefix_extractor", "capped:3"}}));
  ASSERT_EQ(0, strcmp(dbfull()->GetOptions().prefix_extractor->Name(),
                      "rocksdb.CappedPrefix.3"));
  Iterator* iter = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter, "foo"), 2);

  // second SST with capped:3 BF
  ASSERT_OK(Put("foo3", "bar3"));
  ASSERT_OK(Put("foo4", "bar4"));
  ASSERT_OK(Put("foq5", "bar5"));
  ASSERT_OK(Put("fpb", "1"));
  dbfull()->Flush(FlushOptions());
  // BF is cappped:3 now
  Iterator* iter_tmp = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter_tmp, "foo"), 4);
  delete iter_tmp;

  ASSERT_OK(dbfull()->SetOptions({{"prefix_extractor", "fixed:2"}}));
  ASSERT_EQ(0, strcmp(dbfull()->GetOptions().prefix_extractor->Name(),
                      "rocksdb.FixedPrefix.2"));
  // third SST with fixed:2 BF
  ASSERT_OK(Put("foo6", "bar6"));
  ASSERT_OK(Put("foo7", "bar7"));
  ASSERT_OK(Put("foq8", "bar8"));
  ASSERT_OK(Put("fpc", "2"));
  dbfull()->Flush(FlushOptions());
  // BF is fixed:2 now
  iter_tmp = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter_tmp, "foo"), 9);
  delete iter_tmp;

  // TODO(Zhongyi): verify existing iterator cannot see newly inserted keys
  ASSERT_EQ(CountIter(iter_old, "foo"), 4);
  ASSERT_EQ(CountIter(iter, "foo"), 2);
  delete iter;
  delete iter_old;

  // keys in all three SSTs are visible to iterator
  Iterator* iter_all = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter_all, "foo"), 9);
  delete iter_all;
  ASSERT_OK(dbfull()->SetOptions({{"prefix_extractor", "capped:3"}}));
  ASSERT_EQ(0, strcmp(dbfull()->GetOptions().prefix_extractor->Name(),
                      "rocksdb.CappedPrefix.3"));
  iter_all = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter_all, "foo"), 6);
  delete iter_all;
  // TODO(Zhongyi): add test for cases where certain SST are skipped
  // Also verify BF related counters like BLOOM_FILTER_USEFUL
}

// Create a new column family in a running DB, change prefix_extractor
// dynamically, verify the iterator created on the new column family behaves
// as expected
TEST_F(DBTest, DynamicBloomFilterNewColumnFamily) {
  Options options = CurrentOptions();
  options.create_if_missing = true;
  options.prefix_extractor.reset(NewFixedPrefixTransform(1));
  options.disable_auto_compactions = true;
  // Enable prefix bloom for SST files
  BlockBasedTableOptions table_options;
  table_options.filter_policy.reset(NewBloomFilterPolicy(10, true));
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  CreateAndReopenWithCF({"pikachu"}, options);
  ReadOptions read_options;
  read_options.prefix_same_as_start = true;
  // create a new CF and set prefix_extractor dynamically
  options.prefix_extractor.reset(NewCappedPrefixTransform(3));
  CreateColumnFamilies({"ramen_dojo"}, options);
  ASSERT_EQ(0,
            strcmp(dbfull()->GetOptions(handles_[2]).prefix_extractor->Name(),
                   "rocksdb.CappedPrefix.3"));
  ASSERT_OK(Put(2, "foo3", "bar3"));
  ASSERT_OK(Put(2, "foo4", "bar4"));
  ASSERT_OK(Put(2, "foo5", "bar5"));
  ASSERT_OK(Put(2, "foq6", "bar6"));
  ASSERT_OK(Put(2, "fpq7", "bar7"));
  dbfull()->Flush(FlushOptions());
  Iterator* iter = db_->NewIterator(read_options, handles_[2]);
  ASSERT_EQ(CountIter(iter, "foo"), 3);
  delete iter;
  ASSERT_OK(
      dbfull()->SetOptions(handles_[2], {{"prefix_extractor", "fixed:2"}}));
  ASSERT_EQ(0,
            strcmp(dbfull()->GetOptions(handles_[2]).prefix_extractor->Name(),
                   "rocksdb.FixedPrefix.2"));
  iter = db_->NewIterator(read_options, handles_[2]);
  ASSERT_EQ(CountIter(iter, "foo"), 4);
  delete iter;
}

// Verify it's possible to change prefix_extractor at runtime and iterators
// behaves as expected
TEST_F(DBTest, DynamicBloomFilterOptions) {
  Options options;
  options.create_if_missing = true;
  options.prefix_extractor.reset(NewFixedPrefixTransform(1));
  options.disable_auto_compactions = true;
  // Enable prefix bloom for SST files
  BlockBasedTableOptions table_options;
  table_options.filter_policy.reset(NewBloomFilterPolicy(10, true));
  options.table_factory.reset(NewBlockBasedTableFactory(table_options));
  DestroyAndReopen(options);

  ASSERT_OK(Put("foo2", "bar2"));
  ASSERT_OK(Put("foo", "bar"));
  ASSERT_OK(Put("foo1", "bar1"));
  ASSERT_OK(Put("fpa", "0"));
  dbfull()->Flush(FlushOptions());
  ASSERT_OK(Put("foo3", "bar3"));
  ASSERT_OK(Put("foo4", "bar4"));
  ASSERT_OK(Put("foo5", "bar5"));
  ASSERT_OK(Put("fpb", "1"));
  dbfull()->Flush(FlushOptions());
  ASSERT_OK(Put("foo6", "bar6"));
  ASSERT_OK(Put("foo7", "bar7"));
  ASSERT_OK(Put("foo8", "bar8"));
  ASSERT_OK(Put("fpc", "2"));
  dbfull()->Flush(FlushOptions());

  ReadOptions read_options;
  read_options.prefix_same_as_start = true;
  Iterator* iter = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter, "foo"), 12);
  delete iter;
  Iterator* iter_old = db_->NewIterator(read_options);
  ASSERT_EQ(CountIter(iter_old, "foo"), 12);

  ASSERT_OK(dbfull()->SetOptions({{"prefix_extractor", "capped:3"}}));
  ASSERT_EQ(0, strcmp(dbfull()->GetOptions().prefix_extractor->Name(),
                      "rocksdb.CappedPrefix.3"));
  iter = db_->NewIterator(read_options);
  // "fp*" should be skipped
  ASSERT_EQ(CountIter(iter, "foo"), 9);
  delete iter;

  // iterator created before should not be affected and see all keys
  ASSERT_EQ(CountIter(iter_old, "foo"), 12);
  delete iter_old;
}

TEST_F(DBTest, DynamicMiscOptions) {
  // Test max_sequential_skip_in_iterations
  Options options;
  options.env = env_;
  options.create_if_missing = true;
  options.max_sequential_skip_in_iterations = 16;
  options.compression = kNoCompression;
  options.statistics = rocksdb::CreateDBStatistics();
  DestroyAndReopen(options);

  auto assert_reseek_count = [this, &options](int key_start, int num_reseek) {
    int key0 = key_start;
    int key1 = key_start + 1;
    int key2 = key_start + 2;
    Random rnd(301);
    ASSERT_OK(Put(Key(key0), RandomString(&rnd, 8)));
    for (int i = 0; i < 10; ++i) {
      ASSERT_OK(Put(Key(key1), RandomString(&rnd, 8)));
    }
    ASSERT_OK(Put(Key(key2), RandomString(&rnd, 8)));
    std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
    iter->Seek(Key(key1));
    ASSERT_TRUE(iter->Valid());
    ASSERT_EQ(iter->key().compare(Key(key1)), 0);
    iter->Next();
    ASSERT_TRUE(iter->Valid());
    ASSERT_EQ(iter->key().compare(Key(key2)), 0);
    ASSERT_EQ(num_reseek,
              TestGetTickerCount(options, NUMBER_OF_RESEEKS_IN_ITERATION));
  };
  // No reseek
  assert_reseek_count(100, 0);

  ASSERT_OK(dbfull()->SetOptions({{"max_sequential_skip_in_iterations", "4"}}));
  // Clear memtable and make new option effective
  dbfull()->TEST_FlushMemTable(true);
  // Trigger reseek
  assert_reseek_count(200, 1);

  ASSERT_OK(
      dbfull()->SetOptions({{"max_sequential_skip_in_iterations", "16"}}));
  // Clear memtable and make new option effective
  dbfull()->TEST_FlushMemTable(true);
  // No reseek
  assert_reseek_count(300, 1);

  MutableCFOptions mutable_cf_options;
  CreateAndReopenWithCF({"pikachu"}, options);
  // Test soft_pending_compaction_bytes_limit,
  // hard_pending_compaction_bytes_limit
  ASSERT_OK(dbfull()->SetOptions(
      handles_[1], {{"soft_pending_compaction_bytes_limit", "200"},
                    {"hard_pending_compaction_bytes_limit", "300"}}));
  ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
                                                     &mutable_cf_options));
  ASSERT_EQ(200, mutable_cf_options.soft_pending_compaction_bytes_limit);
  ASSERT_EQ(300, mutable_cf_options.hard_pending_compaction_bytes_limit);
  // Test report_bg_io_stats
  ASSERT_OK(
      dbfull()->SetOptions(handles_[1], {{"report_bg_io_stats", "true"}}));
  // sanity check
  ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
                                                     &mutable_cf_options));
  ASSERT_TRUE(mutable_cf_options.report_bg_io_stats);
  // Test compression
  // sanity check
  ASSERT_OK(dbfull()->SetOptions({{"compression", "kNoCompression"}}));
  ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[0],
                                                     &mutable_cf_options));
  ASSERT_EQ(CompressionType::kNoCompression, mutable_cf_options.compression);
  ASSERT_OK(dbfull()->SetOptions({{"compression", "kSnappyCompression"}}));
  ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[0],
                                                     &mutable_cf_options));
  ASSERT_EQ(CompressionType::kSnappyCompression,
            mutable_cf_options.compression);
  // Test paranoid_file_checks already done in db_block_cache_test
  ASSERT_OK(
      dbfull()->SetOptions(handles_[1], {{"paranoid_file_checks", "true"}}));
  ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
                                                     &mutable_cf_options));
  ASSERT_TRUE(mutable_cf_options.report_bg_io_stats);
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, L0L1L2AndUpHitCounter) {
  Options options = CurrentOptions();
  options.write_buffer_size = 32 * 1024;
  options.target_file_size_base = 32 * 1024;
  options.level0_file_num_compaction_trigger = 2;
  options.level0_slowdown_writes_trigger = 2;
  options.level0_stop_writes_trigger = 4;
  options.max_bytes_for_level_base = 64 * 1024;
  options.max_write_buffer_number = 2;
  options.max_background_compactions = 8;
  options.max_background_flushes = 8;
  options.statistics = rocksdb::CreateDBStatistics();
  CreateAndReopenWithCF({"mypikachu"}, options);

  int numkeys = 20000;
  for (int i = 0; i < numkeys; i++) {
    ASSERT_OK(Put(1, Key(i), "val"));
  }
  ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L0));
  ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L1));
  ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L2_AND_UP));

  ASSERT_OK(Flush(1));
  dbfull()->TEST_WaitForCompact();

  for (int i = 0; i < numkeys; i++) {
    ASSERT_EQ(Get(1, Key(i)), "val");
  }

  ASSERT_GT(TestGetTickerCount(options, GET_HIT_L0), 100);
  ASSERT_GT(TestGetTickerCount(options, GET_HIT_L1), 100);
  ASSERT_GT(TestGetTickerCount(options, GET_HIT_L2_AND_UP), 100);

  ASSERT_EQ(numkeys, TestGetTickerCount(options, GET_HIT_L0) +
                         TestGetTickerCount(options, GET_HIT_L1) +
                         TestGetTickerCount(options, GET_HIT_L2_AND_UP));
}

TEST_F(DBTest, EncodeDecompressedBlockSizeTest) {
  // iter 0 -- zlib
  // iter 1 -- bzip2
  // iter 2 -- lz4
  // iter 3 -- lz4HC
  // iter 4 -- xpress
  CompressionType compressions[] = {kZlibCompression, kBZip2Compression,
                                    kLZ4Compression, kLZ4HCCompression,
                                    kXpressCompression};
  for (auto comp : compressions) {
    if (!CompressionTypeSupported(comp)) {
      continue;
    }
    // first_table_version 1 -- generate with table_version == 1, read with
    // table_version == 2
    // first_table_version 2 -- generate with table_version == 2, read with
    // table_version == 1
    for (int first_table_version = 1; first_table_version <= 2;
         ++first_table_version) {
      BlockBasedTableOptions table_options;
      table_options.format_version = first_table_version;
      table_options.filter_policy.reset(NewBloomFilterPolicy(10));
      Options options = CurrentOptions();
      options.table_factory.reset(NewBlockBasedTableFactory(table_options));
      options.create_if_missing = true;
      options.compression = comp;
      DestroyAndReopen(options);

      int kNumKeysWritten = 1000;

      Random rnd(301);
      for (int i = 0; i < kNumKeysWritten; ++i) {
        // compressible string
        ASSERT_OK(Put(Key(i), RandomString(&rnd, 128) + std::string(128, 'a')));
      }

      table_options.format_version = first_table_version == 1 ? 2 : 1;
      options.table_factory.reset(NewBlockBasedTableFactory(table_options));
      Reopen(options);
      for (int i = 0; i < kNumKeysWritten; ++i) {
        auto r = Get(Key(i));
        ASSERT_EQ(r.substr(128), std::string(128, 'a'));
      }
    }
  }
}

TEST_F(DBTest, CloseSpeedup) {
  Options options = CurrentOptions();
  options.compaction_style = kCompactionStyleLevel;
  options.write_buffer_size = 110 << 10;  // 110KB
  options.arena_block_size = 4 << 10;
  options.level0_file_num_compaction_trigger = 2;
  options.num_levels = 4;
  options.max_bytes_for_level_base = 400 * 1024;
  options.max_write_buffer_number = 16;

  // Block background threads
  env_->SetBackgroundThreads(1, Env::LOW);
  env_->SetBackgroundThreads(1, Env::HIGH);
  test::SleepingBackgroundTask sleeping_task_low;
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  test::SleepingBackgroundTask sleeping_task_high;
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
                 &sleeping_task_high, Env::Priority::HIGH);

  std::vector<std::string> filenames;
  env_->GetChildren(dbname_, &filenames);
  // Delete archival files.
  for (size_t i = 0; i < filenames.size(); ++i) {
    env_->DeleteFile(dbname_ + "/" + filenames[i]);
  }
  env_->DeleteDir(dbname_);
  DestroyAndReopen(options);

  rocksdb::SyncPoint::GetInstance()->EnableProcessing();
  env_->SetBackgroundThreads(1, Env::LOW);
  env_->SetBackgroundThreads(1, Env::HIGH);
  Random rnd(301);
  int key_idx = 0;

  // First three 110KB files are not going to level 2
  // After that, (100K, 200K)
  for (int num = 0; num < 5; num++) {
    GenerateNewFile(&rnd, &key_idx, true);
  }

  ASSERT_EQ(0, GetSstFileCount(dbname_));

  Close();
  ASSERT_EQ(0, GetSstFileCount(dbname_));

  // Unblock background threads
  sleeping_task_high.WakeUp();
  sleeping_task_high.WaitUntilDone();
  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilDone();

  Destroy(options);
}

class DelayedMergeOperator : public MergeOperator {
 private:
  DBTest* db_test_;

 public:
  explicit DelayedMergeOperator(DBTest* d) : db_test_(d) {}

  virtual bool FullMergeV2(const MergeOperationInput& /*merge_in*/,
                           MergeOperationOutput* merge_out) const override {
    db_test_->env_->addon_time_.fetch_add(1000);
    merge_out->new_value = "";
    return true;
  }

  virtual const char* Name() const override { return "DelayedMergeOperator"; }
};

TEST_F(DBTest, MergeTestTime) {
  std::string one, two, three;
  PutFixed64(&one, 1);
  PutFixed64(&two, 2);
  PutFixed64(&three, 3);

  // Enable time profiling
  SetPerfLevel(kEnableTime);
  this->env_->addon_time_.store(0);
  this->env_->time_elapse_only_sleep_ = true;
  this->env_->no_slowdown_ = true;
  Options options = CurrentOptions();
  options.statistics = rocksdb::CreateDBStatistics();
  options.merge_operator.reset(new DelayedMergeOperator(this));
  DestroyAndReopen(options);

  ASSERT_EQ(TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME), 0);
  db_->Put(WriteOptions(), "foo", one);
  ASSERT_OK(Flush());
  ASSERT_OK(db_->Merge(WriteOptions(), "foo", two));
  ASSERT_OK(Flush());
  ASSERT_OK(db_->Merge(WriteOptions(), "foo", three));
  ASSERT_OK(Flush());

  ReadOptions opt;
  opt.verify_checksums = true;
  opt.snapshot = nullptr;
  std::string result;
  db_->Get(opt, "foo", &result);

  ASSERT_EQ(1000000, TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));

  ReadOptions read_options;
  std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
  int count = 0;
  for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
    ASSERT_OK(iter->status());
    ++count;
  }

  ASSERT_EQ(1, count);
  ASSERT_EQ(2000000, TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
#ifdef ROCKSDB_USING_THREAD_STATUS
  ASSERT_GT(TestGetTickerCount(options, FLUSH_WRITE_BYTES), 0);
#endif  // ROCKSDB_USING_THREAD_STATUS
  this->env_->time_elapse_only_sleep_ = false;
}

#ifndef ROCKSDB_LITE
TEST_P(DBTestWithParam, MergeCompactionTimeTest) {
  SetPerfLevel(kEnableTime);
  Options options = CurrentOptions();
  options.compaction_filter_factory = std::make_shared<KeepFilterFactory>();
  options.statistics = rocksdb::CreateDBStatistics();
  options.merge_operator.reset(new DelayedMergeOperator(this));
  options.compaction_style = kCompactionStyleUniversal;
  options.max_subcompactions = max_subcompactions_;
  DestroyAndReopen(options);

  for (int i = 0; i < 1000; i++) {
    ASSERT_OK(db_->Merge(WriteOptions(), "foo", "TEST"));
    ASSERT_OK(Flush());
  }
  dbfull()->TEST_WaitForFlushMemTable();
  dbfull()->TEST_WaitForCompact();

  ASSERT_NE(TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME), 0);
}

TEST_P(DBTestWithParam, FilterCompactionTimeTest) {
  Options options = CurrentOptions();
  options.compaction_filter_factory =
      std::make_shared<DelayFilterFactory>(this);
  options.disable_auto_compactions = true;
  options.create_if_missing = true;
  options.statistics = rocksdb::CreateDBStatistics();
  options.max_subcompactions = max_subcompactions_;
  DestroyAndReopen(options);

  // put some data
  for (int table = 0; table < 4; ++table) {
    for (int i = 0; i < 10 + table; ++i) {
      Put(ToString(table * 100 + i), "val");
    }
    Flush();
  }

  CompactRangeOptions cro;
  cro.exclusive_manual_compaction = exclusive_manual_compaction_;
  ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
  ASSERT_EQ(0U, CountLiveFiles());

  Reopen(options);

  Iterator* itr = db_->NewIterator(ReadOptions());
  itr->SeekToFirst();
  ASSERT_NE(TestGetTickerCount(options, FILTER_OPERATION_TOTAL_TIME), 0);
  delete itr;
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, TestLogCleanup) {
  Options options = CurrentOptions();
  options.write_buffer_size = 64 * 1024;  // very small
  // only two memtables allowed ==> only two log files
  options.max_write_buffer_number = 2;
  Reopen(options);

  for (int i = 0; i < 100000; ++i) {
    Put(Key(i), "val");
    // only 2 memtables will be alive, so logs_to_free needs to always be below
    // 2
    ASSERT_LT(dbfull()->TEST_LogsToFreeSize(), static_cast<size_t>(3));
  }
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, EmptyCompactedDB) {
  Options options = CurrentOptions();
  options.max_open_files = -1;
  Close();
  ASSERT_OK(ReadOnlyReopen(options));
  Status s = Put("new", "value");
  ASSERT_TRUE(s.IsNotSupported());
  Close();
}
#endif  // ROCKSDB_LITE

#ifndef ROCKSDB_LITE
TEST_F(DBTest, SuggestCompactRangeTest) {
  class CompactionFilterFactoryGetContext : public CompactionFilterFactory {
   public:
    virtual std::unique_ptr<CompactionFilter> CreateCompactionFilter(
        const CompactionFilter::Context& context) override {
      saved_context = context;
      std::unique_ptr<CompactionFilter> empty_filter;
      return empty_filter;
    }
    const char* Name() const override {
      return "CompactionFilterFactoryGetContext";
    }
    static bool IsManual(CompactionFilterFactory* compaction_filter_factory) {
      return reinterpret_cast<CompactionFilterFactoryGetContext*>(
                 compaction_filter_factory)
          ->saved_context.is_manual_compaction;
    }
    CompactionFilter::Context saved_context;
  };

  Options options = CurrentOptions();
  options.memtable_factory.reset(
      new SpecialSkipListFactory(DBTestBase::kNumKeysByGenerateNewRandomFile));
  options.compaction_style = kCompactionStyleLevel;
  options.compaction_filter_factory.reset(
      new CompactionFilterFactoryGetContext());
  options.write_buffer_size = 200 << 10;
  options.arena_block_size = 4 << 10;
  options.level0_file_num_compaction_trigger = 4;
  options.num_levels = 4;
  options.compression = kNoCompression;
  options.max_bytes_for_level_base = 450 << 10;
  options.target_file_size_base = 98 << 10;
  options.max_compaction_bytes = static_cast<uint64_t>(1) << 60;  // inf

  Reopen(options);

  Random rnd(301);

  for (int num = 0; num < 3; num++) {
    GenerateNewRandomFile(&rnd);
  }

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("0,4", FilesPerLevel(0));
  ASSERT_TRUE(!CompactionFilterFactoryGetContext::IsManual(
      options.compaction_filter_factory.get()));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("1,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("2,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("3,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("0,4,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("1,4,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("2,4,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("3,4,4", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("0,4,8", FilesPerLevel(0));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ("1,4,8", FilesPerLevel(0));

  // compact it three times
  for (int i = 0; i < 3; ++i) {
    ASSERT_OK(experimental::SuggestCompactRange(db_, nullptr, nullptr));
    dbfull()->TEST_WaitForCompact();
  }

  // All files are compacted
  ASSERT_EQ(0, NumTableFilesAtLevel(0));
  ASSERT_EQ(0, NumTableFilesAtLevel(1));

  GenerateNewRandomFile(&rnd);
  ASSERT_EQ(1, NumTableFilesAtLevel(0));

  // nonoverlapping with the file on level 0
  Slice start("a"), end("b");
  ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
  dbfull()->TEST_WaitForCompact();

  // should not compact the level 0 file
  ASSERT_EQ(1, NumTableFilesAtLevel(0));

  start = Slice("j");
  end = Slice("m");
  ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
  dbfull()->TEST_WaitForCompact();
  ASSERT_TRUE(CompactionFilterFactoryGetContext::IsManual(
      options.compaction_filter_factory.get()));

  // now it should compact the level 0 file
  ASSERT_EQ(0, NumTableFilesAtLevel(0));
  ASSERT_EQ(1, NumTableFilesAtLevel(1));
}

TEST_F(DBTest, PromoteL0) {
  Options options = CurrentOptions();
  options.disable_auto_compactions = true;
  options.write_buffer_size = 10 * 1024 * 1024;
  DestroyAndReopen(options);

  // non overlapping ranges
  std::vector<std::pair<int32_t, int32_t>> ranges = {
      {81, 160}, {0, 80}, {161, 240}, {241, 320}};

  int32_t value_size = 10 * 1024;  // 10 KB

  Random rnd(301);
  std::map<int32_t, std::string> values;
  for (const auto& range : ranges) {
    for (int32_t j = range.first; j < range.second; j++) {
      values[j] = RandomString(&rnd, value_size);
      ASSERT_OK(Put(Key(j), values[j]));
    }
    ASSERT_OK(Flush());
  }

  int32_t level0_files = NumTableFilesAtLevel(0, 0);
  ASSERT_EQ(level0_files, ranges.size());
  ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0);  // No files in L1

  // Promote L0 level to L2.
  ASSERT_OK(experimental::PromoteL0(db_, db_->DefaultColumnFamily(), 2));
  // We expect that all the files were trivially moved from L0 to L2
  ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0);
  ASSERT_EQ(NumTableFilesAtLevel(2, 0), level0_files);

  for (const auto& kv : values) {
    ASSERT_EQ(Get(Key(kv.first)), kv.second);
  }
}

TEST_F(DBTest, PromoteL0Failure) {
  Options options = CurrentOptions();
  options.disable_auto_compactions = true;
  options.write_buffer_size = 10 * 1024 * 1024;
  DestroyAndReopen(options);

  // Produce two L0 files with overlapping ranges.
  ASSERT_OK(Put(Key(0), ""));
  ASSERT_OK(Put(Key(3), ""));
  ASSERT_OK(Flush());
  ASSERT_OK(Put(Key(1), ""));
  ASSERT_OK(Flush());

  Status status;
  // Fails because L0 has overlapping files.
  status = experimental::PromoteL0(db_, db_->DefaultColumnFamily());
  ASSERT_TRUE(status.IsInvalidArgument());

  ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
  // Now there is a file in L1.
  ASSERT_GE(NumTableFilesAtLevel(1, 0), 1);

  ASSERT_OK(Put(Key(5), ""));
  ASSERT_OK(Flush());
  // Fails because L1 is non-empty.
  status = experimental::PromoteL0(db_, db_->DefaultColumnFamily());
  ASSERT_TRUE(status.IsInvalidArgument());
}

// Github issue #596
TEST_F(DBTest, CompactRangeWithEmptyBottomLevel) {
  const int kNumLevels = 2;
  const int kNumL0Files = 2;
  Options options = CurrentOptions();
  options.disable_auto_compactions = true;
  options.num_levels = kNumLevels;
  DestroyAndReopen(options);

  Random rnd(301);
  for (int i = 0; i < kNumL0Files; ++i) {
    ASSERT_OK(Put(Key(0), RandomString(&rnd, 1024)));
    Flush();
  }
  ASSERT_EQ(NumTableFilesAtLevel(0), kNumL0Files);
  ASSERT_EQ(NumTableFilesAtLevel(1), 0);

  ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
  ASSERT_EQ(NumTableFilesAtLevel(0), 0);
  ASSERT_EQ(NumTableFilesAtLevel(1), kNumL0Files);
}
#endif  // ROCKSDB_LITE

TEST_F(DBTest, AutomaticConflictsWithManualCompaction) {
  const int kNumL0Files = 50;
  Options options = CurrentOptions();
  options.level0_file_num_compaction_trigger = 4;
  // never slowdown / stop
  options.level0_slowdown_writes_trigger = 999999;
  options.level0_stop_writes_trigger = 999999;
  options.max_background_compactions = 10;
  DestroyAndReopen(options);

  // schedule automatic compactions after the manual one starts, but before it
  // finishes to ensure conflict.
  rocksdb::SyncPoint::GetInstance()->LoadDependency(
      {{"DBImpl::BackgroundCompaction:Start",
        "DBTest::AutomaticConflictsWithManualCompaction:PrePuts"},
       {"DBTest::AutomaticConflictsWithManualCompaction:PostPuts",
        "DBImpl::BackgroundCompaction:NonTrivial:AfterRun"}});
  std::atomic<int> callback_count(0);
  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "DBImpl::MaybeScheduleFlushOrCompaction:Conflict",
      [&](void* /*arg*/) { callback_count.fetch_add(1); });
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  Random rnd(301);
  for (int i = 0; i < 2; ++i) {
    // put two keys to ensure no trivial move
    for (int j = 0; j < 2; ++j) {
      ASSERT_OK(Put(Key(j), RandomString(&rnd, 1024)));
    }
    ASSERT_OK(Flush());
  }
  port::Thread manual_compaction_thread([this]() {
    CompactRangeOptions croptions;
    croptions.exclusive_manual_compaction = true;
    ASSERT_OK(db_->CompactRange(croptions, nullptr, nullptr));
  });

  TEST_SYNC_POINT("DBTest::AutomaticConflictsWithManualCompaction:PrePuts");
  for (int i = 0; i < kNumL0Files; ++i) {
    // put two keys to ensure no trivial move
    for (int j = 0; j < 2; ++j) {
      ASSERT_OK(Put(Key(j), RandomString(&rnd, 1024)));
    }
    ASSERT_OK(Flush());
  }
  TEST_SYNC_POINT("DBTest::AutomaticConflictsWithManualCompaction:PostPuts");

  ASSERT_GE(callback_count.load(), 1);
  for (int i = 0; i < 2; ++i) {
    ASSERT_NE("NOT_FOUND", Get(Key(i)));
  }
  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  manual_compaction_thread.join();
  dbfull()->TEST_WaitForCompact();
}

// Github issue #595
// Large write batch with column families
TEST_F(DBTest, LargeBatchWithColumnFamilies) {
  Options options = CurrentOptions();
  options.env = env_;
  options.write_buffer_size = 100000;  // Small write buffer
  CreateAndReopenWithCF({"pikachu"}, options);
  int64_t j = 0;
  for (int i = 0; i < 5; i++) {
    for (int pass = 1; pass <= 3; pass++) {
      WriteBatch batch;
      size_t write_size = 1024 * 1024 * (5 + i);
      fprintf(stderr, "prepare: %" ROCKSDB_PRIszt " MB, pass:%d\n",
              (write_size / 1024 / 1024), pass);
      for (;;) {
        std::string data(3000, j++ % 127 + 20);
        data += ToString(j);
        batch.Put(handles_[0], Slice(data), Slice(data));
        if (batch.GetDataSize() > write_size) {
          break;
        }
      }
      fprintf(stderr, "write: %" ROCKSDB_PRIszt " MB\n",
              (batch.GetDataSize() / 1024 / 1024));
      ASSERT_OK(dbfull()->Write(WriteOptions(), &batch));
      fprintf(stderr, "done\n");
    }
  }
  // make sure we can re-open it.
  ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}

// Make sure that Flushes can proceed in parallel with CompactRange()
TEST_F(DBTest, FlushesInParallelWithCompactRange) {
  // iter == 0 -- leveled
  // iter == 1 -- leveled, but throw in a flush between two levels compacting
  // iter == 2 -- universal
  for (int iter = 0; iter < 3; ++iter) {
    Options options = CurrentOptions();
    if (iter < 2) {
      options.compaction_style = kCompactionStyleLevel;
    } else {
      options.compaction_style = kCompactionStyleUniversal;
    }
    options.write_buffer_size = 110 << 10;
    options.level0_file_num_compaction_trigger = 4;
    options.num_levels = 4;
    options.compression = kNoCompression;
    options.max_bytes_for_level_base = 450 << 10;
    options.target_file_size_base = 98 << 10;
    options.max_write_buffer_number = 2;

    DestroyAndReopen(options);

    Random rnd(301);
    for (int num = 0; num < 14; num++) {
      GenerateNewRandomFile(&rnd);
    }

    if (iter == 1) {
      rocksdb::SyncPoint::GetInstance()->LoadDependency(
          {{"DBImpl::RunManualCompaction()::1",
            "DBTest::FlushesInParallelWithCompactRange:1"},
           {"DBTest::FlushesInParallelWithCompactRange:2",
            "DBImpl::RunManualCompaction()::2"}});
    } else {
      rocksdb::SyncPoint::GetInstance()->LoadDependency(
          {{"CompactionJob::Run():Start",
            "DBTest::FlushesInParallelWithCompactRange:1"},
           {"DBTest::FlushesInParallelWithCompactRange:2",
            "CompactionJob::Run():End"}});
    }
    rocksdb::SyncPoint::GetInstance()->EnableProcessing();

    std::vector<port::Thread> threads;
    threads.emplace_back([&]() { Compact("a", "z"); });

    TEST_SYNC_POINT("DBTest::FlushesInParallelWithCompactRange:1");

    // this has to start a flush. if flushes are blocked, this will try to
    // create
    // 3 memtables, and that will fail because max_write_buffer_number is 2
    for (int num = 0; num < 3; num++) {
      GenerateNewRandomFile(&rnd, /* nowait */ true);
    }

    TEST_SYNC_POINT("DBTest::FlushesInParallelWithCompactRange:2");

    for (auto& t : threads) {
      t.join();
    }
    rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  }
}

TEST_F(DBTest, DelayedWriteRate) {
  const int kEntriesPerMemTable = 100;
  const int kTotalFlushes = 12;

  Options options = CurrentOptions();
  env_->SetBackgroundThreads(1, Env::LOW);
  options.env = env_;
  env_->no_slowdown_ = true;
  options.write_buffer_size = 100000000;
  options.max_write_buffer_number = 256;
  options.max_background_compactions = 1;
  options.level0_file_num_compaction_trigger = 3;
  options.level0_slowdown_writes_trigger = 3;
  options.level0_stop_writes_trigger = 999999;
  options.delayed_write_rate = 20000000;  // Start with 200MB/s
  options.memtable_factory.reset(
      new SpecialSkipListFactory(kEntriesPerMemTable));

  CreateAndReopenWithCF({"pikachu"}, options);

  // Block compactions
  test::SleepingBackgroundTask sleeping_task_low;
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);

  for (int i = 0; i < 3; i++) {
    Put(Key(i), std::string(10000, 'x'));
    Flush();
  }

  // These writes will be slowed down to 1KB/s
  uint64_t estimated_sleep_time = 0;
  Random rnd(301);
  Put("", "");
  uint64_t cur_rate = options.delayed_write_rate;
  for (int i = 0; i < kTotalFlushes; i++) {
    uint64_t size_memtable = 0;
    for (int j = 0; j < kEntriesPerMemTable; j++) {
      auto rand_num = rnd.Uniform(20);
      // Spread the size range to more.
      size_t entry_size = rand_num * rand_num * rand_num;
      WriteOptions wo;
      Put(Key(i), std::string(entry_size, 'x'), wo);
      size_memtable += entry_size + 18;
      // Occasionally sleep a while
      if (rnd.Uniform(20) == 6) {
        env_->SleepForMicroseconds(2666);
      }
    }
    dbfull()->TEST_WaitForFlushMemTable();
    estimated_sleep_time += size_memtable * 1000000u / cur_rate;
    // Slow down twice. One for memtable switch and one for flush finishes.
    cur_rate = static_cast<uint64_t>(static_cast<double>(cur_rate) *
                                     kIncSlowdownRatio * kIncSlowdownRatio);
  }
  // Estimate the total sleep time fall into the rough range.
  ASSERT_GT(env_->addon_time_.load(),
            static_cast<int64_t>(estimated_sleep_time / 2));
  ASSERT_LT(env_->addon_time_.load(),
            static_cast<int64_t>(estimated_sleep_time * 2));

  env_->no_slowdown_ = false;
  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilDone();
}

TEST_F(DBTest, HardLimit) {
  Options options = CurrentOptions();
  options.env = env_;
  env_->SetBackgroundThreads(1, Env::LOW);
  options.max_write_buffer_number = 256;
  options.write_buffer_size = 110 << 10;  // 110KB
  options.arena_block_size = 4 * 1024;
  options.level0_file_num_compaction_trigger = 4;
  options.level0_slowdown_writes_trigger = 999999;
  options.level0_stop_writes_trigger = 999999;
  options.hard_pending_compaction_bytes_limit = 800 << 10;
  options.max_bytes_for_level_base = 10000000000u;
  options.max_background_compactions = 1;
  options.memtable_factory.reset(
      new SpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));

  env_->SetBackgroundThreads(1, Env::LOW);
  test::SleepingBackgroundTask sleeping_task_low;
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);

  CreateAndReopenWithCF({"pikachu"}, options);

  std::atomic<int> callback_count(0);
  rocksdb::SyncPoint::GetInstance()->SetCallBack("DBImpl::DelayWrite:Wait",
                                                 [&](void* /*arg*/) {
                                                   callback_count.fetch_add(1);
                                                   sleeping_task_low.WakeUp();
                                                 });
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  Random rnd(301);
  int key_idx = 0;
  for (int num = 0; num < 5; num++) {
    GenerateNewFile(&rnd, &key_idx, true);
    dbfull()->TEST_WaitForFlushMemTable();
  }

  ASSERT_EQ(0, callback_count.load());

  for (int num = 0; num < 5; num++) {
    GenerateNewFile(&rnd, &key_idx, true);
    dbfull()->TEST_WaitForFlushMemTable();
  }
  ASSERT_GE(callback_count.load(), 1);

  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  sleeping_task_low.WaitUntilDone();
}

#if !defined(ROCKSDB_LITE) && !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
class WriteStallListener : public EventListener {
 public:
  WriteStallListener()
      : cond_(&mutex_),
        condition_(WriteStallCondition::kNormal),
        expected_(WriteStallCondition::kNormal),
        expected_set_(false) {}
  void OnStallConditionsChanged(const WriteStallInfo& info) override {
    MutexLock l(&mutex_);
    condition_ = info.condition.cur;
    if (expected_set_ && condition_ == expected_) {
      cond_.Signal();
      expected_set_ = false;
    }
  }
  bool CheckCondition(WriteStallCondition expected) {
    MutexLock l(&mutex_);
    if (expected != condition_) {
      expected_ = expected;
      expected_set_ = true;
      while (expected != condition_) {
        // We bail out on timeout 500 milliseconds
        const uint64_t timeout_us = 500000;
        if (cond_.TimedWait(timeout_us)) {
          expected_set_ = false;
          return false;
        }
      }
    }
    return true;
  }
 private:
  port::Mutex   mutex_;
  port::CondVar cond_;
  WriteStallCondition condition_;
  WriteStallCondition expected_;
  bool                expected_set_;
};

TEST_F(DBTest, SoftLimit) {
  Options options = CurrentOptions();
  options.env = env_;
  options.write_buffer_size = 100000;  // Small write buffer
  options.max_write_buffer_number = 256;
  options.level0_file_num_compaction_trigger = 1;
  options.level0_slowdown_writes_trigger = 3;
  options.level0_stop_writes_trigger = 999999;
  options.delayed_write_rate = 20000;  // About 200KB/s limited rate
  options.soft_pending_compaction_bytes_limit = 160000;
  options.target_file_size_base = 99999999;  // All into one file
  options.max_bytes_for_level_base = 50000;
  options.max_bytes_for_level_multiplier = 10;
  options.max_background_compactions = 1;
  options.compression = kNoCompression;
  WriteStallListener* listener = new WriteStallListener();
  options.listeners.emplace_back(listener);

  Reopen(options);

  // Generating 360KB in Level 3
  for (int i = 0; i < 72; i++) {
    Put(Key(i), std::string(5000, 'x'));
    if (i % 10 == 0) {
      Flush();
    }
  }
  dbfull()->TEST_WaitForCompact();
  MoveFilesToLevel(3);

  // Generating 360KB in Level 2
  for (int i = 0; i < 72; i++) {
    Put(Key(i), std::string(5000, 'x'));
    if (i % 10 == 0) {
      Flush();
    }
  }
  dbfull()->TEST_WaitForCompact();
  MoveFilesToLevel(2);

  Put(Key(0), "");

  test::SleepingBackgroundTask sleeping_task_low;
  // Block compactions
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  sleeping_task_low.WaitUntilSleeping();

  // Create 3 L0 files, making score of L0 to be 3.
  for (int i = 0; i < 3; i++) {
    Put(Key(i), std::string(5000, 'x'));
    Put(Key(100 - i), std::string(5000, 'x'));
    // Flush the file. File size is around 30KB.
    Flush();
  }
  ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
  ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));

  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilDone();
  sleeping_task_low.Reset();
  dbfull()->TEST_WaitForCompact();

  // Now there is one L1 file but doesn't trigger soft_rate_limit
  // The L1 file size is around 30KB.
  ASSERT_EQ(NumTableFilesAtLevel(1), 1);
  ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
  ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));

  // Only allow one compactin going through.
  rocksdb::SyncPoint::GetInstance()->SetCallBack(
      "BackgroundCallCompaction:0", [&](void* /*arg*/) {
        // Schedule a sleeping task.
        sleeping_task_low.Reset();
        env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
                       &sleeping_task_low, Env::Priority::LOW);
      });

  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
                 Env::Priority::LOW);
  sleeping_task_low.WaitUntilSleeping();
  // Create 3 L0 files, making score of L0 to be 3
  for (int i = 0; i < 3; i++) {
    Put(Key(10 + i), std::string(5000, 'x'));
    Put(Key(90 - i), std::string(5000, 'x'));
    // Flush the file. File size is around 30KB.
    Flush();
  }

  // Wake up sleep task to enable compaction to run and waits
  // for it to go to sleep state again to make sure one compaction
  // goes through.
  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilSleeping();

  // Now there is one L1 file (around 60KB) which exceeds 50KB base by 10KB
  // Given level multiplier 10, estimated pending compaction is around 100KB
  // doesn't trigger soft_pending_compaction_bytes_limit
  ASSERT_EQ(NumTableFilesAtLevel(1), 1);
  ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
  ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));

  // Create 3 L0 files, making score of L0 to be 3, higher than L0.
  for (int i = 0; i < 3; i++) {
    Put(Key(20 + i), std::string(5000, 'x'));
    Put(Key(80 - i), std::string(5000, 'x'));
    // Flush the file. File size is around 30KB.
    Flush();
  }
  // Wake up sleep task to enable compaction to run and waits
  // for it to go to sleep state again to make sure one compaction
  // goes through.
  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilSleeping();

  // Now there is one L1 file (around 90KB) which exceeds 50KB base by 40KB
  // L2 size is 360KB, so the estimated level fanout 4, estimated pending
  // compaction is around 200KB
  // triggerring soft_pending_compaction_bytes_limit
  ASSERT_EQ(NumTableFilesAtLevel(1), 1);
  ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
  ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));

  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilSleeping();

  ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
  ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));

  // shrink level base so L2 will hit soft limit easier.
  ASSERT_OK(dbfull()->SetOptions({
      {"max_bytes_for_level_base", "5000"},
  }));

  Put("", "");
  Flush();
  ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
  ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));

  sleeping_task_low.WaitUntilSleeping();
  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  sleeping_task_low.WakeUp();
  sleeping_task_low.WaitUntilDone();
}

TEST_F(DBTest, LastWriteBufferDelay) {
  Options options = CurrentOptions();
  options.env = env_;
  options.write_buffer_size = 100000;
  options.max_write_buffer_number = 4;
  options.delayed_write_rate = 20000;
  options.compression = kNoCompression;
  options.disable_auto_compactions = true;
  int kNumKeysPerMemtable = 3;
  options.memtable_factory.reset(
      new SpecialSkipListFactory(kNumKeysPerMemtable));

  Reopen(options);
  test::SleepingBackgroundTask sleeping_task;
  // Block flushes
  env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task,
                 Env::Priority::HIGH);
  sleeping_task.WaitUntilSleeping();

  // Create 3 L0 files, making score of L0 to be 3.
  for (int i = 0; i < 3; i++) {
    // Fill one mem table
    for (int j = 0; j < kNumKeysPerMemtable; j++) {
      Put(Key(j), "");
    }
    ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
  }
  // Inserting a new entry would create a new mem table, triggering slow down.
  Put(Key(0), "");
  ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());

  sleeping_task.WakeUp();
  sleeping_task.WaitUntilDone();
}
#endif  // !defined(ROCKSDB_LITE) && !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)

TEST_F(DBTest, FailWhenCompressionNotSupportedTest) {
  CompressionType compressions[] = {kZlibCompression, kBZip2Compression,
                                    kLZ4Compression, kLZ4HCCompression,
                                    kXpressCompression};
  for (auto comp : compressions) {
    if (!CompressionTypeSupported(comp)) {
      // not supported, we should fail the Open()
      Options options = CurrentOptions();
      options.compression = comp;
      ASSERT_TRUE(!TryReopen(options).ok());
      // Try if CreateColumnFamily also fails
      options.compression = kNoCompression;
      ASSERT_OK(TryReopen(options));
      ColumnFamilyOptions cf_options(options);
      cf_options.compression = comp;
      ColumnFamilyHandle* handle;
      ASSERT_TRUE(!db_->CreateColumnFamily(cf_options, "name", &handle).ok());
    }
  }
}

#ifndef ROCKSDB_LITE
TEST_F(DBTest, RowCache) {
  Options options = CurrentOptions();
  options.statistics = rocksdb::CreateDBStatistics();
  options.row_cache = NewLRUCache(8192);
  DestroyAndReopen(options);

  ASSERT_OK(Put("foo", "bar"));
  ASSERT_OK(Flush());

  ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
  ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 0);
  ASSERT_EQ(Get("foo"), "bar");
  ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
  ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
  ASSERT_EQ(Get("foo"), "bar");
  ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 1);
  ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
}

TEST_F(DBTest, PinnableSliceAndRowCache) {
  Options options = CurrentOptions();
  options.statistics = rocksdb::CreateDBStatistics();
  options.row_cache = NewLRUCache(8192);
  DestroyAndReopen(options);

  ASSERT_OK(Put("foo", "bar"));
  ASSERT_OK(Flush());

  ASSERT_EQ(Get("foo"), "bar");
  ASSERT_EQ(
      reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
      1);

  {
    PinnableSlice pin_slice;
    ASSERT_EQ(Get("foo", &pin_slice), Status::OK());
    ASSERT_EQ(pin_slice.ToString(), "bar");
    // Entry is already in cache, lookup will remove the element from lru
    ASSERT_EQ(
        reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
        0);
  }
  // After PinnableSlice destruction element is added back in LRU
  ASSERT_EQ(
      reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
      1);
}

#endif  // ROCKSDB_LITE

TEST_F(DBTest, DeletingOldWalAfterDrop) {
  rocksdb::SyncPoint::GetInstance()->LoadDependency(
      {{"Test:AllowFlushes", "DBImpl::BGWorkFlush"},
       {"DBImpl::BGWorkFlush:done", "Test:WaitForFlush"}});
  rocksdb::SyncPoint::GetInstance()->ClearTrace();

  rocksdb::SyncPoint::GetInstance()->DisableProcessing();
  Options options = CurrentOptions();
  options.max_total_wal_size = 8192;
  options.compression = kNoCompression;
  options.write_buffer_size = 1 << 20;
  options.level0_file_num_compaction_trigger = (1 << 30);
  options.level0_slowdown_writes_trigger = (1 << 30);
  options.level0_stop_writes_trigger = (1 << 30);
  options.disable_auto_compactions = true;
  DestroyAndReopen(options);
  rocksdb::SyncPoint::GetInstance()->EnableProcessing();

  CreateColumnFamilies({"cf1", "cf2"}, options);
  ASSERT_OK(Put(0, "key1", DummyString(8192)));
  ASSERT_OK(Put(0, "key2", DummyString(8192)));
  // the oldest wal should now be getting_flushed
  ASSERT_OK(db_->DropColumnFamily(handles_[0]));
  // all flushes should now do nothing because their CF is dropped
  TEST_SYNC_POINT("Test:AllowFlushes");
  TEST_SYNC_POINT("Test:WaitForFlush");
  uint64_t lognum1 = dbfull()->TEST_LogfileNumber();
  ASSERT_OK(Put(1, "key3", DummyString(8192)));
  ASSERT_OK(Put(1, "key4", DummyString(8192)));
  // new wal should have been created
  uint64_t lognum2 = dbfull()->TEST_LogfileNumber();
  EXPECT_GT(lognum2, lognum1);
}

TEST_F(DBTest, UnsupportedManualSync) {
  DestroyAndReopen(CurrentOptions());
  env_->is_wal_sync_thread_safe_.store(false);
  Status s = db_->SyncWAL();
  ASSERT_TRUE(s.IsNotSupported());
}

INSTANTIATE_TEST_CASE_P(DBTestWithParam, DBTestWithParam,
                        ::testing::Combine(::testing::Values(1, 4),
                                           ::testing::Bool()));

TEST_F(DBTest, PauseBackgroundWorkTest) {
  Options options = CurrentOptions();
  options.write_buffer_size = 100000;  // Small write buffer
  Reopen(options);

  std::vector<port::Thread> threads;
  std::atomic<bool> done(false);
  db_->PauseBackgroundWork();
  threads.emplace_back([&]() {
    Random rnd(301);
    for (int i = 0; i < 10000; ++i) {
      Put(RandomString(&rnd, 10), RandomString(&rnd, 10));
    }
    done.store(true);
  });
  env_->SleepForMicroseconds(200000);
  // make sure the thread is not done
  ASSERT_FALSE(done.load());
  db_->ContinueBackgroundWork();
  for (auto& t : threads) {
    t.join();
  }
  // now it's done
  ASSERT_TRUE(done.load());
}

// Keep spawning short-living threads that create an iterator and quit.
// Meanwhile in another thread keep flushing memtables.
// This used to cause a deadlock.
TEST_F(DBTest, ThreadLocalPtrDeadlock) {
  std::atomic<int> flushes_done{0};
  std::atomic<int> threads_destroyed{0};
  auto done = [&] {
    return flushes_done.load() > 10;
  };

  port::Thread flushing_thread([&] {
    for (int i = 0; !done(); ++i) {
      ASSERT_OK(db_->Put(WriteOptions(), Slice("hi"),
                         Slice(std::to_string(i).c_str())));
      ASSERT_OK(db_->Flush(FlushOptions()));
      int cnt = ++flushes_done;
      fprintf(stderr, "Flushed %d times\n", cnt);
    }
  });

  std::vector<port::Thread> thread_spawning_threads(10);
  for (auto& t: thread_spawning_threads) {
    t = port::Thread([&] {
      while (!done()) {
        {
          port::Thread tmp_thread([&] {
            auto it = db_->NewIterator(ReadOptions());
            delete it;
          });
          tmp_thread.join();
        }
        ++threads_destroyed;
      }
    });
  }

  for (auto& t: thread_spawning_threads) {
    t.join();
  }
  flushing_thread.join();
  fprintf(stderr, "Done. Flushed %d times, destroyed %d threads\n",
          flushes_done.load(), threads_destroyed.load());
}
}  // namespace rocksdb

int main(int argc, char** argv) {
  rocksdb::port::InstallStackTraceHandler();
  ::testing::InitGoogleTest(&argc, argv);
  return RUN_ALL_TESTS();
}
back to top