Skip to main content
  • Home
  • Development
  • Documentation
  • Donate
  • Operational login
  • Browse the archive

swh logo
SoftwareHeritage
Software
Heritage
Archive
Features
  • Search

  • Downloads

  • Save code now

  • Add forge now

  • Help

Revision 228423347b5034e27568e41e7dbc52ee43d330b9 authored by Mikhail Kolmogorov on 29 September 2015, 00:07:33 UTC, committed by Mikhail Kolmogorov on 29 September 2015, 00:07:33 UTC
1.2
1 parent bdcccea
  • Files
  • Changes
  • c6adfbf
  • /
  • ragout
  • /
  • breakpoint_graph
  • /
  • inferer.py
Raw File Download

To reference or cite the objects present in the Software Heritage archive, permalinks based on SoftWare Hash IDentifiers (SWHIDs) must be used.
Select below a type of object currently browsed in order to display its associated SWHID and permalink.

  • revision
  • directory
  • content
revision badge
swh:1:rev:228423347b5034e27568e41e7dbc52ee43d330b9
directory badge Iframe embedding
swh:1:dir:3c7343b51f179c853335498c2729f39af5fbe01c
content badge Iframe embedding
swh:1:cnt:a2c8134826311c65bc99732dd7b50bd568f7dd57

This interface enables to generate software citations, provided that the root directory of browsed objects contains a citation.cff or codemeta.json file.
Select below a type of object currently browsed in order to generate citations for them.

  • revision
  • directory
  • content
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
Generate software citation in BibTex format (requires biblatex-software package)
Generating citation ...
inferer.py
#(c) 2013-2014 by Authors
#This file is a part of Ragout program.
#Released under the BSD license (see LICENSE file)

"""
This module infers missing adjacencies
by recovering perfect matching
"""

from collections import namedtuple
import logging
import os

import networkx as nx

from ragout.shared.debug import DebugConfig

logger = logging.getLogger()
debugger = DebugConfig.get_instance()
Adjacency = namedtuple("Adjacency", ["block", "distance",
                                     "supporting_genomes", "infinity"])


class AdjacencyInferer(object):
    def __init__(self, breakpoint_graph, phylogeny):
        self.main_graph = breakpoint_graph
        self.phylogeny = phylogeny

    def infer_adjacencies(self):
        """
        Infers missing adjacencies by recovering perfect matching
        """
        logger.info("Inferring missing adjacencies")

        subgraphs = self.main_graph.connected_components()
        logger.debug("Found {0} connected components"
                             .format(len(subgraphs)))

        chosen_edges = []
        self.orphans_count = 0
        self.guessed_count = 0
        self.trimmed_count = 0
        for subgraph in subgraphs:
            chosen_edges.extend(self._process_component(subgraph))

        logger.debug("Inferred {0} adjacencies".format(len(chosen_edges)))
        logger.debug("{0} orphaned nodes".format(self.orphans_count))
        logger.debug("{0} guessed edges".format(self.guessed_count))
        logger.debug("{0} trimmed edges".format(self.trimmed_count))

        adjacencies = {}
        for node_1, node_2 in chosen_edges:
            distance = 0
            supporting_genomes = []
            infinity = self.main_graph.is_infinity(node_1, node_2)
            if not infinity:
                distance = self.main_graph.get_distance(node_1, node_2,
                                                        self.phylogeny)
                supporting_genomes = self.main_graph \
                                        .genomes_chrs_support(node_1, node_2)
                assert abs(node_1) != abs(node_2)

            adjacencies[node_1] = Adjacency(node_2, distance,
                                            supporting_genomes, infinity)
            adjacencies[node_2] = Adjacency(node_1, distance,
                                            supporting_genomes, infinity)

        self.main_graph.debug_output()
        self._debug_output(chosen_edges)

        return adjacencies

    def _process_component(self, subgraph):
        """
        Processes a connected component of the breakpoint graph
        """
        adjacency = subgraph.to_weighted_graph(self.phylogeny)
        trimmed_graph = self._trim_known_edges(adjacency)
        unused_nodes = set(trimmed_graph.nodes())

        chosen_edges = []
        for trim_subgraph in nx.connected_component_subgraphs(trimmed_graph):
            if len(trim_subgraph) < 2:
                continue

            if len(trim_subgraph) == 2:
                chosen_edges.append(tuple(trim_subgraph.nodes()))
                for n in trim_subgraph.nodes():
                    unused_nodes.remove(n)
                continue

            matching_edges = _min_weight_matching(trim_subgraph)

            for edge in matching_edges:
                for n in edge:
                    unused_nodes.remove(n)

            chosen_edges.extend(matching_edges)

        #predicting target-specific rearrangement
        #NO!
        #if len(unused_nodes) == 2:
        #    node_1, node_2 = tuple(unused_nodes)
        #    cycle = subgraph.alternating_cycle(node_1, node_2)
        #    if (abs(node_1) != abs(node_2) and cycle in [2, 3]):
        #        self.guessed_count += 1
        #        chosen_edges.append((node_1, node_2))
        #        unused_nodes.clear()
        self.orphans_count += len(unused_nodes)

        return chosen_edges

    def _trim_known_edges(self, graph):
        """
        Removes edges with known target adjacencies (red edges from paper)
        """
        trimmed_graph = graph.copy()
        for v1, v2 in graph.edges_iter():
            if not trimmed_graph.has_node(v1) or not trimmed_graph.has_node(v2):
                continue

            genome_ids = set(self.main_graph.genomes_support(v1, v2))
            if self.main_graph.target in genome_ids:
                for node in [v1, v2]:
                    trimmed_graph.remove_node(node)
                self.trimmed_count += 1

        return trimmed_graph

    def _debug_output(self, chosen_edges):
        if not debugger.debugging:
            return

        phylo_out = os.path.join(debugger.debug_dir, "phylogeny.txt")
        edges_out = os.path.join(debugger.debug_dir, "predicted_edges.dot")
        _output_edges(chosen_edges, edges_out)
        _output_phylogeny(self.phylogeny.tree_string, self.main_graph.target,
                          phylo_out)


def _min_weight_matching(graph):
    """
    Finds a perfect matching with minimum weight
    """
    for v1, v2 in graph.edges_iter():
        graph[v1][v2]["weight"] = -graph[v1][v2]["weight"] #want minimum weght

    MIN_LOG_SIZE = 20
    if len(graph) > MIN_LOG_SIZE:
        logger.debug("Finding perfect matching for a component of "
                     "size {0}".format(len(graph)))
    edges = nx.max_weight_matching(graph, maxcardinality=True)
    unique_edges = set()
    for v1, v2 in edges.items():
        if not (v2, v1) in unique_edges:
            unique_edges.add((v1, v2))

    return list(unique_edges)


def _output_edges(edges, out_file):
    """
    Outputs list of edges in dot format
    """
    with open(out_file, "w") as fout:
        fout.write("graph {\n")
        for (v1, v2) in edges:
            fout.write("{0} -- {1};\n".format(v1, v2))
        fout.write("}")


def _output_phylogeny(tree_string, target_name, out_file):
    """
    Outputs phylogenetic tree in plain text
    """
    with open(out_file, "w") as fout:
        fout.write(tree_string + "\n")
        fout.write(target_name)
The diff you're trying to view is too large. Only the first 1000 changed files have been loaded.
Showing with 0 additions and 0 deletions (0 / 0 diffs computed)
swh spinner

Computing file changes ...

back to top

Software Heritage — Copyright (C) 2015–2025, The Software Heritage developers. License: GNU AGPLv3+.
The source code of Software Heritage itself is available on our development forge.
The source code files archived by Software Heritage are available under their own copyright and licenses.
Terms of use: Archive access, API— Content policy— Contact— JavaScript license information— Web API