https://github.com/torvalds/linux
Revision 228f1ce9b8e9e63c3ffc1b03b64d77277cacb89f authored by Barry Song on 04 February 2013, 09:53:34 UTC, committed by Linus Walleij on 05 February 2013, 14:27:39 UTC
the default of_gpio_simple_xlate() will make us fail while getting gpios
bigger than 32 by of_get_named_gpio() or related APIs.
this patch adds a specific of_xlate callback for sirf gpio_chip and fix
the problem.

Signed-off-by: Barry Song <Baohua.Song@csr.com>
Signed-off-by: Linus Walleij <linus.walleij@linaro.org>
1 parent a1ed267
Raw File
Tip revision: 228f1ce9b8e9e63c3ffc1b03b64d77277cacb89f authored by Barry Song on 04 February 2013, 09:53:34 UTC
pinctrl: sirf: replace of_gpio_simple_xlate by sirf specific of_xlate
Tip revision: 228f1ce
cpu-load.txt
CPU load
--------

Linux exports various bits of information via `/proc/stat' and
`/proc/uptime' that userland tools, such as top(1), use to calculate
the average time system spent in a particular state, for example:

    $ iostat
    Linux 2.6.18.3-exp (linmac)     02/20/2007

    avg-cpu:  %user   %nice %system %iowait  %steal   %idle
              10.01    0.00    2.92    5.44    0.00   81.63

    ...

Here the system thinks that over the default sampling period the
system spent 10.01% of the time doing work in user space, 2.92% in the
kernel, and was overall 81.63% of the time idle.

In most cases the `/proc/stat' information reflects the reality quite
closely, however due to the nature of how/when the kernel collects
this data sometimes it can not be trusted at all.

So how is this information collected?  Whenever timer interrupt is
signalled the kernel looks what kind of task was running at this
moment and increments the counter that corresponds to this tasks
kind/state.  The problem with this is that the system could have
switched between various states multiple times between two timer
interrupts yet the counter is incremented only for the last state.


Example
-------

If we imagine the system with one task that periodically burns cycles
in the following manner:

 time line between two timer interrupts
|--------------------------------------|
 ^                                    ^
 |_ something begins working          |
                                      |_ something goes to sleep
                                     (only to be awaken quite soon)

In the above situation the system will be 0% loaded according to the
`/proc/stat' (since the timer interrupt will always happen when the
system is executing the idle handler), but in reality the load is
closer to 99%.

One can imagine many more situations where this behavior of the kernel
will lead to quite erratic information inside `/proc/stat'.


/* gcc -o hog smallhog.c */
#include <time.h>
#include <limits.h>
#include <signal.h>
#include <sys/time.h>
#define HIST 10

static volatile sig_atomic_t stop;

static void sighandler (int signr)
{
     (void) signr;
     stop = 1;
}
static unsigned long hog (unsigned long niters)
{
     stop = 0;
     while (!stop && --niters);
     return niters;
}
int main (void)
{
     int i;
     struct itimerval it = { .it_interval = { .tv_sec = 0, .tv_usec = 1 },
                             .it_value = { .tv_sec = 0, .tv_usec = 1 } };
     sigset_t set;
     unsigned long v[HIST];
     double tmp = 0.0;
     unsigned long n;
     signal (SIGALRM, &sighandler);
     setitimer (ITIMER_REAL, &it, NULL);

     hog (ULONG_MAX);
     for (i = 0; i < HIST; ++i) v[i] = ULONG_MAX - hog (ULONG_MAX);
     for (i = 0; i < HIST; ++i) tmp += v[i];
     tmp /= HIST;
     n = tmp - (tmp / 3.0);

     sigemptyset (&set);
     sigaddset (&set, SIGALRM);

     for (;;) {
         hog (n);
         sigwait (&set, &i);
     }
     return 0;
}


References
----------

http://lkml.org/lkml/2007/2/12/6
Documentation/filesystems/proc.txt (1.8)


Thanks
------

Con Kolivas, Pavel Machek
back to top