Revision 231c807a60715312e2a93a001cc9be9b888bc350 authored by Linus Torvalds on 24 March 2019, 18:42:10 UTC, committed by Linus Torvalds on 24 March 2019, 18:42:10 UTC
Pull scheduler updates from Thomas Gleixner:
 "Third more careful attempt for this set of fixes:

   - Prevent a 32bit math overflow in the cpufreq code

   - Fix a buffer overflow when scanning the cgroup2 cpu.max property

   - A set of fixes for the NOHZ scheduler logic to prevent waking up
     CPUs even if the capacity of the busy CPUs is sufficient along with
     other tweaks optimizing the behaviour for asymmetric systems
     (big/little)"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched/fair: Skip LLC NOHZ logic for asymmetric systems
  sched/fair: Tune down misfit NOHZ kicks
  sched/fair: Comment some nohz_balancer_kick() kick conditions
  sched/core: Fix buffer overflow in cgroup2 property cpu.max
  sched/cpufreq: Fix 32-bit math overflow
2 parent s 49ef015 + b9a7b88
Raw File
IRQ.txt
===============
What is an IRQ?
===============

An IRQ is an interrupt request from a device.
Currently they can come in over a pin, or over a packet.
Several devices may be connected to the same pin thus
sharing an IRQ.

An IRQ number is a kernel identifier used to talk about a hardware
interrupt source.  Typically this is an index into the global irq_desc
array, but except for what linux/interrupt.h implements the details
are architecture specific.

An IRQ number is an enumeration of the possible interrupt sources on a
machine.  Typically what is enumerated is the number of input pins on
all of the interrupt controller in the system.  In the case of ISA
what is enumerated are the 16 input pins on the two i8259 interrupt
controllers.

Architectures can assign additional meaning to the IRQ numbers, and
are encouraged to in the case  where there is any manual configuration
of the hardware involved.  The ISA IRQs are a classic example of
assigning this kind of additional meaning.
back to top